• Aucun résultat trouvé

Flashover voltage of silicone insulating surface covered by water droplets under AC voltage

N/A
N/A
Protected

Academic year: 2021

Partager "Flashover voltage of silicone insulating surface covered by water droplets under AC voltage"

Copied!
7
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Electric

Power

Systems

Research

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / e p s r

Flashover

voltage

of

silicone

insulating

surface

covered

by

water

droplets

under

AC

voltage

F.

Aouabed

a

,

A.

Bayadi

a,∗

,

R.

Boudissa

b

aDépartementElectrotechnique,UniversitéFerhatAbbasdeSétif1,Sétif,Algeria

bLaboGénieElectrique,UniversitéA.Mira,Béjaia,Algeria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26May2015

Receivedinrevisedform

13September2016 Accepted10October2016 Keywords: Contamination Flashover Testing

Siliconerubberinsulators

Surfacewettability

Waterdroplets

a

b

s

t

r

a

c

t

Dischargescausedbywaterdropletsonthesurfaceofpolymericinsulatorscanaffectthelong-term reliabilityofthecomponentbyloweringthesurfacehydrophobicityboostingsurfacedischarges.The mainobjectiveofthisworkistoquantifytheeffectofdifferenttypesofwaterdropsarrangements,their positionanddrybandswidthontheflashovervoltageofthesiliconeinsulatingsurfacewithnon-uniform electricfieldsystems.ThetestsweredoneonarectangularsampleunderACvoltage.Waterdropletswith differentconductivitiesandvolumeswereplacedonthesiliconerubbersurfacewithamicropipette.A rod-rodelectrodesystemisused.

Thefindingsofthisworkindicatethattheperformanceofthesamplesdecreaseswiththepresenceof waterdropsontheirsurfaces.Further,theseexperimentalfindingsshowthatthereisalimitingnumber ofrowsfromwhichtheflashovervoltageoftheinsulationisminimalandconstant.Thisminimumisa functionofthedistancebetweentwosuccessiverows.

Finally,itisconcludedthatthesystemwithstandvoltageincreaseswhentherowofdropletsonthe electrodeaxisisremoved.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Nowadays,siliconerubberinsulationmaterialsarewidelyused inhighvoltageoutdoorinsulationsystemsastheycancombat pol-lutionflashoverproblems.

Thedifferenceinpollutionflashoverperformance ofsilicone rubberandotherinsulatingmaterialsisduetothewaythatwater wetstheirsurfaces.Itresidesasdiscretedropsonsiliconerubber, andthemechanismofflashoverisduetothebreakdownofthe airbetweenthewaterdropsandthedeformationofthesedrops inthedirectionoftheelectricfieldwhichbringstheinsulationto degradationandfailure.

Duringthepast25yearspolymericmaterialshaveemergedasa viableoptiontoporcelainand/orglassforoutdoorinsulation[1,2]. Polymericinsulatorsareincreasinglybeingusedinboththe dis-tributionandtransmissionsystemsbecauseoftheirverystrong resistancetothecontamination,theirlightness,theirmechanical resistanceand theirverygood wettability.The deterioration of

∗ Corresponding author at: Département d’Electrotechnique, Faculté de

Technologie, Université Ferhat Abbas Sétif 1, Algeria. Tel.:+213665303202;

fax:+21336611211.

E-mailaddresses:fatihaess@yahoo.fr(F.Aouabed),abayadi@yahoo.fr,

abayadi@univ-setif.dz(A.Bayadi),raboudissa@yahoo.fr(R.Boudissa).

