• Aucun résultat trouvé

Chapitre 3 : Discussion

3. Vision vers l’in vivo

Il était aussi nécessaire d’élaborer une technique qui permettrait d’introduire le ribozyme in vivo. Étant donné que les neurones primaires sont très difficiles à transfecter, qu’il est impossible d’effectuer une transfection dans un cerveau humain, et que la barrière hémathoencéphalique demeure un enjeu important dans le cadre de l’élaboration de médicaments pour le cerveau : l’outil choisit pour un passage in vivo a été les virus.

Le choix du virus AAV (adénovirus associé) étant justifié par le fait que ce virus a une faible toxicité, une faible réponse immunitaire et est capable d’infecter un grand nombre de type cellulaire, y compris les cellules qui ne se divisent pas (Daya & Berns, 2008). En effet, notre cible principale se trouve dans le cerveau, le virus AAV permet ainsi l’infection des cellules neuronales avec une propagation efficace. Contrairement aux lentivirus, le virus AAV est non intégratif. Ce qui paraissait particulièrement important dans ces expériences, puisqu’il n’est pas nécessaire que la séquence du ribozyme soit intégrée au génome. En effet, pour des raisons éthiques et par manque de connaissances approfondies, cette thérapie devant être applicable à l’humain, ne doit pas modifier le génome.

La production virale a été réalisée dans les HEK-293AAV, et celle-ci permet la production de virus AAV de différents sérotypes. Ce mélange de sérotypes permet de cibler un plus grand type de cellules et d’augmenter l’efficacité d’infection. La purification des virus a été effectuée à partir du milieu des cellules et à partir des cellules (Guo et al., 2012). Ceci permettant de récolter plus de virus.

93

Comme vu précédemment, les cellules HEK-293 comportent très peu voire pas du tout de Tau endogène. L’infection dans les cellules SH-SY5Y a été testé. Néanmoins, moins de 5% des cellules étaient infectées. On peut émettre l’hypothèse que les SH-SY5Y ne possède pas le récepteur héparine nécessaire pour l’infection virale.

De ce fait, l’infection a été faite dans les cellules SK-N-MC. Cellules qui possèdent du Tau endogène et qui sont de type neuronal. L’infection a dû être réalisée à un passage très bas (P4), les cellules qui avaient un passage plus élevé (à partir de P6) ont été presque impossible à infecter. Malgré une infection plus efficace des cellules plus jeunes, la transduction n’a pas aussi bien fonctionné que la transfection. Les résultats observés par la suite ne démontraient aucun changement concernant l’ARNm de Tau en présence des virus contenant les ribozymes comparés au virus contenant le vecteur vide. Cette technique demande donc place à l’amélioration. Il est possible de faire un tri cellulaire (FACS), pour sélectionner uniquement les cellules infectées. Cependant, le tri cellulaire implique aussi de nombreux désavantages tels qu’une forte mortalité cellulaire. Les cellules SK-N-MC sont des cellules particulièrement fragiles qui nécessitent une attention particulière.

L’approche par virus est une approche intéressante mais il est aussi possible d’utiliser d’autres méthodes novatrices telle que les microbulles d’ultrasons (Hernot & Klibanov, 2008). Les modèles murins (P301L ou hTau) pourraient être utilisés pour étudier les effets du ribozyme sur le cerveau. Et des analyses génétiques, protéiques et comportementales pourraient être élaborées afin d’évaluer l’efficacité de cette approche thérapeutique. Aussi, il serait intéressant de développer des techniques efficaces susceptibles d’arrêter le ribozyme ou de contenir son expression dans le cerveau.

94

Conclusions et perspectives

Tout au long de ce mémoire, nous avons pu constater que les Tauopathies sont des maladies neurodégénératives assez fréquentes qui incluent un bon nombre de pathologies (Maladie d’Alzheimer, CBD, PiD etc.), avec des symptômes distincts selon les Tauopathies observées (perte de la mémoire, dépression, trouble moteur etc.). Bien qu’il existe plusieurs causes communes de ces pathologies déjà connues (mutation génétique, environnement etc.), ces maladies se caractérisent entres autre par l’hyperphosphorylation et l’accumulation de la protéine Tau dans le cerveau. Cependant, les mécanismes moléculaires liées à la toxicité et la propagation de cette protéine restent à approfondir afin de mieux comprendre ces pathologies et de développer des thérapies efficaces. En effet, aucun traitement à ce jour n’a été capable d’atteindre la phase clinique III et donc de vaincre les Tauopathies, malgré les différents essais semblant prometteurs en immunothérapie.

