• Aucun résultat trouvé

BLUE GREEN RED BLACK PINK

5.6 Attention and ageing

5.6 Attention and ageing

Most studies investigating age-related decline in attention rely on alterations in processing speed. Reduced processing speed accounts for most other age-related changes in working memory, episodic memory, reasoning and spatial ability (Figure 5).72

Figure 5: Interrelations among age and five cognitive construct. Speed = processing speed;

PM/WM = primary and working memory; EM = episodic memory; Gf = general fluid intelligence; Reas = reasoning; Space = spatial ability. Numbers correspond to each factor’s weight in the structural equation model. When two numbers are represented, the left one corresponds to adults under the age of 50 years and the right one to those of 50 years and over.

Figure from Verhaeghen & Salthouse (1997).72

However, the relation between speed processing and cognitive ability is not as straightforward as it could appear.73 Age is believed to reduce inhibition, whereas it does not affect automatic processes.74 Given processing speed is affected differently, depending on engaged cognitive functions, there are reasons to believe age mainly affects the way sensory processing is modulated by higher order processes. Older adults have been shown to rely more on “top-down” processes to modulate neural activity in the primary visual cortex than do younger adults.75, 76 This could also explain the lack of consistency in studies on sustained attention. Indeed, for studies that rely on goal-oriented control (i.e. go/no-go task), older adults have even been shown to have improved sustained attention compared to younger adults.77 In the past two decades, studies have concentrated their efforts on understanding effects of age on measures that are most affected: those related to attention shift, dual tasking, managing distractors and noticing changes.78

5.6.1 Attention shift

Switch cost revealed a U-shaped association to age79 with a progressive reduced performance from the age of 18 onwards.80 Older adults require more time than younger ones (266 ms vs. 133 ms) to implement input gain for specific spatial locations.81 This has been supported by results on the trail making test (TMT) and the attention network test (ANT).

- Trail making test -

The trail making test (TMT) is a neuropsychological paper-form test that was initially developed by the US army during the second world war to evaluate overall performance in new recruits.82 The first part (TMT-A) is a visual search task, and the second is a visual search task that includes goal switching (TMT-B). Studies have

neuropsychological tests in predicting driving difficulties.83-85 Those with a TMT-B duration ≥ 187 seconds saw their risk of occasioning a motor vehicle collision increase by 94%.86 Classen et al.87 used an arbitrary cut-off point set at TMT-B>180 sec and found an OR=2.5 of failing an on-road test. For motor-vehicle collisions, Ball et al.88 found an OR of 1.21 and Marottoli et al.89 found an HR of 1.42. Like most neuropsychological tests, this represents a weak association between on-road evaluations and TMT performance values (sensitivity 50%, specificity 88%).84, 90, 91 - Attention network test -

Age-related increase in response time during the attention network test (ANT) have been shown not to be due to differences in controlled conditions related to alertness, orientation or executive attention as described by Posner.92, 93 This is probably due to the fact that spatial localisation is preserved with ageing and that the informative cue on the location of a target is given prior to display. Therefore, the attention shift in the attention neural network task is only affected by age if the stimulus onset asynchrony between the informative cue and the target cue is short enough for the older adult not to be able to process it.94 Older drivers nevertheless required 200 ms more than younger adults to perform the task independently of the condition. The overall mean duration has been shown to be associated with age and driving performance (Figure 6).

Figure 6: Overall mean performance during attention network test and association with age (A) and driving performance (B). ANT = attention network test; R2 = coefficient of determination; MB road test = Manitoba road test. Modified from Weaver et al. (2009).93 These “outstanding” results must be interpreted with caution, as they have never been reproduced.

5.6.3 Dual tasking

When performing two tasks simultaneously, older adults require more time.95 This has been shown to be related to reduced capacities to use similar networks within a short time frame at the response-selection stage.96 Therefore, the time span is increased for response retrieval of secondary tasks compared to prioritised ones.97 This effect seems to be task dependant, as higher demanding tasks show reduced age-related differences.98 A major difference in older adults is also their difficulty to automatise novel tasks and thereby prevent them from rapidly bypassing the bottleneck effect of

PART 5 – Attention and ageing

 

dual tasking.99 Given sufficient training, older adults will perform just as well as younger ones (Figure 6).100, 101

Figure 7: Dual task performances over multiple sessions. Mean age for older adults was of 63.3 years (n=10), and of 22.7 years for younger adults (n=10). Modified from Strobach et al. (2012).100

