• Aucun résultat trouvé

A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter

N/A
N/A
Protected

Academic year: 2021

Partager "A robust inverse analysis method for elastoplastic behavior identification using the true geometry modeling of Berkovich indenter"

Copied!
12
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/26942

https://doi.org/10.1016/j.ijmecsci.2019.105370

Sánchez Camargo, César Moisés and Hor, Anis and Mabru, Catherine A robust inverse analysis method for

elastoplastic behavior identification using the true geometry modeling of Berkovich indenter. (2020) International

Journal of Mechanical Sciences, 171. 105370. ISSN 0020-7403

(2)

A

robust

inverse

analysis

method

for

elastoplastic

behavior

identification

using

the

true

geometry

modeling

of

Berkovich

indenter

Cesar-Moises

Sanchez-Camargo

,

Anis

Hor

,

Catherine

Mabru

Institut Clément Ader (ICA), Université de Toulouse, CNRS, ISAE-SUPAERO, UPS, INSA, Mines-Albi, 3 rue Caroline Aigle, 31400 Toulouse, France

Keywords: Nanoindentation Finite element modeling Inverse analysis Friction effect

a

b

s

t

r

a

c

t

Theparametersdescribingtheelastoplasticbehaviorofthe316Lausteniticstainlesssteelareidentifiedthrough inverseanalysisbasedonfiniteelementmodelingoftheBerkovichnanoindentationtest.Thetruegeometryof theBerkovichindenterisintroducedinaxisymmetricand3Dfiniteelementmodelsusingexperimental nanoin-dentationdataobtainedbyadaptingthecalibrationmethodproposedbyOliverandPharr[1].Then,usingthese trueindentershapemodels,theelastoplasticparametersofthe316Lareestimatedwithhighaccuracycompared totheparametersobtainedfromtensiletestidentification.Theindentationcurvewascorrectlydescribedbythe numericalmodelforalltheanalyzedindentationdepths,evenforindentationsinferiorto100nm,whichisa challengeuntiltoday.The3Dindentermodelproducesaresidualimprintveryclosetotheexperimental indenta-tionmark.Thefrictionanalysisbetweentheindenterandthesamplesurfacerevealssmallchangesinthesurface deformation,introducinganincreaseonthehardness,whichdisappearsastheindentationdepthdecreases. Thesestudiesdemonstratethatthemostimportantaspectintheelastoplasticparameteridentificationisthe correctrepresentationoftheindentergeometryinthefiniteelementmodel.

1. Introduction

Indentationisapopularmethodforevaluatingelastic-plastic prop-ertiesofmaterialsandstructures,includingelasticmodulus,hardness andyieldstrength[2,3].Severalresearchstudieshaveusedthistestto analyzework-hardening,residualstress[4],andfracturetoughness[5], etc.,thesepropertiesareimplicitlyrelatedwithindentationresponse. Thislocalizedtestcanalsobeappliedtomeasurethepropertiesof indi-vidualphasesaswellasglobalpropertiesofcompositematerials, coat-ingsandmultilayers[6,7].Sinceitrequiresmuchlesseffortonsample preparationthanothertechniques, itis inparticularusefulforsmall materialstructuresandbiologicalmaterials(includinglivingtissues). Duetotheinvolvedfinitelocaldeformationandnonlinearcontact con-ditions,numericalmodelingofindentationisavaluabletoolto under-standofthelinkbetweenindentationdataandmaterialproperties,and tocorrelatetheindentationresultswithmaterialparameters.Then,an inverseanalysiscanbecarriedouttoidentifythesematerialproperties fromindentationtests.

Theelastoplasticcharacterizationofmetalsbynanoindentationtest remainsoneofthebiggestchallengesinthemicro-characterization do-main[8,9,10].Themethodsofelastoplasticcharacterizationby nanoin-dentationtestcanprovideaccesstothemechanicalbehavior[11]at multiplescalesandinconditionswheretheconventional methodsof mechanicalcharacterization(e.g.tensiletest)aredifficultor

impossi-∗ Correspondingauthor.

E-mailaddress:cmoises.sanchez@gmail.com(C.-M.Sanchez-Camargo).

bletoapply,e.g.multi-layerssystems,functionalizedsurfacesamong others.Theadvantageoftheuseofthenanoindentationtechniqueis thatitisabletomechanicallytestvolumesofmatterinthemicroscale, producingexperimentaldataofhighaccuracy.

Thenanoindentationtestproducestwomainpiecesofinformation: theresidualimprintandtheloading-unloadingcurve(referredalsoas nanoindentationcurve).Theparametersdescribingtheresidualimprint andthenanoindentationcurveare:hmisthemaximumdisplacementof theindentermeasuredfromthefreesurface,hcisthedepthtothe

con-tactpoint;hsisthedistancefromthecontactpointtothefreesurface,

A(z)isthecrosssectionareaoftheindenteratthecontactpoint,Pmis

thepeakindentationload,Sistheslopeoftheunloadingbranchofthe nanoindentationcurve,andhfisthelastpointofcontactbetweenthe

indenterandthetestedsurface.

Actually,severalmethodsofestimationoftheelasticmodulusand thehardnessofthetestedsurfaceareavailable[12,13].Thesemethods purelyelasticarebasedonlyontheunloadingstageofthe nanoinden-tationtest(Fig.1)[14].Inthecaseoftheelastoplasticcharacterization, twomaintypesofapproacheshavebeendevelopedsincetheapparition of thenanoindentationtest:theanalyticalinversemethods[9,10,11]

andthenumericalinverseanalysis[8,15].

Ingeneralterms,theanalyticalmethodsarebasedonthe hypoth-esisofarepresentativestrainassociatedwiththegeometryofthe in-denter[16],i.e.thestraininducedinthesurfaceisindependentofthe

(3)

Fig.1. (a)Schemaoftheindentation,and(b)typical corre-spondingnanoindentationcurve.

