• Aucun résultat trouvé

V ISUAL PROCESSING , AGEING AND DRIVING

4.4 Vision and driving performance

There is existing evidence that poor vision is linked to an increased risk of motor vehicle collisions.118-122 Nevertheless, even if older drivers have poorer vision, they are less likely than younger drivers to be implicated in a motor vehicle collision and this even after adjusting for the distance covered.123 Therefore vision may play a role but can be compensated for by other means.124 In other words, for most drivers reduced vision does not affect their overall driving performance if they are able to compensate for it.125-130 Nevertheless, for visual deficits, legislations restrict driving on the sole base of loss of visual acuity or field of view.131 Depending on countries or states, the legal norms restrict driving for those with a visual acuity under 0.4 decimals (Canada), to 0.6 decimals (Switzerland), with most countries defining the limit at 0.5 decimals. People with a binocular vision are required to have a horizontal field of view of at least 120 degrees in most countries. Some states in the US only require 100 degrees and New Zealand and Switzerland require 140 degrees respectively.131 There is, however, little evidence to support the benefits of screening for optical visual deficits and applying such norms.132, 133 Furthermore, drivers seem to be much more affected by visual field loss and increased sensitivity to glare, than reduced visual acuity or contrast sensitivity.124, 134, 135 Therefore the most important

neural vision factors to investigate in relation to driving seem to be those related to night vision, motion detection and visual processing speed.

4.4.1 Night vision

Older adults report visual difficulties in poor illumination consistently with poor scotopic contrast sensitivity.136-138 Reduced night vision usually leads drivers to restrict themselves from driving at night or in dark places.139, 140 However, poor night vision remains a possible cause of increased involvement in motor vehicle collisions at night.141 This has been shown to be related to reduced mesopic visual performance with age.142

4.4.2 Motion detection

When driving, motion detection is primordial. It provides information on the speed of one’s own vehicle or other moving objects, on where the vehicle is heading and the direction of other moving objects, and makes it possible to predict future position of objects in time, thereby detecting and preventing collisions.54, 55, 143 Drivers who had difficulties in motion detection tasks were also those whose on-road driving performance were worse,144-146 and had more difficulties in detecting pedestrians on the footpath.143, 147

4.4.3 Processing speed

Older drivers with reduced visual processing speed showed an increased risk of being involved in a motor vehicle collision135, 148-153 and showed worse performances on simulator driving.154-156 Green et al.157 observed a 1.42 fold increase of risk of motor vehicle collision for those with slower visual processing time. Most interestingly, this risk increased to 2.41 for drivers combining slower visual processing speed and hearing loss. Studies have also shown slowed visual processing to be related to motor vehicle collisions, even in the absence of optical defects that would impair visual acuity, contrast sensitivity or visual fields.135, 152, 158 Older drivers with impaired visual processing were 15 times more likely than others to be involved in intersection accidents.148

Reduced visual processing speed has been shown to be linked to reduced distances driven, reduced number of places driven to, reduced number of trips and increased numbers of days without driving a vehicle (Table 1).124

Table 1: Self-restriction of driving related to visual defect observed on a weekly base. * Weekly distance driven was averaged from the estimated yearly distance. Data for the table was drawn from Sandlin et al. 2013124 publication for the Alabama Ophthalmology Study. This study evaluated visual parameters on a sample of 2,000 drivers aged 70 years or more.

mean SD mean SD mean SD mean SD

UFOV - divided attention

driven to Number of trips Days without driving n

PART  4  –Visual  processing,  ageing,  and  driving  

When reviewing existing measures of cortical function,159, 160 processing speed was one of the best indicators of motor vehicle collision, reduced performance during on-road evaluations and lapses occurring on the driving simulator.155 However, older drivers can compensate for their loss; therefore, visual processing speed remains a poor determinant for predicting future accidents.161

4.5 Conclusion

Cerebral decline not only affects higher order neural networks, but it also affects sensory and visual processing. This is due to retinal changes and to the cortical glutamate/GABA equilibrium shift occurring with age.162, 163 Reduced processing speed affects behaviour during tasks with high spatial and temporal demands such as driving. Even if controversies exist regarding screening for optical defects in older drivers,132, 133 to help reduce motor vehicle collisions there is increasing evidence of the benefits of both screening for reduced processing speed and providing computer-based training that improves visual processing. 164, 165 Recent studies have not only shown reduced processing speed to be reversible,166 but also that in normal ageing, individualised cognitive training programs could help recover and maintain cortical functions that are necessary to maintain mobility.167, 168

4.6 References

1.   Felleman  DJ,  Van  Essen  DC.  Distributed  hierarchical  processing  in  the   primate  cerebral  cortex.  Cereb  Cortex.  1991;1(1):1-­‐47.  