Dividing attention has been shown to reduce driving performance.102 Age-related difficulties during dual tasking has been extensively studied in the context of driving through the second subtask of the useful field of view.103, 104

- UFOV -

One of the most widely used visual processing speed tests that investigates dual tasking or “divided attention” is the second subset of the useful field of view test.105,

106 The tasks consist of measuring the threshold duration needed to correctly identify an appearing vehicle in the centre of a screen and the location of a simultaneously appearing vehicle at a 10° eccentric angle from the centre. This task therefore measures the ability to rapidly detect and localise targets. It investigates disengagement from a previous goal and visual search. The first version measuring performances at different angles of eccentricity107-110 was later abandoned for a fixed angle. Using structural equation modelling, Hoffman et al.111 showed that “divided attention” contributed to a latent trait (ρ=0.67) they called “attention deficits”, which in turn was highly correlated to driving impairment on a driving simulator (ρ=0.66).

The association with on-road performance was high for older patients with cognitive impairment (ρ=0.46) but absent for normal older adults (ρ=-0.15).112 So even if the actual version of the useful field of view is widely used in screening procedures, there is little evidence of its ability to correctly identify those with driving difficulties.

5.6.4 Managing distractors78

Managing distractors has been extensively studied in the context of visual search.113 An age-related increase in duration for visual search tasks has been documented since the 60s.114 The age-related loss, however, seems above all to concern complex tasks in which targets with common traits need to be discriminated (inhibition of irrelevant stimuli).115, 116 In consequence, for older adults, increasing the number of targets without redundancy increases the difference of performance compared to younger adults. Adults therefore seem to have more difficulties in distinguishing relevant from irrelevant information.117, 118 Knowing what is to come and where it will appear has older adults perform just as well as younger adults even in the presence of distractors.118 Older adults even perform better than younger adults when being distracted by perceptual interference caused by items flanked on either sides of a

target (filtering tasks).119 This benefit is nevertheless only present when the target location is known in advance.120, 121

Sorting relevant from irrelevant information while driving seems essential. While older drivers might be less distracted by irrelevant distractors, they might also require more time to identify objects that would require them to adapt their behaviour. Age-related decreased ability to inhibit distractors and its relationship to driving performance has mainly been investigated through the third subtask of the useful field of view test.106 “Selective attention” was also shown to be associated with “attention deficit” (ρ=0.72);111 however, its association to on-road performance in healthy older drivers was weak (ρ=0.06).112

5.6.5 Detecting changes

To recognise that a street we regularly drive through has become one-way, or that speed limitations have been changed on a road section or that recent constructions have lowered a bridge we drive under requires us to notice when changes have occurred. Not noticing such changes is called “change blindness”.122, 123

Reduced processing speed has been shown to contribute mostly to difficulties in detecting changes appearing with ageing.124 Age-related differences in detecting changes are however believed to also be due to older adults’ difficulties in forming representations for novel information.125 Visual scanning ability has been shown to be associated with attention deficits that explain driving impairment.111 However, little is nevertheless known on the direct causal relationship between change detection and driving difficulties.

5.7 Conclusion

Attention is not a specific cognitive process and should rather be seen as a combination of different brain processes that are engaged to optimise sensory processing in different contexts.126 Functional networks that modulate sensory input are task specific but nevertheless share common modular processes across a broad range of different demands. As ageing is accompanied by a decreased need to learn,127 observed changes in sensory processing speed can be explained by natural reduced memory search rather than a deficit of “attention”.128 In other words, normal ageing is normally related to normal brain changes that normally make us slower. Therefore, considering reduced “attention” as a sign of decline could be an error. However, the simple fact that we consider it as a sign of regression reveals our society’s difficulty in accepting changes related to ageing. This could contribute to social isolation and stigmatisation of older adults and worsen the problem. Future challenges are, therefore, in finding ways to fully recognise the value of older adults and help them contribute to our society’s wellbeing as much as possible.

5.8 References

 1.   Moussaïd  M,  Helbing  D,  Garnier  S,  Johansson  A,  Combe  M,  Theraulaz  G.  

Experimental  study  of  the  behavioural  mechanisms  underlying  self-­‐

organization  in  human  crowds.  Proceedings  of  the  Royal  Society  B:  

Biological  Sciences.  2009;276(1668):2755-­‐62.  