Ainsi ce projet c’est inscrit dans le prolongement des efforts entrepris par de nombreux scientifiques afin de trouver une approche thérapeutique efficace contre les Tauopathies.

Le SOFA-Delta-Ribozyme avait pour but ici de cliver l’ARNm de Tau, afin de diminuer les enchevêtrements neurofibrillaires et d’améliorer les fonctions cognitives. 2 des 5 ribozymes présélectionnés (350 et 395) ont démontré une tendance à la baisse pour l’ARNm de Tau en transfection transitoire. Il serait particulièrement intéressant de confirmer ces résultats en améliorant l’efficacité de ces ribozymes et enfin il serait possible d’envisager un passage à l’in vivo grâce à l’approche par virus.

95

Bibliographie

Avila, J., Lucas, J. J., Perez, M., & Hernandez, F. (2004). Role of tau protein in both physiological and pathological conditions. Physiological Reviews, 84(2), 361–384. Sergeant, N., Wattez, A., & Delacourte, A. (1999). Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: Tau pathologies with exclusively “Exon 10” isoforms. Journal of Neurochemistry, 72(3), 1243–1249.

Buée, L., Bussière, T., Buée-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research

Reviews, 33(1), 95–130.

Brion, S., Plas, J., & Jeanneau, A. (1991). [Pick’s disease. Anatomo-clinical point of view]. Rev.Neurol.(Paris), 147(0035–3787), 693–704.

Buée-Scherrer, V., Hof, P. R., Buée, L., Leveugle, B., Vermersch, P., Perl, D. P., Delacourte, A. (1996). Hyperphosphorylated tau proteins differentiate corticobasal degeneration and Pick’s disease. Acta Neuropathologica, 91(4), 351–359.

Braak, H., & Braak, E. (1985). On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathologica, 68(4), 325–332.

Clavaguera, F., Akatsu, H., Fraser, G., Crowther, R. A., Frank, S., Hench, J., … Tolnay, M. (2013). Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proceedings of the National Academy of Sciences, 110(23), 9535–9540.

Götz, J., Tolnay, M., Barmettler, R., Chen, F., Probst, A., & Nitsch, R. M. (2001). Oligodendroglial tau filament formation in transgenic mice expressing G272V tau.

European Journal of Neuroscience, 13(11), 2131–2140.

Rademakers, R., Cruts, M., & Van Broeckhoven, C. (2004). The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutation.

Hong, M. (1998). Mutation-Specific Functional Impairments in Distinct Tau Isoforms of Hereditary FTDP-17. Science, 282(5395), 1914–1917.

Wu, L., Rosa-Neto, P., Hsiung, G. Y. R., Sadovnick, A. D., Masellis, M., Black, S. E., … Gauthier, S. (2012). Early-onset familial alzheimer’s disease (EOFAD). Canadian Journal

of Neurological Sciences.

Luchsinger, J. a, Tang, M.-X., Shea, S., & Mayeux, R. (2004). Hyperinsulinemia and risk of Alzheimer disease. Neurology, 63(7), 1187–1192.

Luchsinger, J. A., & Mayeux, R. (2004). Cardiovascular risk factors and Alzheimer’s disease. Current Atherosclerosis Reports.

96

Luchsinger, J. a, & Mayeux, R. (2004). Dietary factors and Alzheimer’s disease. The

Lancet Neurology, 3(October), 579–587.

Cataldo, J. K., Prochaska, J. J., & Glantz, S. A. (2010). Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affiliation. Journal

of Alzheimer’s Disease: JAD, 19(2), 465–480.

Corder, E., Saunders, A., Strittmatter, W., Schmechel, D., Gaskell, P., Small, G., … Pericak-Vance, M. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921–923.

Adlard, P. A. (2005). Voluntary Exercise Decreases Amyloid Load in a Transgenic Model of Alzheimer’s Disease. Journal of Neuroscience, 25(17), 4217–4221.