insulatorsurfaceisoneofmainproblemstothesafetyand reli-abilityofelectricsystems.Thisisduetoenvironmentalconditions (light rain,morning dew), which significantly affect its perfor-mance.Itisknownthatwaterdropletsmaycause,underapplied electricfield,deteriorationofthesurfaceofanon-ceramic insula-toreveninconditionsoflowpollution.Thisisduetothefactthat waterdropletsonapolymersurfacelocallyincreasetheapplied electricfield. Localfield intensificationswilllead topartial dis-chargesand/orlocalizedarcs.Thesepartialdischargesdestroythe hydrophobicityandcausethedegradationoftheinsulatorswhich canplayanimportantroleinlong-termperformance[9–13].The influenceofvariousparametersonthebehaviorofwaterdroplets onpolymericsurfacesunderhighelectricfieldshasbeenthesubject ofseveralinvestigations[3–13].Themainobjectivewastoincrease thealternatingelectricfield.Karady[5],forexample,presentedthe resultsofanexperimentalinvestigationwhichprovidesabetter understandingofthephenomenaleadingtoflashover.Itwasshown thatthehydrophobicnatureofsiliconerubbersurfaceresultsina flashovermechanismdifferentfromthatofporcelaininsulators. Changesinsurfaceresistanceinducedbydischargeactivityonwet andcontaminatedsurfacehavebeenidentifiedasoneofthesources offlashoverofsiliconeinsulators.Phillipsetal.[10]publishedthe resultsofaresearchthatcorrelatestheinsulatorsagingwithcorona activitiesfromwaterdroplets.Usingsmall-scaleexperiment,itwas shownthatWaterdropsonthesheathsurfacesofSiRinsulatorcan http://dx.doi.org/10.1016/j.epsr.2016.10.025

(2)

producecorona,andthefieldnecessarytoproducecoronadepends onthedropletssizeandthesurfacehydrophobicity.

Swift[14] studiedtheoreticalandexperimentalinvestigation ofdropletsonthesurfaceinsulatorfromtheviewpointofwater triggeredelectricalbreakdownofanair-dielectricinterface.Itwas shown that greatly reducing thehydrophobicity of the surface by sparking the flashover voltage, but recovery to the fully-hydrophobicvaluetakesonlyafewminutes.andthatforthefully hydrophobiccase,flashoveristriggeredbygrossdistortionofthe waterdroplet.

InRef.[15],theauthorshavepresentedanexperimentalstudy ontheproblemsarisingfromtheapplicationofuniformacelectric fieldsonwaterdropletsdepositedonpolymersurfaces.

Differentpolymericmaterialswereused.Itwasshownthat vari-ousparameterssuchaswaterconductivity,dropletvolume,droplet positioningand polymer surface roughness affectthe flashover voltage.Itwasalsoreportedthatthepositioningofthedroplets playsagreaterroleindeterminingtheflashovervoltagethanthe dropletvolume.

InRef.[16],testshavebeendoneonwaterdropletsof differ-entconductivitiesandvolumesdepositedonthesurfaceofsilicone rubber.Factorsaffectingthecoronadischargeofwater droplets wereanalyzedbycalculatingtheelectricfield.Theauthorsreported thatwaterdropletsincreasetheelectricfieldandcancausecorona discharge.Theyalsoobservedthatthedropletvibratesandliedown tothepositiveelectrodeinawavesynchronismwiththeapplied voltagefrequency.

Fernandoetal.[17]studiedthebehaviorofleakagecurrenton compositeinsulatorsofdifferentmaterials.Theyconcludedthat theleakagecurrentiscapacitiveinnatureandoftenhasa sinu-soidalshape.Whenthehydrophobicityislost,theleakagecurrent becomesmoreresistive,withpeaksduetodischargesindrybands. Lopesetal.[20] measuredpartialdischarge(PD)fromwater dropletsonasiliconerubberinsulatingsurfaceinanacfield.They haveshownthatthepresenceofwaterdropletsonasiliconerubber surfaceproducesanelectricfieldenhancement.Thefield enhance-mentfactordependsonthesizeandnumberofdroplets.Theyalso observedthattheelectrostaticforces changethedropletshapes andspreadtheminthefielddirection.

