• Aucun résultat trouvé

Properties of Estimates of Daily GARCH Parameters Basaed on Intra-Day Observations

N/A
N/A
Protected

Academic year: 2021

Partager "Properties of Estimates of Daily GARCH Parameters Basaed on Intra-Day Observations"

Copied!
28
0
0

Texte intégral

(1)

Montréal

Février 2001

Série Scientifique

Scientific Series

2001s-15

Properties of Estimates of Daily

GARCH Parameters Based on

Intra-Day Observations

(2)

CIRANO

Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le

financement de son infrastructure et de ses activités de recherche provient des cotisations de ses

organisations-membres, d’une subvention d’infrastructure du ministère de la Recherche, de la Science et de la Technologie, de

même que des subventions et mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and

research activities are funded through fees paid by member organizations, an infrastructure grant from the

Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its

research teams.

Les organisations-partenaires / The Partner Organizations

•École des Hautes Études Commerciales

•École Polytechnique

•Université Concordia

•Université de Montréal

•Université du Québec à Montréal

•Université Laval

•Université McGill

•MEQ

•MRST

•Alcan Aluminium Ltée

•AXA Canada

•Banque du Canada

•Banque Laurentienne du Canada

•Banque Nationale du Canada

•Banque Royale du Canada

•Bell Québec

•Bombardier

•Bourse de Montréal

•Développement des ressources humaines Canada (DRHC)

•Fédération des caisses populaires Desjardins de Montréal et de l’Ouest-du-Québec

•Hydro-Québec

•Imasco

•Industrie Canada

•Pratt & Whitney Canada Inc.

•Raymond Chabot Grant Thornton

•Ville de Montréal

© 2001 John W. Galbraith et Victoria Zinde-Walsh. Tous droits réservés. All rights reserved.

Reproduction partielle permise avec citation du document source, incluant la notice ©.

Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source.

ISSN 1198-8177

Ce document est publié dans l’intention de rendre accessibles les résultats préliminaires

de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions.

Les idées et les opinions émises sont sous l’unique responsabilité des auteurs, et ne

représentent pas nécessairement les positions du CIRANO ou de ses partenaires.

This paper presents preliminary research carried out at CIRANO and aims at

encouraging discussion and comment. The observations and viewpoints expressed are the

sole responsibility of the authors. They do not necessarily represent positions of CIRANO

or its partners.

(3)

Properties of Estimates of Daily GARCH Parameters

Based on Intra-Day Observations

*

John W. Galbraith

, Victoria Zinde-Walsh

Résumé / Abstract

Nous considérons les estimés des paramètres des modèles GARCH pour

les rendements financiers journaliers, qui sont obtenus à l'aide des données

intra-jour (haute fréquence) pour estimer la volatilité intra-journalière. Deux bases

potentielles sont evaluées. La première est fondée sur l'aggrégation des estimés

quasi-vraisemblance-maximale, en profitant des résultats de Drost et Nijman

(1993). L'autre utilise la volatilité integrée de Andersen et Bollerslev (1998), et

obtient les coefficients d'un modèle estimé par LAD ou MCO; la première

méthode résiste mieux à la possibilité de non-existence des moments de l'erreur en

estimation de volatilité. En particulier, nous considérons l'estimation par

approximation ARCH, et nous obtenons les paramètres par une méthode liée à

celle de Galbraith et Zinde-Walsh (1997) pour les processus ARMA. Nous offrons

des résultats provenant des simulations sur la performance des méthodes en

échantillons finis, et nous décrivons les atouts relatifs à l'estimation standard de

quasi-VM basée uniquement sur les données journalières.

We consider estimates of the parameters of GARCH models of daily

financial returns, obtained using intra-day (high-frequency) returns data to

estimate the daily conditional volatility.Two potential bases for estimation are

considered. One uses aggregation of high-frequency Quasi- ML estimates, using

aggregation results of Drost and Nijman (1993). The other uses the integrated

volatility of Andersen and Bollerslev (1998), and obtains coefficients from a

model estimated by LAD or OLS, in the former case providing consistency and

asymptotic normality in some cases where moments of the volatility estimation

error may not exist. In particular, we consider estimation in this way of an ARCH

approximation, and obtain GARCH parameters by a method related to that of

Galbraith and Zinde-Walsh (1997) for ARMA processes. We offer some

simulation evidence on small-sample performance, and characterize the gains

relative to standard quasi-ML estimates based on daily data alone.

*

Corresponding Author: John W. Galbraith, Department of Economics, McGill University, 888 Sherbrooke Street

West, Montréal, Qc, Canada H3A 2T7

Tel.: (514) 985-4008 Fax: (514) 985-4039

email: galbraij@cirano.qc.ca

The authors thank the Fonds pour la formation de chercheurs et l'aide à la recherche (Québec) and the Social

Sciences and Humanities Research Council of Canada for financial support of this research, and CIRANO for

research facilities. We are grateful to Nour Meddahi, Tom McCurdy and Éric Renault, and to participants in the

Econometric Society World Congress 2000 and Canadian Econometric Study Group 2000 meeting, for valuable

comments and discussions.

McGill University and CIRANO

McGill University

(4)

Mots Clés :

GARCH, données haute fréquence, volatilité intégrée, LAD

Keywords:

GARCH, high frequency data, integrated volatility, LAD

(5)

GARCH mo dels are widely used for forecast ing and characterizing the condit ional

volatility of ec onomic and ( particularly) nancial time serie s. Since the original cont

ribu-tions of Engle ( 1982)andB ollerslev (1986),t he models haveb e enest imatedby Maximum

Likelihoo d (or quasi-Maximum Likeliho o d, `QML ') metho ds on observations at the

fre-quencyof interest . Int he case of asset ret urns, t hef req uency of interest is often t hedaily

uct uat ion.