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet

Neurology.

Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., … Selkoe, D. J. (1997). Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Medicine,

3(1), 67–72.

Rogaev, E. I., Sherrington, R., Rogaeva, E. \n\t\tA., Levesque, G., Ikeda, M., Liang, Y., … George-Hyslop, P. H. \n\t\tS. (1995). Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376(6543), 775–778.

Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem

Biophys Res Commun, 120(3), 885–890.

Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature Reviews Disease Primers.

Polanco, J. C., Li, C., Bodea, L. G., Martinez-Marmol, R., Meunier, F. A., & Götz, J. (2018). Amyloid-β and tau complexity - Towards improved biomarkers and targeted therapies.

Nature Reviews Neurology.

Del Turco, D., Paul, M. H., Schlaudraff, J., Hick, M., Endres, K., Müller, U. C., & Deller, T. (2016). Region-Specific Differences in Amyloid Precursor Protein Expression in the Mouse Hippocampus. Frontiers in Molecular Neuroscience, 9.

Zhou, Z.-D., Chan, C. H.-S., Ma, Q.-H., Xu, X.-H., Xiao, Z.-C., & Tan, E.-K. (2011). The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adhesion & Migration, 5(4), 280–292.

Bergmans, B. A., Shariati, S. A. M., Habets, R. L. P., Verstreken, P., Schoonjans, L., Müller, U., … De Strooper, B. (2010). Neurons generated from APP/APLP1/APLP2 triple knockout embryonic stem cells behave normally in vitro and in vivo: Lack of evidence for a cell autonomous role of the amyloid precursor protein in neuronal differentiation.

97

Young-Pearse, T. L., Bai, J., Chang, R., Zheng, J. B., LoTurco, J. J., & Selkoe, D. J. (2007). A Critical Function for -Amyloid Precursor Protein in Neuronal Migration Revealed by In Utero RNA Interference. Journal of Neuroscience, 27(52), 14459–14469.

Breen, K. C., Bruce, M., & Anderton, B. H. (1991). Beta amyloid precursor protein mediates neuronal cell‐cell and cell‐surface adhesion. Journal of Neuroscience Research,

28(1), 90–100.

Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H. A., & Herms, J. (2006). Synapse Formation and Function Is Modulated by the Amyloid Precursor Protein. The

Journal of Neuroscience, 26(27), 7212–7221.

Prox, J., Bernreuther, C., Altmeppen, H., Grendel, J., Glatzel, M., D’Hooge, R., … Saftig, P. (2013). Postnatal Disruption of the Disintegrin/Metalloproteinase ADAM10 in Brain Causes Epileptic Seizures, Learning Deficits, Altered Spine Morphology, and Defective Synaptic Functions. Journal of Neuroscience, 33(32), 12915–12928.

Takagi-Niidome, S., Sasaki, T., Osawa, S., Sato, T., Morishima, K., Cai, T., … Tomita, T. (2015). Cooperative Roles of Hydrophilic Loop 1 and the C-Terminus of Presenilin 1 in the Substrate-Gating Mechanism of -Secretase. Journal of Neuroscience, 35(6), 2646– 2656.

Vassar, R., Kuhn, P. H., Haass, C., Kennedy, M. E., Rajendran, L., Wong, P. C., & Lichtenthaler, S. F. (2014). Function, therapeutic potential and cell biology of BACE proteases: Current status and future prospects. Journal of Neurochemistry.

Takami, M., Nagashima, Y., Sano, Y., Ishihara, S., Morishima-Kawashima, M., Funamoto, S., & Ihara, Y. (2009). -Secretase: Successive Tripeptide and Tetrapeptide Release from the Transmembrane Domain of -Carboxyl Terminal Fragment. Journal of

Neuroscience, 29(41), 13042–13052.

Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β-peptide. Nature Reviews Molecular Cell Biology. Bachurin, S. O., Bovina, E. V., & Ustyugov, A. A. (2017). Drugs in Clinical Trials for Alzheimer’s Disease: The Major Trends. Medicinal Research Reviews.

Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., … Garaschuk, O. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321(5896), 1686–1689.