Souzaetal.[21]investigatedthecoronainceptionandits rela-tion withpolymer surface conditions. They concludedthat the associationwaterdropletsandpollution,enhancetheelectricfield andcanleadtocoronadischargesandeventuallytofailures,under heavycontaminatedregions.

Phillips et al. [22], for example, presented summarized the findingsoftheextensiveresearchcarriedoutbythesetwo orga-nizations (EPRIand STRI)todeterminea practical limit forthe permissiblee-fieldoninsulatorsurfacesfordesignpurposes.

However,totheauthors’bestknowledge,Afewtheoreticaland experimentalworksstudyingtheinfluenceofthecombinationthe dropletsarrangementswithdrybandsonpolymericsurfacehave beendone[18].

Toformabetterviewofthebehaviorofwaterdropletsunder anon-uniformelectricfield,wecarriedoutseveralexperimental testsinthehighvoltagelaboratory.Weinvestigatedtheinfluence ofthenumberofwaterdropletsrowsandthedistancebetween them.Thispapersummarizesfindingsofexperimentswhichallow quantifyingtheseeffectsontheflashovervoltage.

2. Experimentalsetupandtestprocedure

Thewithstandvoltagemeasurementandvisualizationofthe airgapdisruptionphenomenonwereconductedusingequipments depictedinFig.1.ThetestcircuitconsistsofaHVtransformer(Tr) havingamaximumsecondaryvoltageof140kV.Acontrolunit(CU)

Fig.1. Laboratorytestsetup.

(CU:transformercontrolunit;Tr:HVtransformer;Cam:camescope;PC:personal

computer;To:testobject;C1,C2:capacitivedivider;Ra:resistance;V:digitalpeak

voltmeter).

forautomaticormanualspeedrampcontrol.Adigitalpeak volt-meter(V)atthelow-voltagearmofacapacitivedivider(C1,C2)

wasusedforvoltagemeasurements.Acurrent-limitingresistance (Ra)wasconnectedinserieswithtestobject(To).Thedevelopment

oftheelectricaldischargealongthesamplesurfacewasvisualized andrecordedfrominceptiontofullflashoverusingavideocamera system

Theairgapsystemhastwopointelectrodes.Thehigh-voltage andearthelectrodesconsistofacylindricalstainlesssteelrod5mm indiameter.Theyareterminatedbyaconicaltiphavinganangle of60◦andradiusofcurvatureof0.5mm.

TherodsarefixedontheholesoftwoPVCtubes.

The test specimen is a plate-shaped silicone rubber having 120mm in length,80mm in width and 5mm in thikness.The pollution solutioncomprises saltand distilledwater. Thewater droplets havebeendepositedonthehydrophobicsurfaceusing amicropipette.Thevolumeofthesedropletscanbeobtainedby tuningthemicropipetteatthedesiredsize.Inthiscase,thevolume ofwaterdropletsdepositedis40␮l.Thevolumeconductivityv

ofthepollutingsolutionwasdirectlymeasuredbyamobileprobe volumeconductimeterandwasfoundtobeabout180␮S/cm.

Theairgapdistancewastakenequalto6cm.Twentyfivetests werecarriedoutandvoltagestepsVofapproximately5%ofUc

wereused.Thesetestparametersarewellwithintherecommended valuesforsuchstatisticalmeasurementswherethenumberoftests n shouldbebetween20and 60 testsand thevoltagestep V between1%and 10% oftheflashovervoltage. Beforeeach new test,thesampleiscleanedandrinsedwithwaterthendriedusing papertissue.Thencleanedwiththeisopropanolalcohol.Foreach calculatedmeanvalue,byapplyingcorrectionfactors,adisruptive dischargevoltagemeasuredingiventestconditions(temperature T, pressure P,humidityH) isconverted totheequivalentvalue underthestandardreferenceatmosphericconditions(T0=20◦C,

P0=101.3kPa,H0=11g/m3)[19].Thegroupofwaterdropletsis

characterizedbyacoupleofvariable(ar,dg).Thedistancearisthe widthbetweentwosuccessiverowsanddgisthedistancebetween twosuccessivecolumnsofwaterdropletsasshowninFig.2. 3. Resultsanddiscussion

Toinvestigatetheinfluenceofwaterdropletontheflashover voltageofasiliconerubberinsulatingsurfaceaseriesof experi-mentshavebeenconductedasfollows:

3.1. Effectofwaterconductivity

Fig.3showstheinfluenceofthewaterdropletsconductivityon themeanvalueoftheinsulatorflashovervoltagefortwodifferent numbersofrows.