Financial dat a are of ten recorde d at frequencies much higher t han the daily. Even

where our interest lies in volatility at the daily fre quenc y, t hese dat a contain inf

orma-tion which may b e used t o improve our est imate s of mo dels at t he daily frequency. Of

course, followingAndersen and Bollerslev (1998), higher-freq uency dat a may also b e used

to estimat e t he daily volatility directly.

The present pap er considers two p ossible strategies for e st imation of daily GARCH

mo de ls which use information ab out higher-freq ue ncy uct uat ions. The rst uses the

known aggregation relations(Drost andNijman, 1993) linkingt he parametersof GARCH

mo de ls of high-frequenc yand corresp onding low-f req uency observations. When such e st

i-mat es are base d on QML estimat es forthe high-f req uency data, however, relat ively

strin-gent conditions are req uired, which may not b e met in (for ex ample ) asset-re turn data.

The second p ot ential strat egy is t o use the observation of Ande rsen and Bolle rslev

(1998) that the volatility of low-f req uency asset returns may b e estimated by t he sum

of squared high-frequency re turns. While t he resulting est imate may b e used direct ly to

characterize the pro ce ss as in A ndersen and Bollerslev or A ndersen et al. ( 1999) , it is

also p ossible to use the seq ue nce of low- (daily -) f requency estimatedvolatilities toobt ain

estimat es of condit ional volatility mo dels such as GARCH mo dels, e xplicit ly allowing f or

estimat ion error in the est imate d daily volatility. The resulting mo dels may b e e st imated

by a variety of te chnique s (inc luding LS) ; by using the Le ast Absolute Deviations (LA D)

estimat or, it is p ossible to obtain consistent and asy mptotically normal estimat es under

quite general condit ions (in part icular, wit hout requiring t he e xist ence of moments of the

returns). We arethen able to obtainestimat es of GA RCH paramete rs using an estimat or

relat ed t o that of Galbraith and Zinde-Walsh (1997)for ARMAmo dels.

In section 2 we describ e the models and estimators to b e conside red and give some

rele vant de nit ions and notat ion. Sect ion 3 provides several asymptot ic result s, while

section 4 pre sents simulation ev idence on t he nite - sample p erf ormance of regression

estimat ors relat ive t o that of standardG ARCH e st imatesbased on the daily obse rvations

alone.

2. GARCH model esti mati onusing hi gher-fre quency dat a

2.1 Pro cesses and not ation

(6)

t X t =X 0 + Z t 0  s X s dW s ; wherefW t

gisaBrownianmotionprocessand 2 s

ist heinst antaneouscondit ionalvariance.

Thisisasp e cialc aseofthest ruct ureusedby,e .g.,Nelson(1992),NelsonandFoster(1994).

The pro ce ss is sampled discretely at an interval of time ` (e .g., e ach minute) . We

are inte rested in volatility at a lower-frequency sampling, with sampling interval h` (e .g.,

daily ), so that there are h high-fre quency observations p er low-frequency observat ion.

De neone unit of time as a p erio d of length `:

We inde x t he full set of observat ions by  and the lowe r-fre quency obse rvations by

t; so that t = fh;2h;:::;hTg: The size of the sample of low-f req uency obse rvat ions is

therefore T; and of t he full set of high-f req uency observat ions is hT: Following A ndersen

and B ollerslev (1998),estimat e thecondit ional volat ility at t as t he est imate dcondit ional

variance ^  2 t = ih X j=(i 01)h+1 r 2 j ; (2:1:0) with r 2 j =( x j 0x j01 ) 2 ; x j

indicat ing t he discret ely-sampled obse rvat ions on thepro c ess

X : See A nderse n and Bollerslev onconvergenceof ^ 2 t t o R t t01  2 s ds:

Now consider A RCH and GARCH mo dels at the lower-frequency observations:

 2 t =!+ q X i=1 i " 2 t0i ; (2:1:1)  2 t =!+ q X i=1 i " 2 t0 i + p X i01 i  2 t0i ; (2:1:2) where " t = y t 0 t for a process y t

with condit ional mean  t

; or in t he drif tless case

" t =x t : So E(" 2 t j t0i )   2 t

: Mo dels in t he form ( 2.1.1), ( 2.1.2) are directly estimable if,

as in A ndersen and B ollersle v, we have measurements of  2 t

: We return to t his p oint in

Section 2.3 b elow.

Finally,wewillre ferb elowtothede nit ionsofSt rong,Semi-strongandWeakGARCH

given in Drost and N ijman ( 1993) . In strong GARCH , f" t g is such that z t  " t = t 

IID ( 0;1); se mi-st rong GARCH holds where f" t g is such that E[" t j" t01 ;:::] = 0 and E[" 2 t j" t01 ;:::] =  2 t

; weak GA RCH holds where f" t g is such t hat P[" t j" t01 ;:::] = 0 and P[" 2 t j" t0 1 ;:::] =  2 t ; where P[" 2 t j" t01

;:::] denotes t he b e st linear predictor of " 2 t

given a

const ant and past values of b oth " t

and " 2 t :

(7)

Drost and N ij man (1993) showed t hat t ime-aggregated weak GARCH processes lead

to processes of the same class, and gave determinist ic relations b etween the c o ecients

(and thek urtosis) of t he high f requency pro cessand corresp onding time-aggregat ed

(low-frequency) pro cess f or the weak GARCH (1,1) case. As Drost and N ij man not ed, such

relat ions c an in principle b e used to obt ain est imate s of the paramet ers at one frequency

fromthoseatanot he r. Inthissectionweex aminethest rat egyof low-frequenc yestimat ion

based on prior high-frequency e st imates. Time aggregation relations of course di er f or

sto ck and ow variables; here we t reat ows, such as asset returns.

