• Aucun résultat trouvé

A shell fracture framework based on a full discontinuous Galerkin formulation combined with an extrinsic cohesive law

N/A
N/A
Protected

Academic year: 2021

Partager "A shell fracture framework based on a full discontinuous Galerkin formulation combined with an extrinsic cohesive law"

Copied!
51
0
0

Texte intégral

(1)

University of Liège

Aerospace & Mechanical Engineering

A shell fracture framework based on a full discontinuous

Galerkin formulation combined with an extrinsic cohesive law

G. Becker & L. Noels

Computational & Multiscale Mechanics of Materials, ULg

Chemin des Chevreuils 1, B4000 Liège, Belgium

Gauthier.Becker@ulg.ac.be

L.Noels@ulg.ac.be

(2)

Context of cohesive approach

• Very appealing with finite element method

• Ideally

– Consistent

– Easy implementation (//)

• Two classical methods

– Intrinsic

– Extrinsic

(3)

Context of cohesive approach

• Intrinsic methods

– Cohesive law

+ Easy implementation: cohesive element inserted at beginning

– Not consistent: initial slope modifies stiffness structure

(4)

Context of cohesive approach

• Extrinsic methods

– Cohesive law

+ Consistent

(5)

Consistent without mesh modification ?

• Discontinuous Galerkin (DG) formulation

– Discontinuous tests functions at interfaces

– Consistency at interface

(a-1)

(a)

x

(a+1)

Field

(a-1)

+

(a)

+

x

(a+1)

-Field

(a+1)

+

(a)

-(a-1)

-Continuous Galerkin

Discontinuous Galerkin

No fracture

Fracture

DG terms ensure continuity

Extrinsic cohesive element

Switch when

fracture

crtiterion is

reached

(6)

DG / Extrinsic cohesive law combination

• Application to 3D cases

[Radovitzky, Seagraves, Tupek &

Noels CMAME 2010]

(7)

DG / Extrinsic cohesive law combination

• Application to 3D cases

– Scalable approach

• Extension to thin bodies (beam, plate & shell) ?

[Radovitzky, Seagraves, Tupek &

Noels CMAME 2010]

(8)

Topic

• DG Kirchhoff-Love shell formulation

• Coupling with extrinsic cohesive law (ECL)

• DG/ECL applications

(9)

DG Kirchhoff-Love shell formulation

• Conservation equations

– Linear momentum

– Angular momentum

• Integration on thickness

– Linear momentum

– Angular momentum

(10)

• Expression in term of resultant stresses

– Stress Vector

– Torque Vector

(11)

DG Kirchoff-Love shell formulation

• Thin bodies C

1

continuity required

– Test functions

• New DG interface terms

– Obtained as in literature (consistency, compatibility and

stability)

(a-1)

(a)

x

(a+1)

Field

(a-1)

+

(a)

+

x

(a+1)

-Field

(a+1)

+

(a)

-(a-1)

-Extension

C

0

/DG formulation

[Noels & Radovitzky, CMAME 2008]

DG formulation

(12)

DG Kirchhoff-Love shell formulation

• Pinched open hemisphere

P= 0 [N]

P= 0 [N]

P= 0 [N]

(13)

• Pinched open hemisphere

DG Kirchhoff-Love shell formulation

P= 400 [N]

P= 400 [N]

P= 400 [N]

(14)

Extrinsic cohesive law for shell

• Main problem: through the thickness crack propagation

– No element on thickness

– No fracture in compression

– Pure Bending

– How to move the neutral axis ?

Tension

Compression

Discontinuity

(15)

Extrinsic cohesive law for shell

• Shell equations are integrated on thickness

• Same for cohesive tensions

– How to combine reduced stress (

N

) and reduced torque (

M

) ?

• Examine beam case first

– Only mode I

t

D

*

N

,

M

N

M

Integration

on thickness

(16)

• Energy released = hG

c

• Pure tension

• Pure bending

Extrinsic cohesive law for beam

x

z

n

xx

n

xx

D

*

=

D

x

x

z

D

*

N

N

0

= h

s

c

D

c

D

*

M

M

0

= h

2

/6

s

c

D

c

(17)

• Energy released = hG

c

• Coupled case

– Obtained by superposition principle

– With the coupling parameter

h

I

Extrinsic cohesive law for beam

D

*

= (1-

h

I

)

D

x

+

h

I

h/6

D

r

D

*

N

,

M

N

0

M

0

x

z

D

c

(18)

Extrinsic cohesive law for beam

• Coupled case

– Increase u

z

until fracture

No fracture

Full broken

Transition

?