(3)

Fig.2. Distributionofwaterdropletsonthesample.

Fig.3.Influenceofthewaterdropletsconductivityontheinsulatorflashover

volt-age.

Theobtainedresultsshowthatthechosenvaluesofrowsdoes notsignificantlyaffectthecharacteristicUc=f(v).

Furthermore, as can be seen, the average flashover voltage decreasesbyapproximately38%withthepollutionconductivity untilalimitvalueofabout2.5mS/cmbeyondwhichthedielectric

strengthofthesystemremainsconstant.Thisismainlyduetothe factthatfromthislimit,thewaterbecomesconductive.

3.2. Numberofrowsofwaterdroplets

Inthispartofourinvestigations,experimentswereperformed withoutanydropletsbetweentheelectrodes.Thiswasdonein ordertohavereferencevaluesoftheflashovervoltage.Inorder tounderstandtheinfluenceofdropletsnumberofrowsbetween theelectrodes,thelatterisvariedfrom1to11.Thevolume con-ductivityismaintainedconstantatabout180␮S/cm.Theobtained resultsareshowninFig.4.Theobservationswiththevideocamera systemhaveshownthattheflashoverprocessfromtheinception tofullflashoverisdescribedessentiallyasfollows:

a)First,thegroupofwaterdropletsdepositedonthesample sur-face,beforeitsenergization,isshowninFig.4a.Themiddlerow coincideswiththeelectrodesaxisanditsextremedropletsgot incontactwiththeirpoints.

b)In the second phase, Whenan electric field is applied, It is observedthatthewaterdropletsshapechangealongthe elec-trode axis leading to the decrease of the ignition distance (Fig.4b)andthesharpedgeofthewaterdropletsatthetripleline togetherwiththeoppositeelectrodeformanon-homogeneous fieldconfigurationwhichisthebasiccausetohavethestreamer inceptiononthesamplesurface.

c)Next,forthereasonthattheelectric-fieldstrengthneartheHV electrodeisstrongenough,electricaldischargeisestablished alongtheelectrodeaxisasshowninFig.4c,

d)Finally,thetestedsampleafterthefullflashoverisshownin Fig.4d.

Thevariationofflashovervoltageasafunctionofwaterdroplets numberis illustratedinFig.5.It canbeseenthatthepresence of water droplets covering the hydrophobic insulating surface energizedwithalternatingvoltagecausesthereductionofits per-formance.Indeed,theflashovervoltagedecreasesasthenumberof rowsincreases.Thiscanbeexplainedbythedecreaseofthe igni-tiondistancedue,inonehand,tothespaceoccupiedbyvolume ofwaterdropletsbeforedeformationandintheotherhand,tothe theirstretchingalongthepathfollowedbytheelectricdischarge.

Takingintoaccounttheseresultsitcanbeseenthattheflashover voltagedecreasesrapidlytoalimitvalueofthenumberofrows

(4)

Fig.5.Flashovervoltagevsthenumberofrowsdropletsfordifferentdistances

betweenthem.

Fig.6. Relativereductionofflashovervoltageasafunctionofrowsnumber.

fromwhich,itbecomesconstant,themaximumvariationofelectric performanceisestimatedto35%.Thevalueofthislimitisa func-tionofthedistancebetweentwosuccessiverows.Furthermore, whenthedistancearisdecreasedalongthecreepagedistanceof thesample,asignificantdecreaseinitsperformanceisobservedas well.