Consider thehigh-frequency GARCH (1,1) pro ce ss

 2  =!+ 1 " 2 01 + 1  2 01 ; (2:2:1) if " (h )t = P th j=t(h 01)+1 " j

is t he aggregat ed ow variable, then it s volat ility at the low

frequency follows t he weak GARCH (1,1) pro cess

 2 (h )t = 0 + 1 " 2 (h)t + 1  2 (h )t01 ; (2:2:2) with 0 ; 1 ; 1

givenbyt hecorresp ondingformulae( 13-15)for ; ; inDrostandN ijman

(1993), adjusting for not ation. To obt ain c onsist ent estimat ion by QML of the

high-frequencymo del,itwillb e necessarythatt hepro cessissemi-st rongGARCH :t hest andard

Quasi-MLe st imatoroftheG ARCH modelwillin gene ralb e inconsistentinwe akGARCH

mo de ls (as noted by Me ddahi and Re nault 1996, 2000 and Franc q and Z akoan 1998; see

the latt er refe rence f or an example and M-R 2000 fora Mont e Carlo ex ample on samples

of 80000 { 150 000 simulated lowf req uency observat ions).

We will show that the mapping

0 @ 0 1 1 1 A = 0 @ ! 1 1 1 A (2:2:3)

providedby the Drost-Nijman formulae is ac ontinuously di e rentiablemapping; itis also

analy ticover t he region where the paramete rs are de ned.

Thisimpliest hatanyconsist ente st imatorofthehigh-frequencyparameters( !; 1

; 1

)

leads to a consistent estimator of the low-frequency paramet ers ( 0 ; 1 ; 1 ) ; and

simi-larly thatan asympt ot ically Normal estimatorof t he high-f req uency paramet ersresult s in

asymptot ic N ormality of the low-f req uency parameters.

Denot et he vect or 0 @ ! 1 1 1 A

by and,correspondingly, let= 0 @ 0 1 1 1 A : Then ()= :

(8)

Now denot e by 2R the region =f(!; 1 ; 1 )2R 3 j! >0; 1 0; 1 0; 1 + 1 <1g;

thatis,t heregion forwhicht heGARCH(1,1)pro c ess is de ned( see,e .g.,Bollerslev1986).

Theorem 1. For any estimat or ^ of  such that ( i) ^ p !; (ii) ^ a N(;V()) , the estimat or ^

= (^) is sucht hat for ^ sat isfy ing (i),

^ 

p !;

and for^satisfying ( ii) ,

^  a N(;V( ^  )) ;

where the asy mptot ic covariance mat rix is V( ^  )= @ @ 0 V() @ 0 @ :

Pro of. It f ollows from (i) and conseq uently also from ( ii) t hat since 2;

P(^ 2 ) ! 1: Consider now the formulae f or

 = () ove r in Drost and N ijman

(1993). From(15) of D-N wec an obt ain 1

froma solut ionto aquadraticequation of the

formZ 2 0cZ+1=0; where c=c(!; 1 ; 1 ;) (2:2:4)

is obtained from t he expre ssion in (15) of D-N. For  2 it f ollows that c > 2 and

therefore 1 = c 2 0 2 ( c 2 ) 2 01 3 1 2 is such t hat 0 < 1

< 1: Moreover, it can b e shown that

1 <( 1 + 1 ) h and so 1

obtained from(13) in D-N also lie s b etween0 and 1.

The transformat ion 0 @ ! 1 1 1 A

can b e writ ten as

0 @ ! 1 1 1 A = 0 B B @ h! 10 ( 1+ 1) h 10( 1 + 1 ) ( 1 + 1 ) h 0 c 2 + 2 ( c 2 ) 2 01 31 2 0 c 2 + 2 ( c 2 ) 2 01 3 1 2 1 C C A ;

where c is givenby (2.2.4) ; it is de ned and di erentiablee verywhere in : .

Note t hat ( as follows from Drost and N ij man 1993) , even if 1

= 0; 1

is

non-zero as long as > 0: As h increases, 1 and 1 decline; given 1 and 1 ; condit ional

heteroskedasticity vanishes f or sucient ly large h: There fore, for substant ial condit ional

heteroskedasticity to b e present in t he low-f requency (aggregated) ow pro ce ss, 1

+ 1

(9)

strong GARCH high-frequenc y data to obtain e st imates of : Its asymptotic covariance mat rix is V[^ QML ]=[W 0 W] 01 B 0 B[W 0 W] 01 ; where W 0 W = h X =1 T  g   2   g   2   0 and B 0 B= T X =1  " 2   2  01  2  g   2   g   2   0 ; with g  = @ 2  @ = 0 @ 1 " 2 01  2 01 1 A

: The asy mptot ic variance of t he estimat or ^

 based on ow

aggregat ion is then

@ @ 0 [W 0 W] 0 1 B 0 B[W 0 W] 01 @ 0 @ : (2:2:5) If ^ QML

is t he MLE t his reduc es to

@ @ 0 [W 0 W] 01 @ 0 @ : (2:2:6)

Example 1. Let the high-frequency pro cessb e ARCH (1); aggregation thenleads t o a

weakGARCH (1,1)processfort helow-f requencydata. H owever,t heasympt oticcovariance

mat rix for t he estimator ^

 is of rank 2 rather t han 3, since t he middle part in (2.2.5) or

(2.2.6) is of dimension 222: This indic ates that there are c ases where ^  is clearly more ecient than  ML (or  QML

) base d on low-f req uency dat a alone, with covariance matrix

of rank 3.