2.   Owsley  C.  Aging  and  vision.  Vision  Res.  2011;51(13):1610-­‐22.  

3.   Owsley  C.  Visual  processing  speed.  Vision  Research.  2013;90(0):52-­‐6.  

4.   Prasad  S,  Galetta  SL.  Anatomy  and  physiology  of  the  afferent  visual   system.  Handbook  of  clinical  neurology.  2011;102:3-­‐19.  

5.   Livingstone  M,  Hubel  D.  Segregation  of  form,  color,  movement,  and  depth:  

anatomy,  physiology,  and  perception.  Science.  1988;240(4853):740-­‐9.  

6.   Hattar  S,  Liao  HW,  Takao  M,  Berson  DM,  Yau  KW.  Melanopsin-­‐containing   retinal  ganglion  cells:  architecture,  projections,  and  intrinsic  

photosensitivity.  Science.  2002;295(5557):1065-­‐70.  

7.   Guillery  RW,  Sherman  SM.  Thalamic  relay  functions  and  their  role  in   corticocortical  communication:  generalizations  from  the  visual  system.  

Neuron.  2002;33(2):163-­‐75.  

8.   McAlonan  K,  Cavanaugh  J,  Wurtz  RH.  Guarding  the  gateway  to  cortex  with   attention  in  visual  thalamus.  Nature.  2008;456(7220):391-­‐4.  

9.   Sherman  SM.  The  thalamus  is  more  than  just  a  relay.  Curr  Opin  Neurobiol.  

2007;17(4):417-­‐22.  

10.   Purushothaman  G,  Marion  R,  Li  K,  Casagrande  VA.  Gating  and  control  of   primary  visual  cortex  by  pulvinar.  Nat  Neurosci.  2012;15(6):905-­‐12.  

11.   Hegde  J,  Felleman  DJ.  Reappraising  the  functional  implications  of  the   primate  visual  anatomical  hierarchy.  The  Neuroscientist  :  a  review   journal  bringing  neurobiology,  neurology  and  psychiatry.  

2007;13(5):416-­‐21.  

12.   Bullier  J,  Hupe  JM,  James  AC,  Girard  P.  The  role  of  feedback  connections  in   shaping  the  responses  of  visual  cortical  neurons.  Prog  Brain  Res.  

2001;134:193-­‐204.  

13.   Sherman  SM.  Thalamocortical  interactions.  Curr  Opin  Neurobiol.  

14.   Gilbert  CD,  Li  W.  Top-­‐down  influences  on  visual  processing.  Nat  Rev   contrast  sensitivity.  Acta  Ophthalmol  (Copenh).  1979;57(4):679-­‐90.  

18.   Kline  DW,  Schieber  F,  Abusamra  LC,  Coyne  AC.  Age,  the  eye,  and  the  visual   channels:  contrast  sensitivity  and  response  speed.  J  Gerontol.  

1983;38(2):211-­‐6.  

19.   Owsley  C,  Sekuler  R,  Siemsen  D.  Contrast  sensitivity  throughout   adulthood.  Vision  Res.  1983;23(7):689-­‐99.  

20.   Tulunay-­‐Keesey  U,  Ver  Hoeve  JN,  Terkla-­‐McGrane  C.  Threshold  and   suprathreshold  spatiotemporal  response  throughout  adulthood.  Journal   of  the  Optical  Society  of  America.  A,  Optics  and  image  science.   Optics  and  image  science.  1988;5(12):2181-­‐90.  

24.   Habak  C,  Faubert  J.  Larger  effect  of  aging  on  the  perception  of  higher-­‐

order  stimuli.  Vision  Res.  2000;40(8):943-­‐50.  