Fig.6 showsthe relativereduction of flashovervoltageas a functionofrowsnumber.Wecanseethattherelativereduction increasesrapidlytoalimitvalue(5rows)ofthenumberofrows fromwhich,itbecomesrelativelyconstant,whichisinaccordance withtheresultspreviouslyobtained.

The relative reduction betweenflashover voltage and water dropletsrowscanbeobtainedasfollows:

U =100%×(U0−Ui)/U0 (1)

whereU0,Uiaretheflashovervoltagecorrespondingtothecase

withoutandwithwaterdropletsrowsrespectively.iisvariedfrom 1to11.

Quantitatively,Table1summarizestheresultsobtainedforthe maximumrelativevariationofUCwheniistakenequalto0and

5respectively.Themaximumflashovervoltageoftheairgapwith fiverowsisabout35%lowerthanthatobtainedinthecaseofadry cleanatmosphere.Itshouldbenotedthatforthelastvalueinthe table,only3rowswereusedduetothedimensionsofoursamples.

Table1

Relativereductionofflashovervoltagewithnumberofrows.

Numberofrows Uc(kV) U(%) ar=1cm,dg=1cm 0 41.7 35% 5 27.31 ar=1cm,dg=2cm 0 41.7 14% 5 35.94 ar=2cm,dg=2cm 0 41.7 8% 5 38.43 ar=3cm,dg=2cm 0 41.7 5.35% 5 39.47 ar=4cm,dg=2cm 0 41.7 5.5% 3 39.4 0 1 2 3 4 5 34 36 38 40 Flashover voltage Uc (kV) Distance ar ( cm) dg = 2 cm, 2 rows dg = 2 cm, 3 rows dg = 2 cm, 4 rows

Fig.7.Effectofthedistancearontheinsulatorflashovervoltages.

3.3. Distancebetweentwosuccessiverows

Inthissectiontheeffectofthedistancearisinvestigated.The arrangement of water droplets onthesurface of thesample is designedsuchthatthereisnorowalongtheelectrodeaxis.The obtainedresultsare illustratedin Fig.7 forthree different val-uesofar.Ascanbeseentheflashovervoltageincreaseswiththe distancebetweentworows.Besidesthiswecanseethatthe volt-ageincreasesrapidlyuptoalimitfromwhichnoimprovementis detected.

3.4. Positionandwidthofadryzoneperpendiculartothe electrodesaxis

Fig.8shows theshape oftheinsulation performancevs the numberofrowsofwaterdropletsdepositedonthesurface perpen-diculartotheelectrodesaxis.Thetotalnumberofperpendicular rowsis7.Thenumberofparallelrowsinthiscaseisequalto5. Thedistancebetweentwosuccessiverowsisequalto1cmandthe waterdropletsconductivityisabout180␮S/cm.

ResultsofFig.8showthatwhencreatingadrybandinthe vicin-ityofthegroundedelectrode,theflashovervoltagepassesthrough amaximumforanairgapdistanceequaltoapproximately6cm whichcorrespondstoasinglerowofwaterdropletsincontactwith thehighvoltageelectrode.Thisoptimumcanbeexplainedbythe factthatafterdeformationofwaterdroplets(Fig.9a,b,d),the dis-chargearcoverwaterdropletsarisesfarawayfromtheendofthe highvoltageelectrodealongapathcharacterizedbyapeakinits middle(Fig.9c).