Rhein, V., Song, X., Wiesner, A., Ittner, L. M., Baysang, G., Meier, F., … Eckert, A. (2009). Amyloid- and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proceedings of the National Academy of

Sciences, 106(47), 20057–20062.

Selkoe, D. J. (2008). Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behavioural Brain Research.

Pham, E., Crews, L., Ubhi, K., Hansen, L., Adame, A., Cartier, A., … Masliah, E. (2010). Progressive accumulation of amyloid-β oligomers in Alzheimer’s disease and in amyloid

98

precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins. FEBS Journal, 277(14), 3051–3067.

Giannakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kövari, E., Perl, D. P., … Hof, P. R. (2003). Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 60(9), 1495–1500.

Rupp, N. J., Wegenast-Braun, B. M., Radde, R., Calhoun, M. E., & Jucker, M. (2011). Early onset amyloid lesions lead to severe neuritic abnormalities and local, but not global neuron loss in APPPS1 transgenic mice. Neurobiology of Aging, 32(12).

Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of

Sciences of the United States of America, 72(5), 1858–1862.

Ezquerra, M., Pastor, P., Valldeoriola, F., Luis Molinuevo, J., Blesa, R., Tolosa, E., & Oliva, R. (1999). Identification of a novel polymorphism in the promoter region of the tau gene highly associated to progressive supranuclear palsy in humans. Neuroscience Letters,

275(3), 183–186.

Baker, M., Litvan, I., Houlden, H., Adamson, J., Dickson, D., Perez-Tur, J., … Hutton, M. (1999). Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Human Molecular Genetics, 8(4), 711–715.

Wang, Y., & Mandelkow, E. (2016). Tau in physiology and pathology. Nature Reviews

Neuroscience.

Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., & Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3(4), 519–526. Nunez, J., & Fischer, I. (1997). Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration. J.Mol.Neurosci., 8(3), 207–222. Lee, G., Cowan, N., & Kirschner, M. (1988). The primary structure and heterogeneity of tau protein from mouse brain. Science, 239(4837), 285–288.

Goedert, M., & Jakes, R. (1990). Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. The EMBO

Journal, 9(13), 4225–4230.

Lovestone, S., Reynolds, C. H., Latimer, D., Davis, D. R., Anderton, B. H., Gallo, J. M., … Stabel, S. (1994). Alzheimer’s disease-like phosphorylation of the microtubule- associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells.

Current Biology: CB, 4(12), 1077–1086.

Violet, M., Delattre, L., Tardivel, M., Sultan, A., Chauderlier, A., Caillierez, R., … Galas, M.-C. (2014). A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Frontiers in Cellular Neuroscience, 8.

99

Chen, J., Kanai, Y., Cowan, N. J., & Hirokawa, N. (1992). Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature,

360(6405), 674–677.

Butler, M., & Shelanski, M. L. (1986). Microheterogeneity of microtubule-associated tau proteins is due to differences in phosphorylation. Journal of Neurochemistry, 47(5), 1517–1522.

Stoothoff, W. H., & Johnson, G. V. W. (2005). Tau phosphorylation: Physiological and pathological consequences. Biochimica et Biophysica Acta - Molecular Basis of Disease. Gong, C. X., Singh, T. J., Grundke-Iqbal, I., & Iqbal, K. (1993). Phosphoprotein phosphatase activities in Alzheimer disease brain. Journal of Neurochemistry, 61(3), 921–927.

Planel, E., Richter, K. E. G., Nolan, C. E., Finley, J. E., Liu, L., Wen, Y., … Duff, K. E. (2007). Anesthesia Leads to Tau Hyperphosphorylation through Inhibition of Phosphatase Activity by Hypothermia. Journal of Neuroscience, 27(12), 3090–3097. Biernat, J., Gustke, N., Drewes, G., Mandelkow, E., & Mandelkow, E. (1993). Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: Distinction between PHF-like immunoreactivity and microtubule binding. Neuron, 11(1), 153–163. Schneider, A., Biernat, J., Von Bergen, M., Mandelkow, E., & Mandelkow, E. M. (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry,

38(12), 3549–3558.

Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P., & Lu, K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature,

399(6738), 784–788.