While estimat ion is feasible by t his metho d, t he requirement s of this strat egy, even

for consist ent est imation, are fairly se ve re. In particular, the p ot ential inc onsist enc y of

QML estimat ion when only weak GA RCH conditions apply means that we must assume

semi-st rong GARCH at the high freq uency if estimation is by QML . This is, however, an

arbitrary sp ec i cat ion; if t he high frequency data are themselves aggregat es of yet higher

frequencies,the semi-st rongconditionsdo notfollow. Whileconsist entest imationof weak

GARCHmo delsisinprinciplep ossible(seeFrancqandZakoan1998) ,theQMLestimat or

do esnot accomplish this.

More generally, estimation based on aggregat ion presumes knowledge of the

(10)

mat ors based on the integrated volat ility, which do not presume knowledge of t he

high-frequency pro ce ss b eyond the condit ions necessary for consistency of the daily volatility

estimat e.

2.3 Estimat ion by regression using inte grated volat ility

Asnotedab ove,mo delsoft heform(2.1.1)and( 2.1.2)aredirect lyestimableifwehave

estimat es of t he conditional variance of t he low-fre que ncy observat ions,  2 t

; for e xample

from the dailyint egrat ed volat ility, as in Andersen and Bollerslev . 1

H owever, we will not

followA nderse nand Bollerslevintreating theobse rvationasex act. Instead,weint ro duce

into themo delthemeasurement error arisinginestimat ionof 2 t

fromt hedaily integrated

volatility ( 2.1.0), asp eci cation also employed by Maheuand McCurdy( 2000) . Let

^  2 t = 2 t +e t ; (2:3:1) prop ertiesof fe t

gf ollow from (2.1.0)and will b e c onsidered b e low.

The ARCH and G ARCH mo delsb ecome

^  2 t =!+ q X i=1 i " 2 t0i +e t ; (2:3:2) ^  2 t =!+ q X i =1 i " 2 t0i + p X i=1 i ^  2 t0i 0 p X i=1 i e t0i +e t : (2:3:3)

Both (2.3.2) and ( 2.3.3) are in principle estimable as regression mo dels.

The mo del

(2.3.3) has an error t erm with an MA (s) f orm; t he coecients of t his moving ave rage

pro c ess are subje ct t o the constraint emb o died in (2.3.3) that t hey are the same ( up

to sign) as t he co ecient s on lagged values of ^ 2 t

: Estimat ion of these mo dels by L S or

QML does however req uire re lat ive ly strong moment conditions t o hold on the regre ssors

and t he volat ility est imation errors fe t

g; not e that this is unlike the standard GARCH

mo de l estimat ed by QML where conditions are usually applie d to the rescaled squared

innovat ions.

Maheuand McCurdy(2000) nd go o dresultsusingt heconst rainedmo del,e st imated

by QML, on fore ign ex change ret urns. Bollen and Inder (1998) estimate a mo del similar

to ( 2.3.3) by st andard QML me tho ds (without accounting for the error auto correlat ion

struct ure), using int ra-day data to obtain est imate s of an unobservable sequence related

todaily volatility. Thisapproachrequiresconsist ency oft he estimat es of theunobservable

1

Since we will b e discussing low-f req uency paramet ers here af ter, we no longer need to

dist inguish f rom high-frequenc y and will omit the `bar' in sy mb ols, refe rring to  2

; ; ;

(11)

obtain consistency of the est imator; Bollen and Inder nd goo d results on a sample of S

& P Index futureswith a large numb erof observat ions p e r day.

Herewewillconsiderestimat ionofmo delshavingtheARCHmode l( 2.3.2) ,followedby

computat ionofGARCHparametersfromtheARCH approximat ion. Themet ho d thatwe

will useshould pro duce estimates which are relatively insensitive t o theerror dist ribut ion

and to ex iste nce of moments of t he errors, which is part ic ularly advantageous in nancial

data. This strategy also has the advantageof pro ducing immediat elyan e st imated mo del

whichis direc tlyuseableforforecasting, andofallowingcomputat ionofparametersof any

GARCH(p ;q) mo del from a give n e st imated ARCH represent at ion. Suc ie nt conditions

forconsistentandasymptot ically normal estimat ionare givenin Section3b e low; itis not

necessary thatthe numb er of intra-day obse rvat ions p erday (h) inc rease wit hout b ound.

To obt ain estimat es of GARCHparametersfromtheA RCH represe ntationwepursue

anestimat ionstrategy relatedt othatof Galbrait handZ inde-Walsh(1994,1997) ,inwhich

autore gressive mo delsare used inestimat ionof MA orA RMAmodels. Here, ahigh-order

ARCH mo del is used, and est imate s of GA RCH (p;q) paramet ers are deduced from the

patterns of ARCH coecients. This is another ex ample of what Galbraith and

Zinde-Walsh (2001) refer to as `analy tical indirec t inf erence', in that a me tho d analogous to

indirectinference ( Gourieroux e tal. 1993) isused, butwherethe mappingfrome st imates

of the auxiliary mo del to the model t o b e est imated is obtained analyt ic ally, rather t han

by simulat ion.

Consider rst a c ase of known condit ional variance  t

: The G ARCH pro cess (2.1.2)

has a f orm analogous to the ARMA (p;q) ; using standard result s on re presentat ion of an

ARMA (p;q) pro cess in MA form (see, e.g., Fuller 1976) , we can express ( 2.1.2) in the

form  2 t =+ 1 X `=1  ` " 2 t0 ` ; (2:3:4) with  0 =0and  1 = 1  2 = 2 + 1  1 . . .  ` = ` + mi n(`;p) X i=1 i  `0i ; `q;  ` = m in(`;p) X i=1 i  `0i ; `>q; (2:3:5)

(12)

 =(10 (1)) 01 ! = 10 p X i=1 i ! 01 !: (2:3:6)

Giraitis et al. (2000) give general conditions under which the A RCH( 1)

representa-tion is p ossible f or t he strong GARCH (p;q) case ; only the existence of the rst moment

and summability of theco e cients  `

(inour notation)are required forthe ex iste nce of a

stric tly st ationary ARCH (1) solution as given in (2.3.4) .