Fig.2. AtomicForceMicroscopy(AFM)capturesofBerkovich indenters:(a)wornindenterwithtipradiusof1200nmand (b)newindenterwithtipradiusof500nm.

indentationdepth.Usingadimensionalanalysis[17],andfiniteelement modeling,a vastamount of workshas beenpublished, forinstance, amongthemostrelevant,thosepresentedin[18,19,20,21,22,47–50]. Suchmethodsarebasedonfiniteelementsimulationsofawiderange ofelastoplasticparameterstodeterminethecoefficientsofthe dimen-sionlessfunctions.These methodsweredevelopedusingthe microin-dentationonarangeof1<hm≤20𝜇m,where,accordingtothe

au-thors,thedefectsanddeviationsontheindentercanbeneglected.In thenanoindentationscale,i.e.0<hm≤200nm[23,24],thewearand thedeviationsontheindentertiparenotnegligible.Theeffectsofthese deviationsonindentershapeareconfirmedbyDaoetal.[19],where theyobservedinfiniteelementsimulationsthatavariationof2° onthe halfangleofaconicalindenterresultsin15−20%variationsinthe

Phloadingcurvature.

Since, in nanoindentation,the effectsof thewearand deviations onthetipmustbetakenintoaccountonfiniteelementsimulationsa methodtoreproducethephysicalindentergeometryinthefinite ele-mentmodelisrequired.Ingeneraltwoapproachesrelatedtothis is-suecanbefoundintheliterature:i)themodelingoftheindenterasa sphero-conicalrevolutionshape[25,26,27,28,29]andii)themodeling oftheindenterfromacloudofpointsgathered withanatomicforce microscope[30,31].Aremarkableexampleofthefirstapproachwas proposedbyPelletieretal.[25].Theprincipleofthismethodconsists inthedescriptionoftheBerkovichindenterbasedontheuseofthe func-tionareaproposedbyOliveretal.[1],whichrelatesthecrosssection areaof theindenter tothedistancemeasuredfromitstip.Fromthis functionareaanequivalentfunctionareadescribingasphero-conical indenterisderived.Thelimitationofthisapproachisthattheindenter issphero-conical; thereforetheresidualimprintcannotbe compared withtheexperimentalresidualimprintofaBerkovichindenter.

Themostrelevantworkfoundforthesecondapproachwasproposed byKrieretal.[30].TheauthorscapturedtheBerkovichindenter ge-ometrywithanAtomicForceMicroscopy(AFM) andthenintroduce thetruegeometryin thefiniteelementmodel. Theirmethodis able toreproducequitewell indentationsdowntohm =40nm.However theimplementationofthemethodisachallengeforseveralreasons,in particularthecorrectionoftheAFMcloudofpoints.Inthisworkthe

authorsstatedthatthebluntingtipdefectaffectstheload-displacement curve,especiallytheloadingphase,andalsotheelastic–plasticstress andstrainfieldsbeneaththeindenter.Theyhighlightedthatthiseffect ontheelastic–plasticstrainfieldisarealandphysicaleffectthat can-notbeavoidedandlimitedbyananalyticalmodel[30].Thisstatement isverifiedthroughAFMcapturesofthetwoBerkovichindenters avail-ableforthepresentresearch(Fig.2),whichexhibitdeviationsonthe selectedoperativerange.Butalsotheartefactsthatmustbecorrected ifthecaptureisusedtoreproducetheindentergeometryinthefinite elementmodelarevisible.

Althoughthestudiescitedaboveaddresstheproblematicassociated withthedescriptionofthephysicalBerkovichindenter,itdoesnotexist, accordingtoourpresentknowledge,areliableandeffectivemethod tointroducethetrueindentergeometryon thefiniteelement model allowingthecorrectrepresentationofindentationsonstrainhardening solidsintheinterval0<hm≤500nm.Theobjectiveofthispaperisto

providesuchmethodandevaluatethefollowingaspects:

1 Theabilityoftheproposedmethodtocorrectlydescribetheshapeof theBerkovichindenterinbothaxisymmetricand3Dfiniteelement models.

2 Theaccuracyoftheelastoplasticparametersidentificationusingthe inverseanalysisbasedonthefiniteelementmodelincludingthetrue indentergeometry.

3 Numericaleffectsofthefrictionanditsroleinthenanoindentation simulation.

2. Experimentalstudy

Thematerialusedinthisresearchisthesingle-phaseaustenitic stain-lesssteelAISI316L[32].Themicrostructureiscomposedofequiaxed grainswithamultitudeoftwinning(Fig.3a).Thegrainsizeisbetween 10and40𝜇m.Thecrystallographicstructureofthisausteniticphaseis Face-CenteredCubic(FCC).Theelectronbackscatterdiffraction(EBSD) mapshowninFig.3bhighlightsanon-texturedmaterial.

Themechanicalbehaviorofthe316Lwascharacterizedbyuniaxial tensiletest[33].TheYoung’smodulusobtainedwiththistensiletestis

(4)

Fig.3. (a)Microstructureand(b)textureof316Lstainless steel.

Fig.4. Truestress-truestraincurveof316Lstainlesssteel.

method(Fig.4),accordingtotheconstitutiveequation[19]:

𝝈 =𝝈𝒚 ( 1+ 𝑬 𝝈𝒚𝜺𝒑 )𝒏 (1)

where𝝈yrepresentstheyieldstressandnthehardeningexponent.The

valuesofyieldstressandhardeningexponentidentifiedfromthe ten-siletest,usinganoffsetof0.2%plasticstrain,wereconsideredasthe referencevaluesoftheelastoplasticparametersandwereusedasa com-parisoninthefollowingtoassesstheaccuracyoftheanalysisproposed inthispaper:𝝈y=409MPaandn=0.231

2.1. Surfaceoptimizationfornanoindentationexperiments

Ananoindentationspecimenwasmachinedinacubeof2cmside fromthe316Lsameroundbarstockthatwasusedfortensiletest.In order toensureasurfacerepresentativeofthebulkmaterial, thetop layerofthemachinedsurfacewasremovedgraduallyfollowingthis it-erativeprocedure:firstly,theinitialheightofthesamplewasmeasured. Then,mechanicalgrindingusingSiCpaperswasdownto1200gritand thefinalheighthasbeenre-determinedagain.Then,five nanoinden-tationsusingPm =50mNwereconducted.Finally,theheightof the pile-upfromAFMcapturesoftheresidualimprintwasestimated.Once thepropertiesmeasured(i.e.hmandpile-up)becameconsistent,the

sur-facewaspolishedusingadiamondsolutionof1𝜇m,andfinishedwith vibratorypolishingusingcolloidalsilicaduringeighthourswithonly sampleweight[34].Thevariationsinthemeasuresofhm (Fig.5(a))

andtheheightofthepile-up(Fig.5(b))duringtheprocedurerevealed thatthemachiningprocessinducedagradientofproperties,extending througha250𝜇mlayerfromthefreesurfaceofthesample.