PART 5 – Attention and ageing

 

2.   Serences  JT,  Yantis  S.  Selective  visual  attention  and  perceptual  coherence.  

Trends  in  cognitive  sciences.  2006;10(1):38-­‐45.  

3.   Pfaff  D,  Ribeiro  A,  Matthews  J,  Kow  LM.  Concepts  and  mechanisms  of   generalized  central  nervous  system  arousal.  Ann  N  Y  Acad  Sci.  

2008;1129:11-­‐25.  

4.   Oken  BS,  Salinsky  MC,  Elsas  SM.  Vigilance,  alertness,  or  sustained  

attention:  physiological  basis  and  measurement.  Clinical  neurophysiology   :  official  journal  of  the  International  Federation  of  Clinical   consciousness.  Neural  Networks.  2007;20(9):993-­‐1003.  

8.   Kastner  S,  Pinsk  MA.  Visual  attention  as  a  multilevel  selection  process.  

Cognitive,  affective  &  behavioral  neuroscience.  2004;4(4):483-­‐500.  

9.   Anderson  B.  There  is  no  Such  Thing  as  Attention.  Frontiers  in  psychology.  

2011;2:246.  

10.   Pratte  MS,  Ling  S,  Swisher  JD,  Tong  F.  How  attention  extracts  objects  from   noise.  J  Neurophysiol.  2013;110(6):1346-­‐56.  

11.   Duncan  J.  EPS  Mid-­‐Career  Award  2004:  brain  mechanisms  of  attention.  

Quarterly  journal  of  experimental  psychology  (2006).  2006;59(1):2-­‐27.  

12.   Bloomfield  M.  Cerberus,  the  dog  of  Hades.  The  Monist.  1904;14(4):523-­‐ fluid  processing  ability  in  older  adults.  J  Neurosci.  2010;30(27):9253-­‐9.  

18.   Awh  E,  Belopolsky  AV,  Theeuwes  J.  Top-­‐down  versus  bottom-­‐up   attentional  control:  a  failed  theoretical  dichotomy.  Trends  in  cognitive   sciences.  2012;16(8):437-­‐43.   contingencies  in  the  human  brain.  Cortex.  2013;49(6):1733-­‐49.  

21.   Klostermann  EC,  Braskie  MN,  Landau  SM,  O'Neil  JP,  Jagust  WJ.  Dopamine   and  frontostriatal  networks  in  cognitive  aging.  Neurobiol  Aging.  

2012;33(3):623.e15-­‐24.  

22.   Klanker  M,  Feenstra  M,  Denys  D.  Dopaminergic  control  of  cognitive   flexibility  in  humans  and  animals.  Frontiers  in  neuroscience.  2013;7:201.  

23.   Zhang  L,  Tong  MH,  Marks  TK,  Shan  H,  Cottrell  GW.  SUN:  A  Bayesian   framework  for  saliency  using  natural  statistics.  J  Vis.  2008;8(7):32  1-­‐20.  

24.   Ghose  GM.  Attentional  modulation  of  visual  responses  by  flexible  input   gain.  J  Neurophysiol.  2009;101(4):2089-­‐106.  

25.   Lee  J,  Maunsell  JH.  A  normalization  model  of  attentional  modulation  of  

Online  decoding  of  object-­‐based  attention  using  real-­‐time  fMRI.  European   Journal  of  Neuroscience.  2014;39(2):319-­‐29.  

31.   Serences  JT,  Schwarzbach  J,  Courtney  SM,  Golay  X,  Yantis  S.  Control  of   object-­‐based  attention  in  human  cortex.  Cereb  Cortex.  2004;14(12):1346-­‐

57.  

32.   Geng  JJ,  Vossel  S.  Re-­‐evaluating  the  role  of  TPJ  in  attentional  control:  

contextual  updating?  Neurosci  Biobehav  Rev.  2013;37(10  Pt  2):2608-­‐20.  

33.   Harel  A,  Kravitz  DJ,  Baker  CI.  Task  context  impacts  visual  object   review  of  neuroscience.  2011;34:569-­‐99.  

36.   Mesulam  MM.  Large-­‐scale  neurocognitive  networks  and  distributed   processing  for  attention,  language,  and  memory.  Ann  Neurol.  

1990;28(5):597-­‐613.  

37.   Posner  MI,  Petersen  SE.  The  attention  system  of  the  human  brain.  Annual   review  of  neuroscience.  1990;13:25-­‐42.  