Thispathislongerthanthatbetweenthetwopointswithout waterdroplets.Thesysteminthiscaseismorerigidthanwhenthe drybandisatthehighvoltageside.However,whenthewidthof thedrybandisequaltohalfthedistancebetweentheelectrodes, thewithstandvoltageofthesystemwithadrybandinthevicinity

(5)

0 2 4 6 8 25 30 35 40 45 50

Water drops on th

e ground

side

Water drops on th

e hi

gh voltage s

ide

Flashover vo

ltage

U

C

(kV)

Distance dg (cm)

Fig.8. Relationbetweentheflashovervoltageandthedistancedg.

ofthehighvoltageelectrodeishigherthanthesamesystemwith thedrybandinthegroundelectrodeside.Thisdiscrepancyisdue tothefactthatdepositedwaterdropletsinthevicinityoftheHV electrodeshortentheinter-electrodepath

3.5. Positionandwidthofadrybandparalleltotheelectrodes axis

Inthis section,theeffectofthedrybanddistanceldb

paral-leltotheelectrodeaxisontheflashovervoltageisinvestigated. Thisinvestigationwasachievedbyremovingdropletsrowsfrom selectedareasoftheinsulatorsurface.Thewaterdropletsare char-acterizedbyanelectricconductivityequalto180␮S/cmhaving ar=1cmanddg=2cm.theinitialtotalnumberofrowsisequalto 11.

AsshowninFig.10,twoscenarioswerestudied:

a)Aftercoveringtheentiresurfaceofthesamplebywaterdroplets, rown◦6,bywhichwemeantherowalongtheelectrodeaxis,was removedfirst,thenrown◦5onitsrightnextcomesrown◦7on itsleft.

Thispracticecontinuesuntilonlyonerowremainsonthe sam-plesurface,

b)Inthesecondscenario,thedropletsrowswereremovedoneby onestartingfromrown◦1untilonlyonerowremainsonthe samplesurfaceaswell.

TheobtainedresultsareshowninFig.11,wherethevariation oftheflashovervoltageisplottedasafunctionofthedry band distanceldbpositionandwidth.

Ascanbeseen,inthecasewherewaterdropletsrowonthe elec-trodeaxiswasremoved,thedrybandcreatedcausesanincreasein thedielectricstrengthofthesystematitsmaximumvalue.From thislimitremovalofanyotherrowdoesnotproduceany improve-ment.Thismeansthattheexistenceoftherowalongtheelectrodes axiscontributessignificantlytotheshorteningofthearcingpath betweenthe two electrodes.This wasverifiedduring thetests byobtainingphotographicevidenceforthedischargesfollowing theinsulatorsurface(Fig.12).Itsremovaldoesnotautomatically changethepathoftheelectricdischarge,despitetheincreaseof theignitiondistanceandpartialdeformationofwaterdropletsof theadjacentrows.

Inadditiontothis,Fig.11indicatesthatadrybandhavinga widthlessthanorequalto5cmobtainedbydeletingfiverowsto theleftoftheelectrodeaxis(scenariob)doesnotaffectthesystem performanceandtheflashovervoltageisalwaysatitsminimum. However,Notonlytheremovalofthedropletsrown◦6,whichison theelectrodeaxis,increasesthedielectricstrengthofthesystem butitproducesthehighestflashovervoltageaswell.Fromthislimit noimprovementwasseenwhendeletingtherestofthedroplets rows.

4. Conclusions

Theanalysisoftheeffectofdifferenttypesofarrangementsof waterdropletsontheflashovervoltageofasiliconesurfacewith anon-uniformfieldelectrodesystemledmainlytothefollowing conclusions:

䊏Theperformanceofainsulatingsurfaceisreducedwhenitis uniformlycoveredbywaterdroplets;

䊏Undertheinfluenceofwaterdroplets,thereisalimitednumber ofrowsforwhichtheinsulationperformanceisminimal(about 35%lowerthanthatobtainedinthecaseofadryclean

(6)

Fig.10.Consideredscenariosofthedryband. 0 2 4 6 8 10 12 25 30 35 40 45 Flashover voltage U C (k V ) Distance ldb (cm) Scenario a Scenario b

Fig.11. Variationoftheflashovervoltagevsthedrybanddistanceldb.

sphere)andis quiteconstantbeyondit.Thisminimumvalue dependsonthedistancebetweentwosuccessiverowsofwater droplets;

䊏Inthecasewherewaterdropletsrowontheelectrodeaxisdoes notexist,thecreateddrybandincreasesthedielectricstrength ofthesystem;

䊏Forthecasewhereadrybandiscreatedinthevicinityofthe groundelectrodesuchthatasinglerowexistalongtheline pass-ingthroughthehighvoltageelectrode,thewithstandvoltageof thesystemishigherthanthatinthecaseofabsenceofwater dropletsonthesurface.