To estimat ethe modelusingatruncat edversion ofthisA RCH( 1) representation,we

use t heestimated low-freq ue ncy c onditionalvarianc e from( 2.1.0) , de ning theestimat ion

error as in ( 2.3.1) and substituting int o ( 2.3.4) toobtain

^  2 t =+ k X `=1  ` " 2 t0` +e t : (2:3:7)

The truncat ion paramete r k must b e such thatk!1; k=T !0 forc onsist ent estimat ion

of theGARCH mo del.

Themo del( 2.3.7)mayb eestimat edbyLSor,t oobt ainresult srobusttolessrestrictive

condit ions on the volat ility estimation errors, LA D. A sy mptotic prop erties of the L AD

estimat or areconsidered in Sect ion3. Estimat ion pro ceeds by rst obtaining estimat es of

=( 1 ; 2 ;:::; p

)f rom(2.3.5)f or`>q;followed by estimat ionof theq paramet ersof

fromthe rst q re lat ions of ( 2.3.5), and of ! from ( 2.3.6) .

Beginby de ning v( 0)= 2 6 6 4  q +1  q +2 . . .  k 3 7 7 5 ; and v(0i)= 2 6 6 4  q+10i  q+20i . . .  k 0i 3 7 7 5 : (2:3:8)

Next de net he (k0q)2p mat rix V =[v( 01) v ( 02):::v(0p)]=

2 6 6 4  q  q01 :::  q0p+1  q +1  q :::  q0p+2 . . . . . .  k 01  k 02 :::  k 0p 3 7 7 5 : where  r

=0 forr 0: It f ollows from(2.3.5) that v( 0)= 0

V:

The p21ve ctor of estimat es ^ is de ned by ^ =( ^ V 0 ^ V) 01 ^ V 0 ^ v(0) ; (2:3:9)

(13)

` `

de nitions ab ove. A n estimat e of canthen b e obtained using the est imate of and the

relat ions ( 2.3.5) : thatis

^ 1 =^ 1 ^ 2 =^ 2 0 ^ 1 ^  1 . . . ^ q =^ q 0 m in(q ;p) X i =1 ^ i ^  q 0 i : (2:3:10) Finally, ^ ! =(1^ 0 ^ (1))=^ 10 p X i=1 ^ i ! :

The covarianc e matrix of the estimates can b e obtained easily from t he e st imates

of t he representation (2.3.7) and t he Jacobian of the transformation. Le t the parameter

vect or b e  =(!; ; ); and let 2

b e the variance of t he noise e t

in (2.3.1) . Then

var()=J 0

( var^) J;

where ^ is the vect or of estimat ed ARCH parameters and J is the Jacobian of the t

rans-formation ( 2.3.9) -( 2.3.10). Comput at ion of the c ovariance matrix of t he LA D parameter

vect or is discussed in sect ion 3.

3. Asymptoti c prop er ti esof the i nt egrat ed vol at il i ty{r egressionesti ma tes

Int hissect ionwediscuss conditionsforconsistentandasy mptoticallyNormal

estima-tion of the integrated volatility{re gression mo del of Section 2 by LAD. Re sults f or QML

estimat ionof t he ARCH mo del were est ablished by Weiss (1986),using theassumption of

nit efourthmoment sof t heunnormalizeddata. Lumsdaine(1996)establishedconsist ency

andasy mptot icN ormalityoftheQMLEf orGARCHmo delsbyimp osingconditionsonthe

re-scaled dat a, z t = " t = t

; including the IID assumption and the existence of high-order

moment s. Lee and Hanse n ( 1994) gene ralized these results tofz t

g which are notI ID, but

simplystrictly stationary and ergodic.

Rec all t hat t he ARCH (k ) {typ e mo del (2.3.7) is a regression mo de l, and consider f or

each T the0 e ldF t

gene rate dbythe regressors f(" 2 t ;" 2 t01 ;:::;" 2 t0 k ); t =k+1;:::;T:g: Denote by W T

the sy mmetric matrix with e le ment s w ij = T 0c ( P T t=1 " 2 t0 i " 2 t0 j ); and le t V T =W 1 2 T :

Assumption 1. The re existssome c such that

w ij =O p (1) ; W 01 T =O p (1); ( T 0 c 2 ) max " 2 t =o p (1):

(14)

The assumpt ion is trivially satis e d with c= 1 if " p osse sses a sucient numb e r of

moment s, but t he assumption do esnot require the existence of mome nts. 2

Next c onsider an assumption on t he daily volatility est imation e rror,

e t =^ 2 t 0 2 t : (3:1:1)

The following assumption emb o dies bot h the Error Assumption of Pollard (1991, p.189)

and the addit ional assumption of Pollard's Theorem2 that the realizat ions of t hepro c ess

and the errors ( here, volat ility estimat ion errors) are assumed indep e ndent .

Assumption2. Thevolatilityest imationerrorsfe t

gareI IDwithmedian0andacontinuous

p osit ive density f( :) in the neighb ourho o d of zero. The sequences of errors fe t

g and of

realizat ions of the pro ce ss f" t

g are indep endent .

Theorem 2. Consider the model (2.3.7),

^  2 t =+ k X `=1  ` " 2 t0` +e t ;

and supp ose t hat A ssumptions 1and 2 are sat is ed. Then if ^= (^;^ 1

;:::;^ k

) is the the

LAD -estimated paramete r vector,

2f(0)V T (^0) D !N( 0;I k +1 ):

Pro of. Follows from Pollard ( 1991, Theorem 2 and Example 1) f or c = 1; can b e

ext ended to any c: A ssumption 1 satis e s t he conditions (ii)-(iv ) of Theorem 2 of Pollard

(1991), and combined wit h Assumption 2 provides all of the condit ions (i)-(iv) for the

asymptot ic dist ribut ion to hold.