Reynolds, M. R., Reyes, J. F., Fu, Y., Bigio, E. H., Guillozet-Bongaarts, A. L., Berry, R. W., & Binder, L. I. (2006). Tau Nitration Occurs at Tyrosine 29 in the Fibrillar Lesions of Alzheimer’s Disease and Other Tauopathies. Journal of Neuroscience, 26(42), 10636– 10645.

Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., & Gong, C.-X. (2004). O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer’s disease.

Proceedings of the National Academy of Sciences, 101(29),

Liu, F., Zaidi, T., Iqbal, K., Grundke-Iqbal, I., & Gong, C. X. (2002). Aberrant glycosylation modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau by protein phosphatase 2A and 5. Neuroscience, 115(3), 829– 837.

Min, S. W., Cho, S. H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W. W., … Gan, L. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy.

100

Von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E.-M., & Mandelkow, E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming beta structure. Proceedings of the

National Academy of Sciences, 97(10), 5129–5134.

Ross, J. L., Shuman, H., Holzbaur, E. L. F., & Goldman, Y. E. (2008). Kinesin and dynein- dynactin at intersecting microtubules: Motor density affects dynein function. Biophysical

Journal, 94(8), 3115–3125.

Stamer, K., Vogel, R., Thies, E., Mandelkow, E., & Mandelkow, E. M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. Journal of Cell Biology, 156(6), 1051–1063.

Ittner, L. M., Ke, Y. D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., … Götz, J. (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3), 387–397.

Amar, F., Sherman, M. A., Rush, T., Larson, M., Boyle, G., Chang, L., … Lesné, S. E. (2017). The amyloid-β oligomer Aβ∗56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Science Signaling, 10(478).

LaPointe, N. E., Morfini, G., Pigino, G., Gaisina, I. N., Kozikowski, A. P., Binder, L. I., & Brady, S. T. (2009). The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity. Journal of Neuroscience Research, 87(2), 440–451.

Von Bergen, M., Friedhoff, P., Biernat, J., Heberle, J., Mandelkow, E.-M., & Mandelkow, E. (2000). Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming beta structure. Proceedings of the

National Academy of Sciences, 97(10), 5129–5134.

Maeda, S., Sahara, N., Saito, Y., Murayama, M., Yoshiike, Y., Kim, H., … Takashima, A. (2007). Granular tau oligomers as intermediates of tau filaments. Biochemistry, 46(12), 3856–3861.

Guzmán-Martinez, L., Farías, G. A., & Maccioni, R. B. (2013). Tau Oligomers as Potential Targets for Alzheimer’s Diagnosis and Novel Drugs. Frontiers in Neurology, 4.

Duyckaerts, C., Bennecib, M., Grignon, Y., Uchihara, T., He, Y., Piette, F., & Hauw, J. J. (1997). Modeling the relation between neurofibrillary tangles and intellectual status.

Neurobiology of Aging, 18(3), 267–273.

Noble, W., Planel, E., Zehr, C., Olm, V., Meyerson, J., Suleman, F., … Duff, K. (2005). Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences, 102(19), 6990–6995.

Wittmann, C. W., Wszolek, M. F., Shulman, J. M., Salvaterra, P. M., Lewis, J., Hutton, M., & Feany, M. B. (2001). Tauopathy in Drosophila: Neurodegeneration without neurofibrillary tangles. Science, 293(5530), 711–714.

101

Andorfer, C. (2005). Cell-Cycle Reentry and Cell Death in Transgenic Mice Expressing Nonmutant Human Tau Isoforms. Journal of Neuroscience, 25(22), 5446–5454.

Morsch, R., Simon, W., & Coleman, P. D. (1999). Neurons may live for decades with neurofibrillary tangles. Journal of Neuropathology and Experimental Neurology, 58(2), 188–197.

O’Leary, J. C., Li, Q., Marinec, P., Blair, L. J., Congdon, E. E., Johnson, A. G., … Dickey, C. A. (2010). Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Molecular Neurodegeneration, 5(1). Clavaguera, F., Hench, J., Lavenir, I., Schweighauser, G., Frank, S., Goedert, M., & Tolnay, M. (2014). Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathologica.