38.   Posner  MI,  Rothbart  MK.  Research  on  attention  networks  as  a  model  for   the  integration  of  psychological  science.  Annual  review  of  psychology.  

2007;58:1-­‐23.  

39.   Fan  J,  McCandliss  BD,  Sommer  T,  Raz  A,  Posner  MI.  Testing  the  efficiency   and  independence  of  attentional  networks.  J  Cogn  Neurosci.  

2002;14(3):340-­‐7.  

40.   Rueda  MR,  Fan  J,  McCandliss  BD,  Halparin  JD,  Gruber  DB,  Lercari  LP,  et  al.  

Development  of  attentional  networks  in  childhood.  Neuropsychologia.  

2004;42(8):1029-­‐40.  

41.   Posner  MI.  Measuring  alertness.  Ann  N  Y  Acad  Sci.  2008;1129:193-­‐9.  

PART 5 – Attention and ageing

 

42.   Macleod  JW,  Lawrence  MA,  McConnell  MM,  Eskes  GA,  Klein  RM,  Shore  DI.  

Appraising  the  ANT:  Psychometric  and  theoretical  considerations  of  the   Attention  Network  Test.  Neuropsychology.  2010;24(5):637-­‐51.  

43.   Ishigami  Y,  Klein  RM.  Repeated  Measurement  of  the  Components  of   Attention  of  Older  Adults  using  the  Two  Versions  of  the  Attention   Network  Test:  Stability,  Isolability,  Robustness,  and  Reliability.  Front   Aging  Neurosci.  2011;3:17.  

44.   McConnell  MM,  Shore  DI.  Mixing  measures:  testing  an  assumption  of  the   Attention  Network  Test.  Atten  Percept  Psychophys.  2011;73(4):1096-­‐

107.  

45.   Brown  HR,  Friston  KJ.  The  functional  anatomy  of  attention:  a  DCM  study.  

Frontiers  in  human  neuroscience.  2013;7:784.  

46.   Vossel  S,  Weidner  R,  Driver  J,  Friston  KJ,  Fink  GR.  Deconstructing  the   architecture  of  dorsal  and  ventral  attention  systems  with  dynamic  causal   modeling.  J  Neurosci.  2012;32(31):10637-­‐48.  

47.   Corbetta  M,  Shulman  GL.  Control  of  goal-­‐directed  and  stimulus-­‐driven   single,  integrated  representation  or  a  collection  of  multiple  control   representations?  Frontiers  in  human  neuroscience.  2013;7:524.  

51.   Friston  KJ.  Transients,  metastability,  and  neuronal  dynamics.   search:  An  ethology.  Attention,  Perception,  &  Psychophysics.  2014:1-­‐16.  

54.   Treisman  AM,  Gelade  G.  A  feature-­‐integration  theory  of  attention.  

Cognitive  Psychology.  1980;12(1):97-­‐136.  

55.   Lee  J,  Lee  JD,  Salvucci  DD.  A  Saliency-­‐Based  Search  Model:  Application  of   the  Saliency  Map  for  Driver-­‐Vehicle  Interfaces.  Proceedings  of  the  Human   Factors  and  Ergonomics  Society  Annual  Meeting.  2013;57(1):1933-­‐7.  

56.   Thompson  KG,  Bichot  NP.  A  visual  salience  map  in  the  primate  frontal  eye   endogenous  and  exogenous  spatial  attention.  Behavioural  brain  research.  

2013;237:107-­‐23.  

59.   Ptak  R.  The  frontoparietal  attention  network  of  the  human  brain:  action,   saliency,  and  a  priority  map  of  the  environment.  The  Neuroscientist  :  a   review  journal  bringing  neurobiology,  neurology  and  psychiatry.  

2012;18(5):502-­‐15.  

60.   Macaluso  E,  Doricchi  F.  Attention  and  predictions:  control  of  spatial   attention  beyond  the  endogenous-­‐exogenous  dichotomy.  Frontiers  in   human  neuroscience.  2013;7:685.  

61.   Kelley  TA,  Serences  JT,  Giesbrecht  B,  Yantis  S.  Cortical  mechanisms  for   shifting  and  holding  visuospatial  attention.  Cereb  Cortex.  2008;18(1):114-­‐

25.  

62.   Verhaeghen  P,  Cerella  J.  Aging,  executive  control,  and  attention:  a  review   of  meta-­‐analyses.  Neuroscience  &  Biobehavioral  Reviews.  