25.   Elliott  SL,  Hardy  JL,  Webster  MA,  Werner  JS.  Aging  and  blur  adaptation.  J   Vis.  2007;7(6):8.  

26.   Elliott  DB.  Contrast  sensitivity  decline  with  ageing:  a  neural  or  optical   phenomenon?  Ophthalmic  Physiol  Opt.  1987;7(4):415-­‐9.  

27.   Burton  KB,  Owsley  C,  Sloane  ME.  Aging  and  neural  spatial  contrast   sensitivity:  photopic  vision.  Vision  Res.  1993;33(7):939-­‐46.  

28.   Gao  H,  Hollyfield  JG.  Aging  of  the  human  retina.  Differential  loss  of   neurons  and  retinal  pigment  epithelial  cells.  Invest  Ophthalmol  Vis  Sci.  

1992;33(1):1-­‐17.  

29.   Curcio  CA,  Millican  CL,  Allen  KA,  Kalina  RE.  Aging  of  the  human   photoreceptor  mosaic:  evidence  for  selective  vulnerability  of  rods  in   central  retina.  Invest  Ophthalmol  Vis  Sci.  1993;34(12):3278-­‐96.  

30.   Malania  M,  Devinck  F,  Knoblauch  K,  Delahunt  PB,  Hardy  JL,  Werner  JS.  

Senescent  changes  in  photopic  spatial  summation.  J  Vis.  2011;11(10).  

31.   Uemura  K,  Yamada  M,  Nagai  K,  Mori  S,  Ichihashi  N.  Reaction  time  for   peripheral  visual  field  increases  during  stepping  task  in  older  adults.  

Aging  clinical  and  experimental  research.  2012;24(4):365-­‐9.  

32.   Kim  N-­‐G.  The  Effect  of  Retinal  Eccentricity  on  Perceiving  Collision   Impacts.  Ecological  Psychology.  2013;25(4):327-­‐56.  

33.   Roudaia  E,  Farber  LE,  Bennett  PJ,  Sekuler  AB.  The  effects  of  aging  on   contour  discrimination  in  clutter.  Vision  Res.  2011;51(9):1022-­‐32.  

34.   Roudaia  E,  Bennett  PJ,  Sekuler  AB.  The  effect  of  aging  on  contour   integration.  Vision  Res.  2008;48(28):2767-­‐74.  

PART  4  –Visual  processing,  ageing,  and  driving  

35.   Betts  LR,  Sekuler  AB,  Bennett  PJ.  The  effects  of  aging  on  orientation   discrimination.  Vision  Res.  2007;47(13):1769-­‐80.  

36.   Faubert  J.  Visual  perception  and  aging.  Can  J  Exp  Psychol.  

2002;56(3):164-­‐76.  

37.   Sloane  ME,  Owsley  C,  Alvarez  SL.  Aging,  senile  miosis  and  spatial  contrast   sensitivity  at  low  luminance.  Vision  Res.  1988;28(11):1235-­‐46.  

38.   Schefrin  BE,  Tregear  SJ,  Harvey  LO,  Jr.,  Werner  JS.  Senescent  changes  in   scotopic  contrast  sensitivity.  Vision  Res.  1999;39(22):3728-­‐36.  

39.   Clark  CL,  Hardy  JL,  Volbrecht  VJ,  Werner  JS.  Scotopic  spatiotemporal   sensitivity  differences  between  young  and  old  adults.  Ophthalmic  Physiol   Opt.  2010;30(4):339-­‐50.  

40.   Schefrin  BE,  Hauser  M,  Werner  JS.  Evidence  against  age-­‐related   enlargements  of  ganglion  cell  receptive  field  centers  under  scotopic   conditions.  Vision  Res.  2004;44(4):423-­‐8.  

41.   Schefrin  BE,  Bieber  ML,  McLean  R,  Werner  JS.  The  area  of  complete  

mediated  dark  adaptation  impairment  in  age-­‐related  maculopathy.  

Ophthalmology.  2007;114(9):1728-­‐35.  

45.   Owsley  C,  McGwin  G,  Jackson  GR,  Heimburger  DC,  Piyathilake  CJ,  Klein  R,   et  al.  Effect  of  short-­‐term,  high-­‐dose  retinol  on  dark  adaptation  in  aging   and  early  age-­‐related  maculopathy.  Invest  Ophthalmol  Vis  Sci.  