Themeanvalueofhmwas 820nmonthestabilized surface,and

860nmonthepolishedsurface(Fig.6(a)).Theresidualimprintonthe polished surfacerevealedthe influenceof the crystallographic char-acteristics of theindented point in theform of asymmetric pile-ups (Fig.6(b)).

The prepared surface was inspected by X-ray diffraction using sin2𝜓 method to analyze the residual stress state [35], finding 𝜎11 = 12∓8MPa and 𝜎22 = −15∓11MPa. The surface can thus be considered as free from internal stresses. The microstructural-crystallographiccharacteristicsweredeterminedthroughEBSD analy-sis.ThetreatmentoftheEBSDdata[36]revealedadistortionless mi-crostructurefreeofpre-hardening,withanintragranularmisorientation rangingfrom0° to4° atthecenterofthegrains(Fig.7(a)).Theroughness oftheworkingsurfacewasestimatedfromAFMcaptures(Fig.7(b));it wasgloballyRa=4nmandlocallyRa=1.4nm.ThelocalvalueofRa wasusedtodefinetheminimumvalidvalueofhmonthissurface,which

Fig.5. Surfaceoptimizationprocedure:(a)evolutionofhm

and(b)evolutionoftheheightofthepile-upasafunctionof theremovedlayer(affectedbymachining).

(5)

Fig.6. Effectsofpolishing:(a)evolutionofhmand(b)residual

imprintofthepolishedsurface.

Fig.7. Surface stateof the polishedsurface:(a) crystallo-graphicmisorientationstateand(b)roughnessstate.

Table1

Finalsurfaceproperties.

Roughness

Crystallographic misorientation

(pre-hardening) Residual stresses R a = 4 nm less than 5° 𝜎11 ≈ 0 MPa/ 𝜎22 ≈ 0 MPa

isofabout28nm,i.e.20timesRa[24].Thepropertiesofthesurfaceat

theendofthepreparationprocedurearelistedinTable1.

2.2. Nanoindentationexperiments

Oncetheworkingsurfacewasprepared,thenanoindentation exper-imentswereoptimizedandconductedonthepolishedsurface.Allthe nanoindentationexperimentswereconductedusingthewornBerkovich indenteroftipradiusr=1200nm(Fig.2(a))inloadcontrolledmode atroomtemperatureonaNHT2commercialnanoindenterfromAnton Paarinstruments.Theoptimumloading/unloadingratewasdetermined experimentally on the optimized working surface. Series of nanoin-dentationexperimentswereconductedusingaconstantloadingforce

Pm=10mNandvaryingtheloadingrate.Thetotalindentationwork

(Wt,Eq.(11))constantuntilavalueofloadingratenearto25mN/min,

afterthisvalue,Wtincreaselinearly(Fig.8(a)).Thereforewe consid-eredthatusingloadingrateslowerthan25mN/minallowsneglecting thetimedependenteffects(e.g.indentationcreep)forPm=10mN.

Onthesmallerscale,thetimedependenteffectscanbeobservedin thefirststageoftheloadingnanoindentationcurve(Pmbetween0and

0.5mN),whereloadingratesgreaterthan6mN/minintroduceaslight increaseintheloadingcurve(Fig.8(b)).Finallyusingtheloadingrate closeto6mN/minallowsobtainingcomparableindentationcurvesfor differentindentationloadingvalues.Thevaluesofloading/unloading rateusedinthisstudy(Table2)wereselectedrespectingthisrule,and consideringtheacquisitionfrequencytohavesimilarquantity experi-mentalpoints(i.e.usinglowerloadingratesforthesmallerPm).

Basedon thisinformation,theexperimentalprotocolwasdefined (Table2).ThistablealsopresentsthehmproducedbytheselectedPm.

Table2

Experimentalprotocolforindentationtestsusingthe wornBerkovichindenter.

P m ( mN ) h m ( nm ) Loading / unloading rate ( mN / min )

0.3 25 0.5

1 68 1

3 150 3

10 330 6

15 420 6

Themaximumhmisinferiorto500nm,asrequiredforthepresentstudy,

andtheminimumhmisgreaterthan20nm,whichisvalidwithrespect

tothelocalroughnessoftheworkingsurface(Fig.7(b)).

Atotalofninenanoindentationswereappliedforeachofthefive peakloadslistedintheTable2,spacedenoughtoavoidinterferences. Accordingtotheliterature[24],theindentationmustbespacedatleast threetimesthediameteroftheimprintmark.Inthisstudyweuseda spacingoftentimesthediameteroftheresidualimprint.Fromeach groupofnineindentationsthePhcurvessharingthesameloading pathwereselected(Fig.9(a)),andanAFMcaptureoftheirrespective residualimprintswastaken(Fig.9(b)).

3. Numericalmethod

3.1. Finiteelementmodelingofthespecimen

Allthesimulationsinthispaperwereconductedincontrolled dis-placementappliedtotheindenter.Thespecimenwasmodeled asan axisymmetricbodyandasafull3Dmodel[37]usingtheimplicit non-lineargeometryFEalgorithminAbaqus[38].

Firstly,theaxisymmetricmodelwasoptimizedthroughamesh re-finement convergence analysis, using a fixed hm = 500nm, a rigid

cone equivalent to a perfect Berkovich indenter [39], a frictionless contact,andtheelastoplasticparametersoftheEq.(1):E=180GPa,

𝜎y =148MPa, n=0.278[40].Theiterativeprocedurewasapplied

(6)

Fig.8. Analysisofnanoindentationtimedependenteffectson 316L:(a)effectsofloadingrateonWtand(b)effectsofloading

rateonthefirstportionoftheloadingnanoindentationcurve.