4. Simul at i on evi dence

Inthis section we present evidence primarily on t he nit e-sample p erf ormance of the

regression estimat or of Section 2.3 using the daily int egrate d volatility, and for

compar-ison the standard Quasi-ML est imator base d on daily dat a alone . The QML procedure

2

A sanexampleoftheformerp oint ,c onsiderac asewheret heeighthunconditionalmoment

of" t

ex ist s. Then(i)issatis edforc=1bytheWLLN ,T 01 ( P T t=1 " 2 t0i " 2 t0j ) p !E(" 2 t0i " 2 t0j ):

At thesame time, if we re-writ e theA RCH( k ) mo del(2.3.7) as astat ionary AR(k ) mo del

by de ning w t =" 2 t 0 2 t ( not e t hat E(w t j" 2 t ;" 2 t01 ;:::)= 0 and var( w t )<1); we obt ain " 2 t =+ P k `=1  ` " 2 t0 ` +w t

:Followingex ample 2ofPollard(1991)(generalizingto AR(k ) ),

it f ollows t hat max " 2 t = o p (T 1=2

): Of course, A ssumption 1 can also hold in cases where

(15)

Theregressionestimator uses( 2.1.0)foradaily volatility estimat e,followedbyestimat ion

of(2.3.7)by OLSorLAD, andt ransf ormat iontoGA RCH paramet erestimat esvia(

2.3.9)-(2.3.10).

Inthe rstse t of simulat ion exercises, low-frequency (daily)dataalone are simulated.

The innovat ions are N ormal, leading t o a st rong GARCH mo del est imated by a true ML

estimat or. These casesaretheref oreasfavourableasp ossiblefortheQMLestimat or. The

low-frequency samplesize T isset atf200;600g and t henumb erof replications is 2000f or

each e xp eriment . Although the rst set of exp eriments uses simulated low-frequency data

only, the parameter values are chosen f or compat ibility with t he lat er exp eriments; the

foursets of paramet er values used result from the aggregation of high-frequency GARCH

pro c esses having paramet ers f!; ; g equal t o (.01, .018, .98), ( .01, .05, .945) , (.01, .08,

.89) and (.01, .10, .85) . The corresp onding low-f req uency parameters are computed from

the aggregation f ormula of Drost and Nijman (1993) for the GARCH ( 1,1) ow case; the

values are ( 6.102, .0555, .8957) , (5.889, .1371, .7450) , (4.442, .0736, .3934), and ( 3.613,

.0540, .2234) .

Inasecondsetofsimulations,f ort hesamesamplesize sandnumb e rofreplications,the

high-fre quency GARCH pro cess is simulated direct ly as in t he rst e xp eriment s, (strong

GARCH, with normal errors) and aggregat ed to form a (we ak GARCH ) low-frequency

(daily) returns process. Est imate s of the daily GARCH parameters on t hese daily data

are obtained by QMLand t he re gression e st imator.

As j ust indicate d, the `t rue' daily parameters are c omput ed from the aggregat ion

formulaofDrostandNijman( 1993) ,forcomparisonwit ht heestimatesf romeachmet ho d.

Not e thatQML applied direct ly to t he dailydata is now te chnic ally inconsiste nt b ec ause

onlyt heweakGARCHconditionscanb eguaranteedtoapply. Forthere gressionest imate s,

the a dailyvolat ility estimate has a noise variance implied by the numb erof obse rvations

p er day, h; which in these examples is set at 25 to keep overall sample sizes manage able.

Thisnumb er,whilemo de st ,iscompatiblewiththesuggestionsofthemorerecentlit erat ure

on integrat ed volatility (A ndersen etal. 1999) which suggests that the optimal frequency

to use in estimat ion of daily volatility is not nece ssarily the highest f requency available.

A small value, representing a relatively noisy estimat e of daily volatility, is in general less

favourable fort he re lat ive p erformance of t he regression est imator.

Because the QML and LAD-ARCH estimators are evaluat ed he re using di erent

in-formation sets{the LAD-ARCH uses the highe r-fre que ncy dat a, while QML do es not{

the outcome of any comparison dep ends up on the information content of t he addit ional

(int ra-day) dat a. The comparison here is made on paramete r values that app ear t o b e

representat ive of empirical out comes, and uses a relatively mode st information content of

intra-day data. Nonetheless, such a comparison can only b e viewed as illustrat ive . In

exp e rime nts of the ty p e p erformed here , using Normal innovat ions, QML or LAD-ARCH

can dominate the other in a nit e sample as t he estimat es of realized volatility b ecome

(16)

Results from the rst se t of simulat ions are contained in Figure 1a/b Results for the

second set of simulat ions are rep ort ed in Figure 2a/b and 3a/b. With t he second set of

simulations wealsorep ortaforecast comparisonof1-ste p-ahe adout-of-samplecondit ional

volatility f orecasts f rom each estimation metho d, evaluat ed by RMS fore cast error.

Begin by comparing c orresp onding q uadrant s of Figure 1a wit h those of Figure 2a,

and of 1b with 2b. The QML estimat or's p erf ormance is little di ere nt b etween these

two c ases, despite t he fact t hat the Figure 1 cases are in fact t rue ML estimat ors, and

that t he Figure 2 c ases show QML in a weak GA RCH c ase where the estimator is not

in general c onsist ent. Howeve r t hese re sults, in line wit h those me ntioned by Drost and

Nijman(1993, p. 922), suggestthatthe QMLEmay b e conve rging tovalues quit e closeto

the true parametervalues.