2006;47(4):1310-­‐8.  

dimensional  surfaces  from  optic  flow.  Psychol  Aging.  1995;10(4):650-­‐8.  

49.   Atchley  P,  Andersen  GJ.  The  effect  of  age,  retinal  eccentricity,  and  speed   on  the  detection  of  optic  flow  components.  Psychol  Aging.  

1998;13(2):297-­‐308.  

50.   Snowden  RJ,  Kavanagh  E.  Motion  perception  in  the  ageing  visual  system:  

minimum  motion,  motion  coherence,  and  speed  discrimination   thresholds.  Perception.  2006;35(1):9-­‐24.  

51.   Tran  DB,  Silverman  SE,  Zimmerman  K,  Feldon  SE.  Age-­‐related  

deterioration  of  motion  perception  and  detection.  Graefe's  archive  for   clinical  and  experimental  ophthalmology  =  Albrecht  von  Graefes  Archiv   fur  klinische  und  experimentelle  Ophthalmologie.  1998;236(4):269-­‐73.  

52.   Norman  JF,  Ross  HE,  Hawkes  LM,  Long  JR.  Aging  and  the  perception  of   speed.  Perception.  2003;32(1):85-­‐96.  

53.   Raghuram  A,  Lakshminarayanan  V,  Khanna  R.  Psychophysical  estimation   of  speed  discrimination.  II.  Aging  effects.  Journal  of  the  Optical  Society  of   America.  A,  Optics,  image  science,  and  vision.  2005;22(10):2269-­‐80.  

54.   Andersen  GJ,  Enriquez  A.  Aging  and  the  detection  of  observer  and  moving   object  collisions.  Psychol  Aging.  2006;21(1):74-­‐85.  

55.   Bian  Z,  Guindon  AH,  Andersen  GJ.  Aging  and  detection  of  collision  events   biological  motion.  Psychol  Aging.  2004;19(1):219-­‐25.  

58.   Blake  R,  Rizzo  M,  McEvoy  S.  Aging  and  perception  of  visual  form  from   temporal  structure.  Psychol  Aging.  2008;23(1):181-­‐9.  

59.   Norman  JF,  Bartholomew  AN,  Burton  CL.  Aging  preserves  the  ability  to   perceive  3D  object  shape  from  static  but  not  deforming  boundary   contours.  Acta  psychologica.  2008;129(1):198-­‐207.  

60.   Billino  J,  Bremmer  F,  Gegenfurtner  KR.  Differential  aging  of  motion   processing  mechanisms:  evidence  against  general  perceptual  decline.  

Vision  Res.  2008;48(10):1254-­‐61.  

61.   Pilz  KS,  Bennett  PJ,  Sekuler  AB.  Effects  of  aging  on  biological  motion   discrimination.  Vision  Res.  2010;50(2):211-­‐9.  

62.   Hutchinson  CV,  Arena  A,  Allen  HA,  Ledgeway  T.  Psychophysical  correlates   of  global  motion  processing  in  the  aging  visual  system:  a  critical  review.  

Neurosci  Biobehav  Rev.  2012;36(4):1266-­‐72.  

63.   Jung  EL,  Zadbood  A,  Lee  SH,  Tomarken  AJ,  Blake  R.  Individual  differences   in  the  perception  of  biological  motion  and  fragmented  figures  are  not   correlated.  Frontiers  in  psychology.  2013;4:795.  

64.   Bennett  PJ,  Sekuler  R,  Sekuler  AB.  The  effects  of  aging  on  motion  

detection  and  direction  identification.  Vision  Res.  2007;47(6):799-­‐809.  

65.   Andersen  GJ.  Aging  and  Vision:  Changes  in  Function  and  Performance   from  Optics  to  Perception.  Wiley  interdisciplinary  reviews.  Cognitive   science.  2012;3(3):403-­‐10.  

surround  antagonism  in  visual  motion  processing.  Neuron.  

2005;45(3):361-­‐6.  

70.   Lehmann  K,  Steinecke  A,  Bolz  J.  GABA  through  the  ages:  regulation  of   cortical  function  and  plasticity  by  inhibitory  interneurons.  Neural   plasticity.  2012;2012:892784.  