Fig. 9. Nanoindentation experiments using the worn Berkovichindenter:(a)Phcurvesand(b)residualimprints associatedtoeachPhcurve.

Oncetheoptimummeshandsizeofthespecimenwasfoundforthe axisymmetricmodel(Fig.10(a)),thecharacteristicsoftheaxisymmetric modelwerereplicatedonthe3Dmodel(Fig.10(b)).Then,themesh densityofthe3Dmodelwasincreasedbyaddingpartitions(Fig.10(c)), untiltheloadingcurvesofthe3Dandtheaxisymmetricmodelswere equivalents(Fig.10(d)).

Finallybothmodelswereparametrized,usingasmasterparameter

hm:thereforethesamemodelwassuitablefor theanalysisofalarge rangeofhm,ensuringsimilarcontactconditions(Fig.10(e)).

3.2. Finiteelementmodelingoftheindenter

Theproposed methodis basedontheuseofseveralvaluesofthe sectionareaAoftheindenterandtheircorrespondingvaluesofz,i.e.

A(z),withztheneutralaxisoftheindenter(Fig.11).ThevaluesofAare usedtodefinethepointsofthegeneratrixatthecorrespondingzvalues. Then,thegeneratrixisrotatedaroundthezaxisfollowingacircular directrixtoobtainaconicalindenter(Fig.11(a)).Inthecaseofa3D indenter,thegeneratrixismovedalongastraightdirectrixtogenerate onewalloftheindenter.Then,usingacircularpatterntheotherthree wallsaregeneratedandtrimmedontheintersections(Fig.11(b)).The stepsrequiredtoobtainthegeneratrixforbothindentersareexplained below.

Forsimplicity,theexplanationofthemethodisbasedonthe assump-tionofaperfectBerkovichindenter(Fig.11).Consideringtheareaofthe circularsectionofacone,theassociatedradiusisgivenbytheequation:

𝐫(𝐳)= √

𝐀(𝐳)

𝝅 (2)

wherer(z)isthegeneratrixintheaxisymmetricfiniteelementmodel (Fig.11(a)).

Movingtothe3Dindenter,thesectionoftheindenterhasashape ofanequilateraltriangle(Fig.11(b)).Thelengthof eachsideofthe

triangleisgivenbytheequation:

𝑎(𝑧)= √

𝐴(𝑧)4 3

(3)

Then,theperpendiculardistancefromtheaxisoftheindentertothe sideofthetriangleiscomputedfrom:

𝑐(𝑧)= 𝑎(𝑧) 2 tan

(

30◦) (4)

Inthiscasec(z)isthegeneratrixofthewall,anda(z)isthe direc-trix.Introducingtheindenteronthefiniteelementmodelrequiresthe valuesofAalongtheaxiszoftheindenter.Awell-knownrelationisthe BerkovichfunctionareaA(z)=24.5z2[1].Usingthisrelationonthe

proposedprocedureaperfectBerkovichindenterisgenerated,whichis characterizedbyanangle𝜃 =70.3° inthecaseofanaxisymmetric in-denter(Fig.11(a)),orbyanangle𝛼 =65.3° inthecaseofa3Dindenter (Fig.11(b)).

Sincetheobjectiveis tointroducethetrue indentergeometryon thefiniteelementmodel,itisrequiredtoestimateAatseveralpoints ofthezaxisofthephysicalindenter.Thisproblemwassolvedafew decadesagobyOliverandPharr[1].Theprincipleofthismethodisto estimateAatagivencontactdepth,hc,throughtheindentationona

well-knownmaterial(Fig.1).Ontheirworktheyproposedtousethe fusedquartzasindentedmaterialwiththeelasticconstantsEs=72GPa

and𝜈s=0.17;andadiamondBerkovichindenterwiththeelastic

con-stantsEi=1141GPaand𝜈i=0.07.

Firstly,Aiscalculatedusingtherelation:

𝑆= 𝑑𝑃 𝑑ℎ = 2 √ 𝜋𝐸𝑟𝐴 (5)

whereSisthecontactstiffness,computedattheinitialportionofthe unloadingdata(Fig.1),andthereducedmodulus,Er,iscomputedusing

(7)

Fig.10. Nanoindentationfiniteelementmodeling:(a)axisymmetricmodel(b)sectionofthe3Dmodel(c)partitioningofthe3Dmodel,(d)equivalencebetween the3Dandtheaxisymmetricmodeland(e)loadingcurvesproducedbytheparametrizedmodelsonawiderangeofhm.

Table3

Experimentalprotocolforindentationsonfusedquartz.

Indentation numbers Peak load (mN)

Loading/unloading rate (mN/min) Oliver and Pharr [1] 1–10 0.1 0.6 11–20 0.3 1.8 21–30 1 6 31–40 3 18 41–50 10 60 51–60 20 120 Extension 61–70 40 240 71–80 60 360 81–90 80 480 therelation: 1 𝐸𝑟 =1−𝜈𝑠 2 𝐸𝑠 +1−𝜈𝑖 2 𝐸𝑖 (6) where𝜈sandEsaretheelasticconstantsforthespecimen,and𝜈iandEi

arethesameparametersfortheindenter. Then,hciscomputedfromtheequation:

ℎ𝑐=ℎ𝑚ℎ𝑠 (7)

wherehsisthedeflectionofthesurfaceoutsidethecontactarea(Fig.1),

whichiscomputedfromtheequation:

ℎ𝑠=𝜋2(𝜋 −2)𝑃𝑆𝑚 (8)

Onthisstudy,themethodofOliverandPharr[1]wasusedunder threeconsiderations:1)hcis equivalenttoz,2) theoriginal

nanoin-dentationprotocolusedonthefusedquartz(Table3),wasextendedto estimatethevalueofAforacorrespondingvalueofz=500nm,and

3)theelasticconstantsoftheBerkovichindenterandthefusedquartz werethesamethatthoseproposedbyOliverandPharr[1];both,the di-amondBerkovichindenterandthestandardizedsampleoffusedquartz wereobtainedfromthemanufactureroftheNHT2nanoindenter.The indentersgeneratedwiththeproposedprocedurearereferredastrue indenters.