䊏Theflashovervoltagedecreasesinanon-linearmannerandis slightlyaffectedbytheincreaseofthewaterconductivity,inhigh conductivitiesregion.Finally,theeffectoftheelectrical conduc-tivityofwater dropletsonitsperformance,erectedfallingto 38%.

(7)

Fig.12.Dischargestages:caseofadrybandparalleltotheelectrodeaxis.

Acknowledgements

Thisworkisapartofa researchprojectapprovedunderthe number:J0201220120004.Theauthorswould liketothankthe MinistryofhigherEducationandScienceResearchofAlgeriafor thefinancialsupportofthisproject.

References

[1]R.Hackam,OutdoorHVcompositepolymericinsulators,IEEETrans.Dielectr. Electr.Insul.6(5)(1999)557–585.

[2]E.A.Cherney,R.S.Gorur,RTVsiliconerubbercoatingsforoutdoorinsulators, IEEETrans.Dielectr.Electr.Insul.6(5)(1999)605–611.

[3]J.Ndoumbe,A.Beroual,A.M.Imano,Behaviourofwaterdropletsoninsulator surfacessubmittedtoDCvoltage–coalescence,ProceedingsoftheAnnual ReportConferenceElectricalInsulationandDielectricPhenomena(CEIDP) (2012)725–728.

[4]L.Yong,X.D.Boxue,Recurrentplotanalysisofleakagecurrentindynamic droptestforhydrophobicityevaluationofsiliconerubberinsulator,IEEE Trans.PowerDeliv.28(4)(2013)1996–2003.

[5]G.G.Karady,Flashovermechanismofnon-ceramicinsulators,IEEETrans. Dielectr.Electr.Insul.6(5)(1999)718–723.

[6]M.G.Danikas,R.Sarathi,P.Ramnalis,S.L.Nalmpantis,Analysisofpolymer surfacemodificationsduetodischargesinitiatedbywaterdropletsunder highelectricfields,Int.J.Electr.Electron.Eng.4(5)(2010)329–334.

[7]M.H.Nazemi,V.Hinrichsen,Partialdischargeinceptionelectricfieldstrength ofwaterdropletsonpolymericinsulatingsurfaces,IEEETrans.Dielectr.Electr. Insul.22(2)(2015)1088–1096.

[8]H.P.Nagaraj,N.Vasudev,K.N.Ravi,S.Aradhya,Behaviourofwaterdropletson polymersurface,ProceedingsoftheIEEE10thIntern.Conf.ontheProperties andApplicationsofDielectricMaterials(2012)1–4.

[9]Y.Zhu,K.Haji,M.Otsubo,C.Honda,N.Hayashi,Electrohydrodynamic behaviourofwaterdropletonanelectricallystressedhydrophobicsurface,J. Appl.Phys.39(2006)1970–1975.

[10]A.J.Phillips,D.J.Childs,H.M.Schneider,Agingofnon-ceramicinsulatordueto coronafromwaterdrops,IEEETrans.PowerDeliv.14(3)(1999)258–263.

[11]S.M.Rowland,F.C.Lin,Stabilityofalternatingcurrentdischargesbetween waterdropsoninsulationsurfaces,J.Appl.Phys.39(2006)3067–3076.

[12]D.A.Swift,C.Spellman,A.Haddad,Hydrophobicitytransferfromsilicone rubbertoadheringpollutantsanditseffectoninsulatorperformance,IEEE Trans.Dielectr.Electr.Insul.13(4)(2006)820–829.