PART  4  –Visual  processing,  ageing,  and  driving  

71.   Leventhal  AG,  Wang  Y,  Pu  M,  Zhou  Y,  Ma  Y.  GABA  and  its  agonists   improved  visual  cortical  function  in  senescent  monkeys.  Science.  

2003;300(5620):812-­‐5.  

72.   Birren  JE.  Age  changes  in  speed  of  behavior:Its  central  nature  and   physiological  correlates.  In:  Welford  AT,  Birren  JE,  eds.  Behavior,  aging,   and  the  nervous  system.  Springfield:  Charles  C.  Thomas;  1965.  

73.   Salthouse  TA,  Berish  DE.  Correlates  of  within-­‐person  (across-­‐occasion)   variability  in  reaction  time.  Neuropsychology.  2005;19(1):77-­‐87.  

74.   Salthouse  TA.  Selective  review  of  cognitive  aging.  J  Int  Neuropsychol  Soc.  

2010;16(5):754-­‐60.  

75.   Salthouse  TA.  Relations  between  cognitive  abilities  and  measures  of   executive  functioning.  Neuropsychology.  2005;19(4):532-­‐45.  

76.   Salthouse  TA,  Meinz  EJ.  Aging,  inhibition,  working  memory,  and  speed.  J   Gerontol  B  Psychol  Sci  Soc  Sci.  1995;50(6):P297-­‐306.  

77.   Salthouse  TA,  Coon  VE.  Influence  of  task-­‐specific  processing  speed  on  age   differences  in  memory.  J  Gerontol.  1993;48(5):P245-­‐55.  

78.   Salthouse  TA.  Aging  associations:  influence  of  speed  on  adult  age   differences  in  associative  learning.  Journal  of  experimental  psychology.  

Learning,  memory,  and  cognition.  1994;20(6):1486-­‐503.  

79.   Salthouse  TA.  Selective  influences  of  age  and  speed  on  associative   memory.  The  American  journal  of  psychology.  1995;108(3):381-­‐96.  

80.   Salthouse  TA.  Speed  and  knowledge  as  determinants  of  adult  age   differences  in  verbal  tasks.  J  Gerontol.  1993;48(1):P29-­‐36.  

81.   Birren  JE,  Fisher  LM.  Aging  and  slowing  of  behavior:  consequences  for   cognition  and  survival.  Nebraska  Symposium  on  Motivation.  Nebraska   Symposium  on  Motivation.  1991;39:1-­‐37.  

82.   Salthouse  TA.  Constraints  on  theories  of  cognitive  aging.  Psychonomic   bulletin  &  review.  1996;3(3):287-­‐99.  

83.   Salthouse  TA.  The  processing-­‐speed  theory  of  adult  age  differences  in   cognition.  Psychol  Rev.  1996;103(3):403-­‐28.  

84.   Salthouse  TA.  Aging  and  measures  of  processing  speed.  Biological   psychology.  2000;54(1-­‐3):35-­‐54.  

85.   La  Fleur  CG,  Salthouse  TA.  Out  of  sight,  out  of  mind?  Relations  between   visual  acuity  and  cognition.  Psychonomic  bulletin  &  review.  2014.  

86.   Owsley  C,  McGwin  G,  Jr.,  Searcey  K.  A  population-­‐based  examination  of  the   visual  and  ophthalmological  characteristics  of  licensed  drivers  aged  70   and  older.  J  Gerontol  A  Biol  Sci  Med  Sci.  2013;68(5):567-­‐73.  

87.   Ratcliff  R,  Spieler  D,  McKoon  G.  Explicitly  modeling  the  effects  of  aging  on   response  time.  Psychonomic  bulletin  &  review.  2000;7(1):1-­‐25.  

88.   Ratcliff  R,  Thapar  A,  McKoon  G.  The  effects  of  aging  on  reaction  time  in  a   signal  detection  task.  Psychol  Aging.  2001;16(2):323-­‐41.  

89.   Misiak  H.  Age  and  sex  differences  in  critical  flicker  frequency.  Journal  of  

flicker  and  light-­‐sense  perimetry.  Invest  Ophthalmol  Vis  Sci.   Ophthalmol  Vis  Sci.  1993;34(11):3096-­‐102.  

94.   Anderson  RS,  McDowell  DR.  Peripheral  resolution  using  stationary  and   flickering  gratings:  the  effects  of  age.  Current  eye  research.  