Finally,9valuesofA(z)werecomputedusingtheextendedmethod ofOliverandPhar[1]indentingonfusedquartz(Fig.12),tocovera maximumz=500nm.

ThephysicalBerkovichindenterwasintroducedinthefiniteelement modelapplyingthisprocedurethroughPythonscriptsinAbaqus,in sep-aratemodelsintheformofaxisymmetric(Fig.13(a))and3D(Fig.13(b)) indenters,respectively.TheexperimentalpointsA(z)weredirectlyused togeneratetheindentergeometriesaddinganinitialpointintheorigin. Nofittingprocedurewasincludedtocreatethegeneratrixofthe inden-ters.Theaxisymmetricmodel(Fig.13(a)),ispresentedintheformof aconeusingthevisualizationcapabilitiesofAbaqus.The3Dindenter (Fig.13(b)),isafull3DrepresentationofthephysicalBerkovichused intheexperiments.

Oncethecharacteristicsofthespecimenandtheprocedureto gen-eratetheindenterwereestablished,thenextstepistodefinethe inter-actionbehaviorbetweenthesurfacesoftheindenterandthespecimen.

3.3. Indenter-specimencontactmodeling

Theinteractionbetweentheindenterandthespecimenwasdefined inAbaqusStandardusingthemaster-slaveconfiguration[38].The mas-tersurfacewastheexternalsurfaceoftheindenter,andtheslavesurface wastheexternaltopsurfaceofthespecimen.Theinteractionbetween theindenterandthespecimenwasanalyzedintwoways:1)in friction-lesscontact,and2)withfrictioncontact.Thefrictionwasintroduced in the modelusing the formulationof Coulombincludedin Abaqus

(8)

Fig.11. Geometricspecificationsoftheindenters:(a)conical indenterand(b)3Dindenter.

Fig.12. Experimentalpointsobtainedfromindentationonfusedquartzusing thewornBerkovichindenter.

[38]. Thisformulationassumesthatthere isnorelativemovementif theequivalentfrictionalstressgivenby

𝜏𝑒𝑞= √ 𝜏2 1+𝜏 2 2 (9)

isinferiortothecriticalstress,𝜏crit,whichisproportionaltothecontact

pressure,p,intheform:

𝜏𝑐𝑟𝑖𝑡=𝜇𝑝 (10)

Thefrictioncoefficient,𝜇,isafunctionofthecontactpressure,p, thesliprate,theaveragetemperature,andtheaveragefieldvariables atthecontactpoint.If𝜏crit=𝜏eq,slipoccurs.Inthisstudythefrictionis

consideredisotropic.Thedirectionoftheslipandthefrictionalstressis coincident.

3.4. Optimizationprocedureforelastoplasticparametersidentification

TheLevenberg-Marquardt[41]optimizationalgorithmwasusedto determinetheelastoplasticbehaviorparameters.Theobjectivefunction proposedisformulatedusingbothloadingandunloadingbranchesof thePhcurve(Fig.1).

Fromtheloadingcurvethetotalindentationwork,Wt,isobtained

withtheexpression:

𝑊𝑡= ℎ𝑚

0 𝑃𝑑ℎ

(11) whichisusedtodefinethefirstcomponentoftheobjectivefunctionin theform:

𝑓𝑡=𝑊𝑡𝑛

𝑊𝑡𝑒

𝑊𝑡𝑒 (12)

whereWtn isthetotalindentationworkobtainedfromthesimulated

loadingcurve,andWteisthetotalindentationworkobtainedfromthe experimentalloadingcurve.

Usingtheunloadingcurve,theelasticindentationwork,We,is

ob-tainedthrough: 𝑊𝑒= ℎ𝑚ℎ𝑓𝑃𝑑ℎ (13)

whichisusedtodefinethesecondcomponentoftheobjectivefunction intheform:

𝑓𝑒=𝑊𝑒𝑛

𝑊𝑒𝑒

𝑊𝑒𝑒 (14)

whereWenistheelasticindentationworkobtainedfromthesimulated

unloadingcurve,andWeeistheelasticindentationworkobtainedfrom theexperimentalunloadingcurve.

UsingtheEqs.(12)and(14),theobjectivefunctionforthewhole

Phcurveisassembledintheform:

𝑓(𝛽) 𝑚𝑖𝑛= [ 𝑓𝑡 𝑓𝑒 ] (15) where𝛽 representsthesetofelastoplasticparameters.Finally,the mini-mizationoftheobjectivefunctionisachievedusingthealgorithmshown intheFig.14.

Thealgorithmusedinthisworkwassetwithasteptoleranceand functiontoleranceof10−14.Changesinresidualswassetwithavalue

of10−6,andthenumberofiterationswassetasinfinite.

Fig.13. Berkovichindentermodeling:(a)generatrixofthe axisymmetricindenterand(b)generatrixofthe3Dindenter.

(9)

Fig.14. Optimizationalgorithmusedfortheelastoplasticparameter estima-tion.

4. Resultsanddiscussion

4.1. Thetrueindentergeometrymodelling

Fortheinvestigatedindenter height,i.e. 0nm<z ≤500nm,the profileofthetrueaxisymmetricindenter(Fig.15(a)),looksmorelike aparabola thana sphero-conicalindenterasstatedbysomeauthors

[25,26,27,28,29].Infact,theprofileofthetrueindenterneverexhibits aparallelismwithrespect totheperfectindenter(70.3°).Thisfound helpstoexplainwhythepolynomialformofthefunctionareausedby OliverandPharr[1]isabletodescribetheBerkovichindenterwithhigh precisionregardlessaphysicalmeaning.Anothermethodtodetermine thefunctionarea,includingaphysicalmeaning,wasproposedby Lou-betetal.[42].Thismethodreliesontheestimationoftheheightofa roundedportion(thetipdefect),connectedtoaperfectindenter.The3D indentermodeledwiththemethodproposedinthispapercannotbe

de-scribedusingthisassumption,becausethesectionsofthetrueindenter arecurved(Fig.15(b)).