Nonethelessthe nite-sample p e rformance of theQML est imator inthesec ases shows

problems which are of a fairly standard typ e , not sp e ci c to GARCH estimation. The

QML E'sconce ntration ofprobabilitymass neart heb oundarie s of theidenti c ationregion

are typic al of the `pile-up' problems familiar from case s such as ML est imation of MA

parameters; he re the QMLE p erf orms p o orly whe n is near zero. Estimates of are

particularly p o or in t he se e xamples, showing large probability masses in t he vicinity of

0.9 regardless of the true value of ; in each of t he t hree cases where < 0:1: W here

=0:1373; by cont rast, estimates of are conc entrated near t he true value, particularly

at t he larger sample size. Of course, QMLE p erformanc e improves in general f or larger

values of ; as we move away from t he b oundary of t he identi cation region; the values

chosen here, however, are ty pical of t hose app e aring in the empiric al literat ure.

Figure 3 c ontains result s f or t he LAD-ARCH estimat or in corresp onding case s, f or

h= 25: t hat is, using t he relatively low high-frequency information c ontent noted ab ove.

Nonetheless, addit ional information is b eing exploited, and we might exp ect t hat the

es-timator should p e rform re lat ive ly well. This expectationis b orne out in Figure 3a, where

LAD -A RCH estimates of show much b ett er conformity wit h the Normal and smaller

disp ersion, as well as less pile-up nearz ero.

InFigure3b,weseelessdramaticgainsinestimat ionof ;conformitywiththeNormal

isimprovedrealtivetocorresp ondingFigure2acases,butt hereremainssubst antialpile-up

at = 0 and again we see disp ersion of the estimat es across much of the [0;1] interval.

Howe ver, the large spurious p eak in the density near 0.9 is eliminated. Conformity with

the Normal is markedly improved at T = 600: These c ases, emb ody ing Normal errors

in the simulation DGP, do not o er the most favourable circumstances for comparison

of LA D-A RCH; with subst antially skewe d error distributions, we would exp ect to see the

tradit ionaladvantageofL ADest imationinrobustnesstoske wnessandheav y-tailederrors.

Howe ver, the e st imator do es o er clear gainsnonetheless.

5. Conc ludi ng remark s

Est imationof GA RCH models via int egrat ed volatility is feasible evenwith amo dest

numb er of intra-day observations. Such e st imates have a numb er of appare nt advantages

(17)

estimat ion, including est imation of quant iles of volatility other thant he me dian. 3

3

This hasb een invest igat ed forARCH mo delsestimat ed with st andard (single-freq ue ncy )

(18)

Andersen, T.G. and T. Bolle rslev (1997) Intraday Periodicity and Volatility

Persis-te nce in Financial Market s. Journal of Empirical Finance4, 115-158.

Andersen, T.G. and T. B ollersle v ( 1998) A nswering the Ske pt ic s: Yes, St andard

Volatility Mo dels Do Provide Acc urate Fore cast s. Inte rnational Economic Review 39(4),

885-905.

Andersen, T.G., T. Bollerslev, F.X .D iebold and P.Laby s ( 1999) The Distribution of

Exchange Rat e Volat ility. Workingpap er.

Aptech Systems(1998) FAN PAC. Maple Valley, WA.

Baillie, R.T.,T.Bollerslev,andH .O.Mikkelse n(1996)Fract ionallyIntegrated

Gener-alized Aut oregressive Conditional Het eroskedasticity. Journalof Econometrics 74, 3-30.

Barndor -Neilsen, O.E. and N. Shephard ( 2000) Econome tric analy sis of realised

volatility andit s use inestimat ingLe vy-based non-GaussianOU typ estochasticvolatility

mo de ls. Working pap e r, Nueld College, Ox ford.

Bolle n, B . and B . Inder ( 1998) A General Volatility Framework and t he Ge neralised

Historic al Volatility Est imator. Workingpap er, Monash University.

Bolle rslev,T.(1986)Ge neralizedAutore gressiveCondit ionalHet eroskedast icity.

Jour-nal of Econometrics 31, 307-327.

Drost, F.C. and B.J.M. Werker (1996) Closing the GARCH Gap: Cont inuous Time

GARCH Modeling. Journal of Economet rics 74, 31-57.

Drost, F.C. and T.E. N ij man ( 1993) Temporal Aggregation of GARCH Pro cesse s.

Economet rica 61( 4), 909-927.

Engle, R.F. (1982) Autore gressive Conditional He teroskedast icity wit h Est imate s of

the Variance of U .K. In ation. Econometrica50, 987-1008

Francq , C. and J.-M. Z akoan (1998) Estimating Weak GA RCH Represent ations.

Work ing pap e r, Universite du L it toral{Ct e d'Opale, Unive rsite de Lille I.

Fuller, W .A . ( 1976)Introduct ion toSt at ist ic al Time Series. Wiley, New York .

Galbrait h, J.W. and V . Zinde-Walsh ( 1994) A Simple, Non-iterative Est imator f or

Moving-A verage Mo dels. Biometrika 81, 143{155.

Galbrait h, J.W. and V. Zinde-Walsh (1997) On Some Simple, Aut oregre ssion-based

Estimat ion and Identi c at ion Techniques forA RMA Mo dels. B iometrika 84, 685{696.

Galbrait h, J.W. and V . Z inde-Walsh ( 2001) Analy tical Indirec t Inf erence. Work ing

pap er, Mc Gill University.

Giraitis,L.,P.KokoszkaandR.Le ipus( 2000)St ationaryARCHMode ls: Dep e ndence

Struct ure and Central Limit Theorem. Econome tric Theory 16, 3-22.

Gourieroux,C.andA .Mont fort( 1993)Indirec tInf erence. JournalofApplied

Econo-metric s 8, 85-118.