1997;16(12):1209-­‐14.  

95.   Gerth  C,  Sutter  EE,  Werner  JS.  mfERG  response  dynamics  of  the  aging   retina.  Invest  Ophthalmol  Vis  Sci.  2003;44(10):4443-­‐50.  

96.   Cerella  J.  Age-­‐related  decline  in  extrafoveal  letter  perception.  J  Gerontol.   behavior.  Medical  engineering  &  physics.  2014;36(4):490-­‐5.  

100.   Grainger  JE,  Scharnowski  F,  Schmidt  T,  Herzog  MH.  Two  primes  priming:   course  of  object  formation  underlies  capacity  limits  in  visual  cognition.  

Atten  Percept  Psychophys.  2013;75(5):921-­‐33.  

104.   Walsh  DA,  Till  RE,  Williams  MV.  Age  differences  in  peripheral  perceptual   processing:  a  monoptic  backward  masking  investigation.  J  Exp  Psychol   Hum  Percept  Perform.  1978;4(2):232-­‐43.  

105.   Roinishvili  M,  Chkonia  E,  Stroux  A,  Brand  A,  Herzog  MH.  Combining   vernier  acuity  and  visual  backward  masking  as  a  sensitive  test  for  visual   temporal  deficits  in  aging  research.  Vision  Research.  2011;51(4):417-­‐23.  

106.   Bloomfield  JR.  Visual  search  in  complex  fields:  size  differences  between   target  disc  and  surrounding  discs.  Hum  Factors.  1972;14(2):139-­‐48.  

107.   Ikeda  M,  Takeuchi  T.  Influence  of  foveal  load  on  the  functional  visual  field.  

Perception  &  Psychophysics.  1975;18(4):255-­‐60.  

108.   Bergen  JR,  Julesz  B.  Parallel  versus  serial  processing  in  rapid  pattern   discrimination.  Nature.  1983;303(5919):696-­‐8.  

109.   Cheng  X,  Yang  Q,  Han  Y,  Ding  X,  Fan  Z.  Capacity  limit  of  simultaneous   temporal  processing:  how  many  concurrent  'clocks'  in  vision?  PLoS  One.  

2014;9(3):e91797.  

PART  4  –Visual  processing,  ageing,  and  driving  

110.   Huang  KC,  Chiang  SY,  Chen  CF.  Icon  flickering,  flicker  rate,  and  color   combinations  of  an  icon's  symbol/background  in  visual  search   performance.  Percept  Mot  Skills.  2008;106(1):117-­‐27.  

111.   Drury  CG,  Clement  MR.  The  effect  of  area,  density,  and  number  of   background  characters  on  visual  search.  Hum  Factors.  1978;20(5):597-­‐

602.  

112.   Theeuwes  J.  Visual  selective  attention:  a  theoretical  analysis.  Acta   psychologica.  1993;83(2):93-­‐154.  

113.   Rabbitt  P.  An  Age-­‐Decrement  in  the  Ability  to  Ignore  Irrelevant   Information.  J  Gerontol.  1965;20:233-­‐8.  

114.   Scialfa  CT,  Kline  DW,  Lyman  BJ.  Age  differences  in  target  identification  as  

a  population-­‐based  examination.  Acta  Ophthalmol.  2013;92(3):e207-­‐e12.  

125.   De  Raedt  R,  Ponjaert-­‐Kristoffersen  I.  Can  strategic  and  tactical   compensation  reduce  crash  risk  in  older  drivers?  Age  and  Ageing.  

2000;29(6):517-­‐21.  

126.   Raitanen  T,  Törmäkangas  T,  Mollenkopf  H,  Marcellini  F.  Why  do  older   drivers  reduce  driving?  Findings  from  three  European  countries.  

Transportation  Research  Part  F:  Traffic  Psychology  and  Behaviour.  

2003;6(2):81-­‐95.  

127.   West  CG,  Gildengorin  G,  Haegerstrom-­‐Portnoy  G,  Lott  LA,  Schneck  ME,   Brabyn  JA.  Vision  and  driving  self-­‐restriction  in  older  adults.  J  Am  Geriatr   Soc.  2003;51(10):1348-­‐55.  