Inaddition,thecloudofpointsgatheredbytheAtomicForce Mi-croscopy(AFM) wasdirectly used forcomparisons, founding thatat leastoneofthethreesectionsobtainedfromtheAFMcaptureofthe Berkovichtipispartiallysimilartothesectionofthetrueindenter, ex-hibitingarelationwiththephysicalindenter.

4.2. Elastoplasticparametersidentification

Thethreeelastoplasticparametersofthe316Lconstitutivemodel described in Eq. (1) were estimated from each experimental Ph

curveobtainedwiththeindentationsusingthewornBerkovich inden-ter(Fig.9(a))andtheparameteridentificationroutine(Fig.14).Both perfectandtrueindentermodelswereusedintheaxisymmetricmodels, assumingfrictionlesscontact(𝜇 =0inEq.(10)).Theestimated param-eterswereplottedasafunctionofthemaximumindentationdepthin

Fig.16,andthevaluesoftheparametersobtainedbytensiletestwere includedasreference.

Thethreeelastoplasticparametersobtainedwiththeperfect inden-termodelincreasewithrespecttothereference(tensile)valuewhen

hmdecreases.Fortheminimumvalueofhm,theerrorinthehardening

exponentreaches%err=166i.e.n=0.61,whichisoutoftherangefor

metals[19];theerrorintheyieldstressreaches%err=370andisalso

outoftheparametricrangeofmetals[19].

However,theelasticmodulusandthehardeningexponentestimated withthetrueindentermodelexhibitaconstanttrendnearthe refer-ence. Thehardeningexponentandtheelasticmodulus havea mean error%err=3.7and%err=17.8respectivelycomparedtothereference.

Theerrorintheyieldstressonthemaximumvalueofhmis%err=21.6.

This errorincreaseswiththedecreaseof hmtoreach%err=72.9.In theliterature,theincrease oftheyieldstrengthwiththedecreaseof

hm,reflectedonthehardness,isreferredasindentationsizeeffect(ISE)

[43,44,45].WesupposethattheISEisalreadypresentinthemaximum

hminvestigated,andthatiswhythevalueoftheelasticlimitisgreater

thanthevaluefoundbytensiletest.Thisfindingopenthepossibilities tonewexperimental-numericalstudiesoftheISE,besidestheexisting formulationsbasedonthehardnesse.g.themethodofGaoetal.[44].

Inaddition,theparameter identificationconductedwiththe per-fectindentermodelwasclosetotheknown(reference)solutionforthe indentationcorrespondingtothegreaterhm.Thiseffectcanbeeasily observedinthePhcurves,wherethesimulationoftheshallow in-dentationexhibitsagreatdifferencewithrespecttotheexperimental curve(Fig.17(a)),whileinthedeepestindentationthedifference be-tweenthemisreduced(Fig.17(b)). Nevertheless,theparameter esti-mationperformedusingthetrueindentergeometryshowedpowerful

(10)

Fig.16. Elastoplasticparametersevolutioninfunctionofhm.

Fig.17. Comparisonbetweenthetrueindenterandthe per-fectindenterPhcurvesin(a)shallowand(b)deep inden-tations.

Fig.18. Comparisonbetweentheexperimentalresidualimprintprofileandthe numericalresidualimprintprofileobtainedwiththe3Dmodel.

capabilitiesofthismodeltofaithfullyreproducetheexperimentalcurve fordeepandshallowindentations(Fig.17(a)and(b)).

Finally,thesectionoftheresidualimprintproducedbythe3Dtrue indentermodelwithPm=15mN,fortherespectivedetermined

elasto-plasticparameters, isvery closeatleast tooneof thethreesections obtainedexperimentally(Fig.18).Thisgreatresemblancealsoconfirms thattheoptimizationroutineconvergedtothecorrectsolutioninthis case.

4.3. Frictionanalysis

Theparameteridentificationroutinewasexecutedtwotimes sepa-ratelyusingthefrictioncoefficients𝜇 =0.1and𝜇 =0.2respectively, foreachinvestigatedexperimentalindentationonthe316L.The start-ingpointoftheroutinewasthelastsetofparametersdeterminedwith

thefrictionlessconfiguration of eachparameter identification execu-tion.Thetrueindenterfiniteelementmodelwasused.Inallcases,after afewiterationstheroutinestoppedbecausethechangesinthecurve werenegligible(Fig.19(a)and(b)),inconsequencethechangesinthe valueoftheparameterswerealsonegligible.Therefore,theeffectofthe investigatedfrictioncoefficients(𝜇 =0; 𝜇 =0.1; 𝜇 =0.2)were evalu-atedusingthedeterminedelastoplasticparametersfortheexperimental

Pm=15mN.Theresidualimprintshowedadecreaseoftheheightofthe pile-up(until31nmfor𝜇 =0.2),comparedtothefrictionlesscontact (Fig.19(c)),revealingsmallvariationsinthecontactarea.

Basedonthisevidence,thehardness,H=Pm/A(hc)[1],was com-putedfortheexperimentalPhcurveswithPm=3mN, Pm=10mN

andPm=15mNusingtheAFMcapturesoftheircorresponding

resid-ualimprints.Inthecaseofthenumericalmodels,A(hc)wasdetermined athm.Theresultswereplottedinfunctionofhm(Fig.20).Theresults

showanincreaseofHwiththedecreaseofhm.Fortheindentations

in-feriortohm=200nm,theeffectsofthefrictionarereduced,i.e.the

changesinthecontactareaarenegligible.Forindentationssuperiorto

hm=200nm,theexperimentalHisclosetothesimulationusing

fric-tionlesscontact,andtheincreasewhen𝜇 = 0.2induces%err=19.6,

meaningadifferenceofHabout490MPa.

Theliteraturereportsamaximumincreaseof ~ 20%inthe hard-nessforcontactswithfrictioncoefficients𝜇 >0[46].Themaximum differencefoundinthiswork(%err=19.6)isconsistentwiththese ob-servations.However,forthedeeperindentationsanalyzedinthiswork, thevaluesofthehardnessobtainedusingfrictionlesscontactarecloser totheexperimentalvalues.