2002;26(7):849-­‐57.   attention  and  short-­‐term  memory  (NTVA).  Neuropsychologia.  

2011;49(6):1446-­‐57.  

Dynamic  activation  of  frontal,  parietal,  and  sensory  regions  underlying   anticipatory  visual  spatial  attention.  J  Neurosci.  2011;31(39):13880-­‐9.  

68.   Mantini  D,  Corbetta  M,  Romani  GL,  Orban  GA,  Vanduffel  W.  Evolutionarily   novel  functional  networks  in  the  human  brain?  J  Neurosci.  

2013;33(8):3259-­‐75.  

69.   Cohen  MR,  Maunsell  JH.  Using  neuronal  populations  to  study  the   mechanisms  underlying  spatial  and  feature  attention.  Neuron.  

2011;70(6):1192-­‐204.  

70.   Slagter  HA,  Giesbrecht  B,  Kok  A,  Weissman  DH,  Kenemans  JL,  Woldorff   MG,  et  al.  fMRI  evidence  for  both  generalized  and  specialized  components   of  attentional  control.  Brain  Res.  2007;1177:90-­‐102.  

71.   Hellyer  PJ,  Shanahan  M,  Scott  G,  Wise  RJ,  Sharp  DJ,  Leech  R.  The  control  of   global  brain  dynamics:  opposing  actions  of  frontoparietal  control  and   default  mode  networks  on  attention.  J  Neurosci.  2014;34(2):451-­‐61.  

72.   Verhaeghen  P,  Salthouse  TA.  Meta-­‐analyses  of  age-­‐cognition  relations  in   adulthood:  estimates  of  linear  and  nonlinear  age  effects  and  structural   models.  Psychol  Bull.  1997;122(3):231-­‐49.  

73.   Birren  JE,  Fisher  LM.  Aging  and  slowing  of  behavior:  consequences  for   cognition  and  survival.  Nebraska  Symposium  on  Motivation.  Nebraska   Symposium  on  Motivation.  1991;39:1-­‐37.  

74.   Eusop  E,  Sebban  C,  Piette  F.  Vieillissement  et  ralentissement:  l'exemple   des  processus  attentionnels-­‐-­‐procedures  d'evaluation  et  questions  sous-­‐

jacentes.  Encephale.  2001;27(1):39-­‐44.  

75.   Madden  DJ,  Spaniol  J,  Bucur  B,  Whiting  WL.  Age-­‐related  increase  in  top-­‐

down  activation  of  visual  features.  Quarterly  journal  of  experimental   psychology  (2006).  2007;60(5):644-­‐51.  

PART 5 – Attention and ageing

 

76.   Whiting  WL,  Madden  DJ,  Babcock  KJ.  Overriding  age  differences  in   attentional  capture  with  top-­‐down  processing.  Psychol  Aging.  

2007;22(2):223-­‐32.  

77.   Staub  B,  Doignon-­‐Camus  N,  Despres  O,  Bonnefond  A.  Sustained  attention   in  the  elderly:  what  do  we  know  and  what  does  it  tell  us  about  cognitive   aging?  Ageing  research  reviews.  2013;12(2):459-­‐68.  

78.   Groth  KE,  Allen  PA.  Visual  attention  and  aging.  Frontiers  in  bioscience  :  a   journal  and  virtual  library.  2000;5:D284-­‐97.  

79.   Cepeda  NJ,  Kramer  AF,  Gonzalez  de  Sather  JC.  Changes  in  executive   control  across  the  life  span:  examination  of  task-­‐switching  performance.  

Dev  Psychol.  2001;37(5):715-­‐30.  

Washington,  DC:  War  Department,  Adjutant  General’s  Office;  1944.  

83.   Silva  MT,  Laks  J,  Engelhardt  E.  Neuropsychological  tests  and  driving  in   dementia:  a  review  of  the  recent  literature.  Rev  Assoc  Med  Bras.  

2009;55(4):484-­‐8.  

84.   Mathias  JL,  Lucas  LK.  Cognitive  predictors  of  unsafe  driving  in  older   drivers:  a  meta-­‐analysis.  Int  Psychogeriatr.  2009;21(4):637-­‐53.  