128.   Kooijman  A,  Brouwer  W,  Coeckelbergh  T,  Tant  M,  Cornelissen  F,  

Bredewoud  R,  et  al.  Compensatory  viewing  training  improves  practical   fitness  to  drive  of  subjects  with  impaired  vision.  Visual  Impairment  

Characteristics  of  older  drivers  who  adopt  self-­‐regulatory  driving   behaviours.  Transportation  Research  Part  F:  Traffic  Psychology  and   Behaviour.  2006;9(5):363-­‐73.  

131.   Bohensky  M,  Charlton  J,  Odell  M,  Keeffe  J.  Implications  of  vision  testing  for   older  driver  licensing.  Traffic  Inj  Prev.  2008;9(4):304-­‐13.  

132.   Chou  R,  Dana  T,  Bougatsos  C.  Screening  older  adults  for  impaired  visual   acuity:  a  review  of  the  evidence  for  the  U.S.  Preventive  Services  Task   Force.  Ann  Intern  Med.  2009;151(1):44-­‐58,  W11-­‐20.  

133.   Desapriya  E,  Wijeratne  H,  Subzwari  S,  Babul-­‐Wellar  S,  Turcotte  K,  Rajabali   F,  et  al.  Vision  screening  of  older  drivers  for  preventing  road  traffic  

injuries  and  fatalities.  Cochrane  Database  Syst  Rev.  2011(3):CD006252.  

134.   Freeman  EE,  Munoz  B,  Turano  KA,  West  SK.  Measures  of  visual  function   Ophthalmol  Vis  Sci.  2007;48(4):1483-­‐91.  

136.   Valbuena  M,  Bandeen-­‐Roche  K,  Rubin  GS,  Munoz  B,  West  SK.  Self-­‐reported   assessment  of  visual  function  in  a  population-­‐based  study:  the  SEE  

project.  Salisbury  Eye  Evaluation.  Invest  Ophthalmol  Vis  Sci.  

1999;40(2):280-­‐8.  

137.   Scilley  K,  Jackson  GR,  Cideciyan  AV,  Maguire  MG,  Jacobson  SG,  Owsley  C.  

Early  age-­‐related  maculopathy  and  self-­‐reported  visual  difficulty  in  daily   life.  Ophthalmology.  2002;109(7):1235-­‐42.  

138.   Owsley  C,  McGwin  G,  Jr.,  Scilley  K,  Kallies  K.  Development  of  a  

questionnaire  to  assess  vision  problems  under  low  luminance  in  age-­‐

related  maculopathy.  Invest  Ophthalmol  Vis  Sci.  2006;47(2):528-­‐35.  

139.   Ball  K,  Owsley  C,  Stalvey  B,  Roenker  DL,  Sloane  ME,  Graves  M.  Driving   avoidance  and  functional  impairment  in  older  drivers.  Accid  Anal  Prev.  

1998;30(3):313-­‐22.  

140.   Brabyn  JA,  Schneck  ME,  Lott  LA,  Haegerstrom-­‐Portnoy  G.  Night  driving   self-­‐restriction:  vision  function  and  gender  differences.  Optom  Vis  Sci.  

2005;82(8):755-­‐64.  

PART  4  –Visual  processing,  ageing,  and  driving   Ophthalmol  Vis  Sci.  1993;34(11):3110-­‐23.  

150.   Myers  RS,  Ball  KK,  Kalina  TD,  Roth  DL,  Goode  KT.  Relation  of  useful  field   of  view  and  other  screening  tests  to  on-­‐road  driving  performance.  Percept   Mot  Skills.  2000;91(1):279-­‐90.  

151.   Hoffman  L,  McDowd  JM,  Atchley  P,  Dubinsky  R.  The  role  of  visual  

attention  in  predicting  driving  impairment  in  older  adults.  Psychol  Aging.  

2005;20(4):610-­‐22.   on  Functional  Visual-­‐Fields  and  Driving  Performance.  Clinical  Vision   Sciences.  1993;8(6):563-­‐75.  

155.   Clay  OJ,  Wadley  VG,  Edwards  JD,  Roth  DL,  Roenker  DL,  Ball  KK.  

Cumulative  meta-­‐analysis  of  the  relationship  between  useful  field  of  view   and  driving  performance  in  older  adults:  current  and  future  implications.  