Mataetal.[46]observedtwoeffectsofthefrictiononthepile-up: 1)theheightofthepile-updecreaseswiththeincreaseofthefriction coefficient,and2)theindentationswithlowheightofpile-upareless sensitivetothevariationsofthefrictioncoefficient.Thetwoeffects ob-servedbyMataetal.arepresentedinthisstudy(Fig.21).Thefirstone isobservedwithindentationsofhm>300nm,whereamaximum

dif-ferenceof27.8nmontheheightofthepile-upisobservedcomparing frictionlesscontactandcontactwithfrictioncoefficient𝜇 =0.2.The secondeffectisobservedwithindentationsofhm<100nm,wherethe

(11)

Fig.19. Frictioneffects:(a)inshallowand(b)indeepindentation,onthePhcurves,(c)ontheresidualimprint.

Fig.20. Frictioncoefficienteffectonthesurfacehardness.

Fig.21. Effectsofthevariationsofthefrictioncoefficientonthepile-upheight.

5. Conclusion

Anewmethodologytoimprovetherepresentationofthegeometryof thephysicalBerkovichindenterinthefiniteelementmodelisproposed inthispaper.

Thisinclusionofthephysicalindenterinthefiniteelementmodel leadstoacorrectreproduction oftheexperimentalPhcurveand

residualimprintofthetestedmaterial,providinganestimationofthe elastoplasticparameterswithsignificantlyimprovedaccuracyinthe op-erative range0<hm≤500nm. Theobservedvariationsoftheyield

stressasafunctionoftheindentationdepthopennewinsightsonthe indentationsizeeffect,which nowcanbe analyzedthrough sophisti-catednumericalmodelsonindentationswithhm<100nm.Thispaper

focusedontheanalysisofstrainhardeningsolids,howevercomplex mi-cromechanicalsystems(e.g.ultrathinlayers,nanocrystallinestructures, etc.) canbe analyzedusingtheaccuratefiniteelementmodelof the indentergeometry.

Theeffectsofthefrictioncoefficientwereobservedinthecontact interface betweentheindenter andthesamplesurfacemodifyingthe valueofthehardness,whichis ingoodagreementwithotherworks reportedintheliterature.Noeffectsofthefrictioncoefficientusedin thefiniteelementsimulationswereobservedonthePhcurveoron theestimatedparameters.

DeclarationofCompetingInterest

None.

Acknowledgments

This workwaspartiallysupportedbytheMexicanCouncilof Sci-enceandTechnology(CONACYT).TheassistanceofDr.VictorSanchez inthereviewofthismanuscriptisgratefullyacknowledged.Wewishto acknowledgetheassistanceofMr.ThierryMartinfortheoptimum per-formanceofthenanoindenter,andthesupportofalltheISAE-SUPAERO DMSMteam.

References

[1] Oliver WC , Pharr GM . An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7:1564–83 .

[2] Iracheta O , Bennett C , Sun W . Characterization of material property variation across an inertia friction welded CrMoV steel component using the inverse analysis of nanoindentation data. Int J Mech Sci 2016;107:253–63 .

[3] Ben Ismail A , Rachik M , Mazeran P-E , Fafard M , Hug E . Material characterization of blanked parts in the vicinity of the cut edge using nanoindentation technique and inverse analysis. Int J Mech Sci 2009;51:899–906 .

[4] Zhu L , Xu B , Wang H , Wang C . Measurement of residual stress in quenched 1045 steel by the nanoindentation method. Mater Charact 2010;61(12):1359–62 .

[5] Romana L , Thomas P , Bilas P , Mansot JL , Aldana Aranda D . Use of nanoindentation technique for a better understanding of the fracture toughness of Strombus gigas conch shell. Mater Charact 2013;76:55–68 .

[6] Lai D , Xu J , Xie Z , Habibi D , Munroe P . Mechanical characterization of a novel nanocrystalline coating: first-principles calculations and nanoindentation. Mater Charact 2012;68:1–6 .

[7] Bouzakis K-D , Michailidis N , Hadjiyiannis S , Skordaris G , Erkens G . The effect of specimen roughness and indenter tip geometry on the determination accu- racy of thin hard coatings stress–strain laws by nanoindentation. Mater Charact 2002;49(2):149–56 .

[8] Kang J , Becker A , Sun W . Determining elastic–plastic properties from indentation data obtained from finite element simulations and experimental results. Int J Mech Sci 2012;62:34–46 .

(12)

[9] Kim M , Pandian Marimuthu K , Lee JH , Lee H . Spherical indentation method to eval- uate material properties of high-strength materials. Int J Mech Sci 2016;106:117–27 .

[10] Nguyen N-V , Kim JJ , Kim S-E . Methodology to extract constitutive equation at a strain rate level from indentation curves. Int J Mech Sci 2019;152:363–77 .

[11] Pham T-H , Kim JJ , Kim S-E . Estimating constitutive equation of structural steel using indentation. Int J Mech Sci 2015;90:151–61 .

[12] Oliver WC , Pharr GM . An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 1992;7(6):1564–83 .

[13] Oliver WC , Pharr GM . Measurement of hardness and elastic modulus by instru- mented indentation: advances in understanding and refinements to methodology. J Mater Res 2004;587(1):3–20 .

[14] Bulychev S , Alekhin V , Shorshorov MK , Ternovskii A . Mechanical properties of ma- terials studied from kinetic diagrams of load versus depth of impression during mi- croimpression. Strength Mater 1976;8(9):1084–9 .

[15] Kang JJ , Becker AA , Wen W , Sun W . Extracting elastic-plastic properties from ex- perimental loading-unloading indentation curves using different optimization tech- niques. Int J Mech Sci 2018;144:102–9 .

[16] Tabor D . The hardness of solids. Review of Physics in Technology 1970;1(3):1–145 .

[17] Barenblatt GI . Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics. Cambridge University Press; 1996 .

[18] Cheng Y-T , Cheng C-M . Scaling approach to conical indentation in elastic-plastic solids with work hardening. J Appl Phys 1998;84(3):1284–91 .

[19] Dao M , v Chollacoop N , Van Vliet KJ , Venkatesh TA , Suresh S . Computational mod- eling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 2001;49:3899–918 .