He, C. and T. Te rasvirt a ( 1999) Fourt h Moment Struct ure of the GARCH(p,q)

pro-cess. Econometric Theory15, 824-846.

Koenke r, R. and Q. Z hao ( 1996) Conditional Quantile Est imation and Inf erence f or

(19)

Maximum Like liho od Est imator. Econometric Theory 10, 29-52.

Lumsdaine,R.L.( 1996)ConsistencyandAsymptot icNormalityoftheQuasi-Max imum

Likelihoo d Estimat or in IGA RCH( 1,1) and Covariance Stat ionary GA RCH( 1,1) Mo dels.

Economet rica 64, 575-596.

Maheu, J.M.and T.H. McCurdy (2000)Nonlinear Featuresof RealizedFX Volat ility.

Work ing pap e r, University of Alb erta/ University of Toronto.

Meddahi,N . and E.Renault (1996)Aggregationand Marginalizationof GARCH and

Sto chast ic Volat ility Mo dels. Working paper 3597, CRDE, Universite de Mont real.

Meddahi,N.andE.Renault( 2000)Te mp oralAggregationofVolatilityMo dels.

Work-ing pap er, Universite de Montreal.

Nelson,D.(1992)FilteringandForecast ingwit hMissp eci e dARCHMo delsI:Gett ing

the Right Variance wit h the Wrong Mo del. Journal of Econome trics 52, 61-90.

Nelson, D. and D.P Foste r( 1995) Filt ering and Forec asting with Missp eci edARCH

mo de ls I I: Making the Right Forecast wit h the Wrong Model. Journal of Economet rics

67, 303-335.

Phillips, P.C.B . (1995) Robust Nonst ationary Re gression. Econome tric Theory 11,

912-951.

Pollard, D. ( 1991) Asympt otics forLeast Absolut e Deviat ion Regre ssion Estimators.

Economet ric Theory 7, 186-199.

Weiss, A .A . (1986) Asympt otic Theory f or ARCH Mode ls: Est imation and Test ing.

(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

Liste des publications au CIRANO *

Cahiers CIRANO / CIRANO Papers (ISSN 1198-8169)

99c-1

Les Expos, l'OSM, les universités, les hôpitaux : Le coût d'un déficit de 400 000 emplois

au Québec — Expos, Montréal Symphony Orchestra, Universities, Hospitals: The

Cost of a 400,000-Job Shortfall in Québec / Marcel Boyer

96c-1

Peut-on créer des emplois en réglementant le temps de travail? / Robert Lacroix

95c-2

Anomalies de marché et sélection des titres au Canada / Richard Guay, Jean-François

L'Her et Jean-Marc Suret

95c-1

La réglementation incitative / Marcel Boyer

94c-3

L'importance relative des gouvernements : causes, conséquences et organisations

alternative / Claude Montmarquette

94c-2

Commercial Bankruptcy and Financial Reorganization in Canada / Jocelyn Martel

94c-1

Faire ou faire faire : La perspective de l'économie des organisations / Michel Patry

Série Scientifique / Scientific Series (ISSN 1198-8177)

2001s-14

A Ricardian Model of the Tragedy of the Commons / Pierre Lasserre et Antoine

Soubeyran

2001s-13

Carbon Credits for Forests and Forest Products / Robert D. Cairns et Pierre

Lasserre

2001s-12

Estimating Nonseparable Preference Specifications for Asset Market Participants /

Kris Jacobs

2001s-11

Autoregression-Based Estimators for ARFIMA Models / John Galbraith et

Victoria Zinde-Walsh

2001s-10

Heterogeneous Returns to Human Capital and Dynamic Self-Selection / Christian

Belzil et Jörgen Hansen

2001s-09

Return to a High School Diploma and the Decision to Drop Out: New Evidence

from Canada / Daniel Parent

2001s-08

Leader and Follower: A Differential Game Model / Hassan Benchekroun et Ngo

Van Long

2001s-07

Emission Taxes and Standards for an Asymmetric Oligopoly / Ngo Van Long et

Antoine Soubeyran

2001s-06

Risque de modèle de volatilité / Ali Alami et Éric Renault

2001s-05

The Effect of Pay-for-Performance Contracts on Wages /Daniel Parent

2001s-04

Incentive Pay in the United States: Its Determinants and Its Effects / Daniel Parent

* Vous pouvez consulter la liste complète des publications du CIRANO et les publications elles-mêmes sur notre site

Internet à l'adresse suivante :

Références

Documents relatifs

We have carried out this analysis in three steps answering the three main following questions: (i) do examined process-based systems support the required flexible

After comparing the annotations from the different annotators, I then looked at how the annotators compared in terms of overlap when using a smaller subset of TUIs.. For this

Contrary to the vertical resolution in the ocean, the high SST coupling frequency has an insignificant impact on the mean state and seasonal variability of the tropical climate,

بحاص يأر نع برعي ةركذلما في دري ام لك اه.. .&#34;انٌلع تمعنأ ًتلا كتمعن ركشن نأ انعزوأ ًبر&#34; اق لا سانلا ركشٌ لا نمو ،رٌثكلا ركشٌ لا لٌلقلا ركشٌ لا

the rotation of the localised structures over the 12 and 17 spot rings. Note that the two rings are counter-rotating with different speed of rotation. At longer times, eventually

The usefulness of augmented reality was evaluated in each case through four Boolean parameters: Whether the virtual images had an impact on the size and shape of the craniotomy;

As an immediate corollary, we also have that the bootstrap error in the coverage probability (ECP) is of order smaller than T (1=2+ ) for the equal-tailed test and of T (1+ ) for

Table 2 summarizes the features of the three community-contributed commands. Al- though eventstudy and eventstudy2 do not share any programming code, the lat- ter can be considered