Optom  Vis  Sci.  2005;82(8):724-­‐31.  

156.   Leversen  JSR,  Hopkins  B,  Sigmundsson  H.  Ageing  and  driving:  Examining   the  effects  of  visual  processing  demands.  Transportation  Research  Part  F:  

Traffic  Psychology  and  Behaviour.  2013;17(0):1-­‐4.  

157.   Green  KA,  McGwin  G,  Jr.,  Owsley  C.  Associations  between  visual,  hearing,   and  dual  sensory  impairments  and  history  of  motor  vehicle  collision   involvement  of  older  drivers.  J  Am  Geriatr  Soc.  2013;61(2):252-­‐7.  

158.   Owsley  C,  Ball  K,  McGwin  G,  Jr.,  Sloane  ME,  Roenker  DL,  White  MF,  et  al.  

Visual  processing  impairment  and  risk  of  motor  vehicle  crash  among   older  adults.  JAMA.  1998;279(14):1083-­‐8.  

159.   Marshall  SC,  Molnar  F,  Man-­‐Son-­‐Hing  M,  Blair  R,  Brosseau  L,  Finestone   HM,  et  al.  Predictors  of  driving  ability  following  stroke:  a  systematic   review.  Top  Stroke  Rehabil.  2007;14(1):98-­‐114.  

160.   Mathias  JL,  Lucas  LK.  Cognitive  predictors  of  unsafe  driving  in  older   drivers:  a  meta-­‐analysis.  Int  Psychogeriatr.  2009;21(4):637-­‐53.  

161.   Andysz  A,  Merecz  D.  Visual  abilities  of  older  drivers-­‐-­‐review  of  driving   simulator  studies.  Medycyna  pracy.  2012;63(6):677-­‐87.  

162.   Allard  R,  Renaud  J,  Molinatti  S,  Faubert  J.  Contrast  sensitivity,  healthy   aging  and  noise.  Vision  Research.  2013;92(0):47-­‐52.  

163.   Sandberg  K,  Blicher  JU,  Dong  MY,  Rees  G,  Near  J,  Kanai  R.  Occipital  GABA   correlates  with  cognitive  failures  in  daily  life.  Neuroimage.  

2014;87(0):55-­‐60.  

164.   Ball  K,  Edwards  JD,  Ross  LA,  McGwin  G,  Jr.  Cognitive  training  decreases   motor  vehicle  collision  involvement  of  older  drivers.  J  Am  Geriatr  Soc.  

2010;58(11):2107-­‐13.  

165.   Lin  JS,  O'Connor  E,  Rossom  RC,  Perdue  LA,  Eckstrom  E.  Screening  for   cognitive  impairment  in  older  adults:  A  systematic  review  for  the  U.S.  

Preventive  Services  Task  Force.  Ann  Intern  Med.  2013;159(9):601-­‐12.  

166.   Bozoki  A,  Radovanovic  M,  Winn  B,  Heeter  C,  Anthony  JC.  Effects  of  a   computer-­‐based  cognitive  exercise  program  on  age-­‐related  cognitive   decline.  Archives  of  gerontology  and  geriatrics.  2013;57(1):1-­‐7.  

167.   Edwards  JD,  Lunsman  M,  Perkins  M,  Rebok  GW,  Roth  DL.  Driving  

cessation  and  health  trajectories  in  older  adults.  J  Gerontol  A  Biol  Sci  Med   Sci.  2009;64(12):1290-­‐5.  

168.   Choi  M,  Lohman  MC,  Mezuk  B.  Trajectories  of  cognitive  decline  by  driving   mobility:  evidence  from  the  Health  and  Retirement  Study.  Int  J  Geriatr   Psychiatry.  2013.  

PART  4  –Visual  processing,  ageing,  and  driving  

PART 5 – Attention and ageing

 

P

ART

5

   

ATTENTION AND AGEING

Summary

Attention is a broad term that corresponds to multiple neural modulation processes that either implement input gain or normalise an output signal. Sensory signal processing is seen as a hierarchical process that is modulated by parallel non-linear

Attention is a broad term that corresponds to multiple neural modulation processes that either implement input gain or normalise an output signal. Sensory signal processing is seen as a hierarchical process that is modulated by parallel non-linear