[20] Bucaille J-L , Stauss S , Felder E , Michler J . Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater 2003;51:1663–78 .

[21] Chollacoop N , Dao M , Suresh S . Depth-sensing instrumented indentation with dual sharp indenters. Acta Mater 2003;51(13):3713–29 .

[22] Ogasawara N , Chiba N , Chen X . Measuring the plastic properties of bulk materials by single indentation test. Scr Mater 2006;54:65–70 .

[23] ISO 14577-1:2015. Metallic materials - Instrumented indentation test for hardness and materials parameters, part 1: test method. Switzerland: Geneve; 2002 .

[24] Fischer-Cripps AC . Nanoindentation testing. Springer; 2011. p. 21–37 .

[25] Pelletier H , Krier J , Cornet A , Mille P . Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films 2000;379:147–55 .

[26] Bouzakis K-D , Pappa M , Maliaris G , Michailidis N . Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surf Coat Technol 2013;215:218–23 .

[27] Berla LA , Allen AM , Han SM , Nix WD . A physically based model for indenter tip shape calibration for nanoindentatio. J Mater Res 2010;25(4):735–45 .

[28] Yu N , Polycarpou AA , Conry TF . Tip-radius effect in finite element model- ing of sub-50 nm shallow nanoindentation. Thin Solid Films 2004;450(2):295– 303 .

[29] Chen W , Li M , Zhang T , Cheng Y-T , Cheng C-M . Influence of indenter tip roundness on hardness behavior in nanoindentation. Mater Sci Eng 2007;445:323–7 .

[30] Krier J , Breuils J , Jacomine L , Pelletier H . Introduction of the real tip defect of Berkovich indenter to reproduce with FEM nanoindentation test at shallow penetra- tion depth. J Mater Res 2012;27(1):28–38 .

[31] Herrmann K , Hasche K , Pohlenz F , Seemann R . Characterisation of the geome- try of indenters used for the micro-and nanoindentation method. Measurement 2001;29(3):201–7 .

[32] Sapezanskaia I , Roa JJ , Fargas G , Turon-Viñas M , Mateo A . Deformation mecha- nisms induced by nanoindentation tests on a metastable austenitic stainless steel: a FIB/SIM investigation. Mater Charact 2017;131:253–60 .

[33] Davis JR . Tensile testing. ASM International; 2004 .

[34] Wang Z , Bei H , George EP , Pharr GM . Influences of surface preparation on nanoin- dentation pop-in in single-crystal Mo. Scr Mater 2011;65(6):469–72 .

[35] Basrour S , Robert L . X-ray characterization of residual stresses in electroplated nickel. Mater Sci Eng 2000;288(2):270–4 .

[36] Bachmann F , Hielscher R , Schaeben H . Texture analysis with MTEX - free and open source software toolbox. Solid State Phenom 2010;160:63–8 .

[37] Larsson P-L . Investigation of sharp contact at rigid-plastic conditions. Int J Mech Sci 2001;43:895–920 .

[38] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9, Simulia, 2009. [39] Bolshakov A , Pharr GM . Influences of pileup on the measurement of mechan-

ical properties by load and depth sensing indentation techniques. J Mater Res 1998;13:1049–58 .

[40] Beghini M , Bertini L , Fontanari V . Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int J Solids Struct 2006;43:2441–59 .

[41] Marquardt DW . An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11(2):431–41 .

[42] Loubet JL , Georges JM , Marchesini O , Meille G . Vickers indentation curves of mag- nesium oxide (MgO). J Tribol 1984;106:43–8 .

[43] Swadener J , George E , Pharr G . The correlation of the indentation size effect mea- sured with indenters of various shapes. J Mech Phys Solids 2002;50(4):681–94 .

[44] Nix WD , Gao H . Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 1998;46:411–25 .

[45] Shim S , Bei H , George EP , Pharr GM . A different type of indentation size effect. Scr Mater 2008;59(10):1095–8 .

[46] Mata M , Alcala J . The role of friction on sharp indentation. J Mech Phys Solids 2004;52(1):145–65 .

[47] Cao YP , Lu J . A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater 2004;52:4023–32 .

[48] Casals O , Alcalá J . The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater 2005;53:3545–61 .

[49] Gao X-L , Jing XN , Subhash G . Two new expanding cavity models for inden- tation deformations of elastic strain-hardening materials. Int J Solids Struct 2006;43:2193–208 .

[50] Giannakopoulos AE , Suresh S . Determination of elastoplastic properties by instru- mented sharp indentation. Scr Mater 1999;40:1191–8 .

Figure

Fig. 1. (a) Schema of the indentation, and (b) typical corre- corre-sponding nanoindentation curve.
Fig. 3. (a) Microstructure and (b) texture of 316 L stainless steel.
Fig. 6. Effects of polishing: (a) evolution of h m and (b) residual
Fig. 8. Analysis of nanoindentation time dependent effects on 316L: (a) effects of loading rate on W t and (b) effects of loading
+6

Références

Documents relatifs

Furthermore, taurolidine may not only have the potential to prevent lung metastases of colon adenocarcinoma, but may also be used in their treatment: all the animals in the

In conclusion, a complete data procedure has been firstly described, which starts from the acquisition of experimental data (i.e., load values and images) to the extraction of

Clearly then, by choosing the base width and growth conditions appropriately, it is possible to tune the emission wavelength of individual, site-selected InAs/InP quantum dots close

This paper aims at modeling of linear behavior of heterogeneous materials by a numerical homogenization method based on the Extended Finite Element Method (XFEM) [1]..

This greatly simplified the implementation for a number of reasons: (i) the name space could be stored in a single shared-memory table within the microkernel,

Here, we demonstrate the first ultra-stable microwave generation via optical fre- quency division using a SESAM-mode-locked DPSSL in the 1.5-lm region, and we compare its

This balance between coupling to the molecular backbone, leading to a good intramolecular conductance, and coupling to the electrode, which reduces the interface potential

Since space averaging is applied in the form of a space integration in a given domain of the reactor vessel and not as a space filtering with homogenization, mesh convergence is