[13]H.Wang,Z.Peng,S.Zhang,P.Liu,SimulationstudyonE-fielddistributionand coronacharacteristicsofcompositeinsulatorwithwaterdroplets,

ProceedingsoftheAnnualReportConferenceElectricalInsulationand DielectricPhenomena(CEIDP)(2013)422–425.

[14]D.A.Swift,Flashoverofaninsulatorsurfaceinairduetopollutedwater droplets,Proceedingsofthe4thIntConf.onPropertiesandApplicationson DielectricMaterials2(1994)550–553.

[15]M.G.Danikas,P.Rakitzis,K.Karakoulidis,Studyofparametersrelatedto deteriorationphenomenaduetowaterdropletsonpolymericsurfaces,J. Electr.Eng.57(3)(2006)130–137.

[16]S.Zhu,N.Yamashita,M.Anami,C.Otsulbo,Y.Honda,Coronadischarge phenomenonandbehaviourofwaterdropletsonthesurfaceofpolymerin theACelectricfield,Proceedingsofthe7thInt.Conf.onPropertiesand ApplicationsofDielectricMaterialsvol.2(2003)637–641.

[17]M.A.R.M.Fernando,S.M.Gubanski,Leakagecurrentpatternsoncontaminated polymericsurfaces,IEEETrans.Dielectr.Electr.Insul.6(5)(1999)660–667.

[18]M.G.Danikas,P.Ramnalis,R.Sarathi,Experimentalresultsonthebehaviour ofwaterdropletsonpolymericsurfacesundertheinfluenceofelectricfields: thecaseofaninclinedtestarrangementforPVC,rubberandsiliconerubber, FunktechnikplusJ.1(2)(2013)19–39.

[19]BSEN60060-1High-voltagetesttechniques.Part1:generaldefinitionsand

testrequirements,(2010).

[20]IvanJ.S.Lopes,SheshaH.Jayaram,EdwardA.Cherney,Astudyofpartial dischargesfromwaterdropletsonasiliconerubberinsulatingsurface,IEEE Trans.Dielectr.Electr.Insul.8(April(2))(2001)262–268.

[21]B.-A.L.Souza,I.J.S.Lopes,Experimentalinvestigationofcoronaonsetin contaminatedpolymersurfaces,IEEETrans.Dielectr.Electr.Insul.22(2) (2015)1321–1331.

[22]C.-A.J.Phillips,A.J.Maxwell,I.Engelbrecht,Electric-fieldlimitsforthedesign ofgradingringsforcompositelineinsulators,IEEETrans.PowerDeliv.30(3) (2015)1110–1118.

Figure

Fig. 1. Laboratory test setup.
Fig. 4. Discharge development stages on the sample fully covered by water droplets.
Fig. 5. Flashover voltage vs the number of rows droplets for different distances between them.
Fig. 8. Relation between the flashover voltage and the distance dg.
+3

Références

Documents relatifs

The approach was to first optimize the speed of a building block, and then to use the block consistently to design larger cache circuits, such as 16Kbyte and 32Kbyte

The induced voltage onto the pipeline was calculated for different separation distance between conductors, the existence of the earth wire, separation distance between transmission

The main objective of this work is the calculation of the magnetic field created by the permanent magnets of the both selected rotor types (magnets on surface

Thus, if a cyclic voltage is applied to obtain NAA, the index contrast between layers obtained with different voltages will be increased with the pore widening.. A simple model can

Important electrical parameters of the MPPC detectors as gain, breakdown voltage, quenching resistance, capacitance and dark count rate have been measured..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

One degradation scenario can explain the broadband increase of the susceptibility level of the voltage regulator: the electrical stress applied on the power supply

ةمدقم 3 أ ظنت قيرط نع ةلكشملا هذه نم دحلل ةينوناق رط ندملا دييشتو ءانبلا ةيلمع رييستو مي نم ةموسرم تاودأو دعاوقلل اقفو أ .اهتيلاعف نامض لج