(19)

Extrinsic cohesive law for beam

• Coupled case

– Geometry effect (no pre-strain)

Stable transition

ΔE

int

(u

z

) < hG

c

Unstable transition

(20)

• Coupled case

– Pre-strain effect

hG

c

= 22.00

Pre

-st

ra

in

Extrinsic cohesive law for beam

-2e

-5

0.

2e

-5

4e

-5

6e

-5

8e

-5

10e

-5

(21)

• No mode III

– Kirchhoff-Love assumption: out-of-plate shearing is negligible

• Applied beam model on 2 fracture modes

– Mode I : tension and bending

– Mode II: shearing and torsion

• Combination: Camacho & Ortiz model

– Fracture criterion

– Resultant opening

Extrinsic cohesive law for shell

[Camacho & Ortiz Int. J Solid

Structures 1996]

(22)

DG/ ECL Applications

(23)

• Mode I dynamic crack propagation

Time: 0 [μs]

(24)

• Mode I dynamic crack propagation

Time: 12.50 [μs]

(25)

• Mode I dynamic crack propagation

Time: 25.00 [μs]

(26)

• Mode I dynamic crack propagation

Time: 37.50 [μs]

(27)

• Mode I dynamic crack propagation

Time: 50 [μs]

(28)

• Mode I dynamic crack propagation

Time: 62.50 [μs]

(29)

• Mode I dynamic crack propagation

Time: 75.00 [μs]

(30)

• Mode I dynamic crack propagation

Time: 87.5 [μs]

(31)

• Mode I dynamic crack propagation

Time: 100 [μs]

(32)

• Mode I dynamic crack propagation

Time: 112.50 [μs]

(33)

• Mode I dynamic crack propagation

Time: 125.00 [μs]

(34)

• Mode I dynamic crack propagation

Time: 137.50 [μs]

(35)

• Mode I dynamic crack propagation

Time: 150.00 [μs]

(36)

• Mode I dynamic crack propagation

Time: 162.50 [μs]

(37)

• Mode I dynamic crack propagation

Time: 175.00 [μs]

(38)

• Mode I dynamic crack propagation

Time: 187.50 [μs]

(39)

• Mode I dynamic crack propagation

Time: 200.00 [μs]

(40)

• Mode I dynamic crack propagation

– Results

G =

Δ(W

ext

– W

int

)

bhΔa

DG/ ECL Applications

G

c

(41)

• Blast of pressurized cylinder with an initial crack

Initial

crack

(42)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(43)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(44)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(45)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(46)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(47)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(48)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(49)

• Blast of pressurized cylinder with an initial crack

DG/ ECL Applications

(50)

Conclusions

• DG methods

– Easy combined with extrinsic cohesive method

– Extended to shell

– Appealing for parallelization (ongoing work)

• Cohesive with shell

– Complex modelization of through the thickness crack

– Application on resultant stresses

• Extension to large deformations

(51)

• Mode I dynamic crack propagation

– Result unstructured meshes

– Independent of mesh

• Max relative error (thin mesh worst crack

path)

– 2.7% on maximal force

No dissipation

Spectral radius 0.9

DG/ ECL Applications

Références

Documents relatifs

5 ريدقت و ركش ةملك يلهلإا روتسدلا نم : لىاعت لاق : &#34; ( ينبم باتكو رون الله نم مكءاج دق 16 نم مهجريخو ملاسلا لبس هناوضر عبتا نم الله هب يدهي )

Plus tard dans l’entretien, elle mobilise ce qu’elle sait de cet élève pour expliquer ses réactions “c’est un enfant qui est intelligent, (...) qui ne trouve pas

We will then use a compilation of paleoceanographic data, including foraminiferal δ 18 O and reconstructions of seawater proper- ties from pore waters, in order to estimate the

The typical vertical extent of the jets is small enough to result in several direction changes of the zonal flow in the Antarctic Intermediate Water (AAIW) and the North Atlantic

tion of the upper dense polymer layer weakly affects the dynamics of

repérer le niveau d'impact des TIC 22 sur les comportements des personnes qui les utilisent. Le repérage de facteurs prioritaires issus des TIC et induisant une transformation

Les concepts liés à notre question de recherche ayant été identifiés, nous énonçons maintenant nos objectifs de recherche comme suit : 1) décrire les

a larger conditional kurtosis (lower degrees-of-freedom parameter) and a higher leverage effect (especially since the latest financial crisis) than mid cap and large cap stocks,