Ahmed, Z., Cooper, J., Murray, T. K., Garn, K., McNaughton, E., Clarke, H., … O’Neill, M. J. (2014). A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: The pattern of spread is determined by connectivity, not proximity. Acta Neuropathologica, 127(5), 667–683.

Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes.

Acta Neuropathologica, 82(4), 239–259.

Hampel, H., Teipel, S. J., Fuchsberger, T., Andreasen, N., Wiltfang, J., Otto, M., … Buerger, K. (2004). Value of CSF beta-amyloid1-42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Molecular Psychiatry, 9(7), 705–710. Kanmert, D., Cantlon, A., Muratore, C. R., Jin, M., O’Malley, T. T., Lee, G., … Walsh, D. M. (2015). C-Terminally Truncated Forms of Tau, But Not Full-Length Tau or Its C- Terminal Fragments, Are Released from Neurons Independently of Cell Death. Journal

of Neuroscience, 35(30), 10851–10865.

Saman, S., Kim, W. H., Raya, M., Visnick, Y., Miro, S., Saman, S., … Hall, G. F. (2012). Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. Journal of Biological

Chemistry, 287(6), 3842–3849.

Asai, H., Ikezu, S., Tsunoda, S., Medalla, M., Luebke, J., Haydar, T., … Ikezu, T. (2015). Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nature

Neuroscience, 18(11), 1584–1593.

Tardivel, M., Bégard, S., Bousset, L., Dujardin, S., Coens, A., Melki, R., … Colin, M. (2016). Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathologica Communications, 4(1), 117.

Chai, X., Dage, J. L., & Citron, M. (2012). Constitutive secretion of tau protein by an unconventional mechanism. Neurobiology of Disease, 48(3), 356–366.

Jucker, M., & Walker, L. C. (2011). Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 70(4), 532–540.

102

Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science.

Dovey, H. F., John, V., Anderson, J. P., Chen, L. Z., De Saint Andrieu, P., Fang, L. Y., … Audia, J. E. (2001). Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. Journal of Neurochemistry, 76(1), 173–181.

De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J. S., … Kopan, R. (1999). A presenilin-1-dependent γ-secretase-like protease mediates release of notch intracellular domain. Nature, 398(6727), 518–522.

Milano, J., McKay, J., Dagenais, C., Foster-Brown, L., Pognan, F., Gadient, R., … Ciaccio, P. J. (2004). Modulation of Notch processing by γ-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicological Sciences, 82(1), 341–358.

Zetterberg, H., Andreasson, U., Hansson, O., Wu, G., Sankaranarayanan, S., Andersson, M. E., … Blennow, K. (2008). Elevated cerebrospinal fluid BACE1 activity in incipient alzheimer disease. Archives of Neurology, 65(8), 1102–1107.

Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., … Shaw, C. E. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science

(New York, N.Y.), 319(5870), 1668–1672.

Gervais, F., Paquette, J., Morissette, C., Krzywkowski, P., Yu, M., Azzi, M., … Tremblay, P. (2007). Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiology of Aging, 28(4), 537–547.

Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., … Pangalos, M. N. (2008). Enhanced clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proceedings of the National Academy of Sciences of the

United States of America, 105(25), 8754–8759.

Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., … Seubert, P. (1999). Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature, 400(6740), 173–177.

Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., … Arendash, G. W. (2000). A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature, 408(December), 982–985.

Bulic, B., Pickhardt, M., Schmidt, B., Mandelkow, E. M., Waldmann, H., & Mandelkow, E. (2009). Development of tau aggregation inhibitors for alzheimer’s disease. Angewandte

Chemie - International Edition.

Wischik, C. M., Staff, R. T., Wischik, D. J., Bentham, P., Murray, A. D., Storey, J. M. D., … Harrington, C. R. (2015). Tau aggregation inhibitor therapy: An exploratory phase 2 study in mild or moderate Alzheimer’s disease. Journal of Alzheimer’s Disease, 44(2), 705–720.

103

Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., & Cech, T. R. (1982). Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell, 31(1), 147–157.

Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., & Altman, S. (1983). The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 35(3 PART 2), 849– 857.

Houser-Scott, F., Xiao, S., Millikin, C. E., Zengel, J. M., Lindahl, L., & Engelke, D. R. (2002). Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proceedings of the National Academy of Sciences of the United States

Documents relatifs