85.   Martin  AJ,  Marottoli  R,  O'Neill  D.  Driving  assessment  for  maintaining  

Can  High-­‐Risk  Older  Drivers  Be  Identified  Through  Performance-­‐Based   Measures  in  a  Department  of  Motor  Vehicles  Setting?  Journal  of  the   American  Geriatrics  Society.  2006;54(1):77-­‐84.  

89.   Marottoli  RA,  Richardson  ED,  Stowe  MH,  Miller  EG,  Brass  LM,  Cooney  LM,   Academy  of  Neurology.  Neurology.  2010;74(16):1316-­‐24.  

91.   Dobbs  BM,  Shergill  SS.  How  effective  is  the  Trail  Making  Test  (Parts  A  and   B)  in  identifying  cognitively  impaired  drivers?  Age  Ageing.  

2013;42(5):577-­‐81.  

92.   Gamboz  N,  Zamarian  S,  Cavallero  C.  Age-­‐related  differences  in  the   attention  network  test  (ANT).  Exp  Aging  Res.  2010;36(3):287-­‐305.  

93.   Weaver  B,  Bedard  M,  McAuliffe  J,  Parkkari  M.  Using  the  Attention  Network   Test  to  predict  driving  test  scores.  Accid  Anal  Prev.  2009;41(1):76-­‐83.  

94.   Nissen  MJ,  Corkin  S.  Effectiveness  of  attentional  cueing  in  older  and   younger  adults.  J  Gerontol.  1985;40(2):185-­‐91.  

95.   Kramer  AF,  Madden  D.  Attention.  In:  Craik  FIM,  Salthouse  TA,  eds.  The   handbook  of  aging  and  cognition.  Hillsdale:  Lawrence  Erlbaum;  

2008:189–249.  

96.   Allen  PA,  Smith  AF,  Vires-­‐Collins  H,  Sperry  S.  The  psychological  refractory   period:  evidence  for  age  differences  in  attentional  time-­‐sharing.  Psychol   Aging.  1998;13(2):218-­‐29.  

97.   Anderson  ND,  Craik  FI,  Naveh-­‐Benjamin  M.  The  attentional  demands  of   encoding  and  retrieval  in  younger  and  older  adults:  1.  Evidence  from   divided  attention  costs.  Psychol  Aging.  1998;13(3):405-­‐23.  

98.   Vaportzis  E,  Georgiou-­‐Karistianis  N,  Stout  JC.  Dual  task  performance  in  

optimizing  dual-­‐task  performance  in  younger  and  older  adults.  Frontiers   in  human  neuroscience.  2012;6:39.  

101.   Bherer  L,  Kramer  AF,  Peterson  MS,  Colcombe  S,  Erickson  K,  Becic  E.  

Transfer  effects  in  task-­‐set  cost  and  dual-­‐task  cost  after  dual-­‐task  training   in  older  and  younger  adults:  further  evidence  for  cognitive  plasticity  in   attentional  control  in  late  adulthood.  Exp  Aging  Res.  2008;34(3):188-­‐219.  

102.   Wood  JM,  Chaparro  A,  Lacherez  P,  Hickson  L.  Useful  field  of  view  predicts   driving  in  the  presence  of  distracters.  Optom  Vis  Sci.  2012;89(4):373-­‐81.  

103.   Wood  JM,  Owsley  C.  Useful  Field  of  View  Test.  Gerontology.  2014.  

104.   Clay  OJ,  Wadley  VG,  Edwards  JD,  Roth  DL,  Roenker  DL,  Ball  KK.  

Cumulative  meta-­‐analysis  of  the  relationship  between  useful  field  of  view   and  driving  performance  in  older  adults:  current  and  future  implications.   older  adults.  JAMA.  1998;279(14):1083-­‐8.  

108.   Owsley  C,  McGwin  G,  Jr.,  Ball  K.  Vision  impairment,  eye  disease,  and   injurious  motor  vehicle  crashes  in  the  elderly.  Ophthalmic  epidemiology.  

1998;5(2):101-­‐13.  

109.   Cross  JM,  McGwin  G,  Jr.,  Rubin  GS,  Ball  KK,  West  SK,  Roenker  DL,  et  al.  

Visual  and  medical  risk  factors  for  motor  vehicle  collision  involvement   among  older  drivers.  Br  J  Ophthalmol.  2009;93(3):400-­‐4.  

PART 5 – Attention and ageing

 

110.   Rubin  GS,  Ng  ES,  Bandeen-­‐Roche  K,  Keyl  PM,  Freeman  EE,  West  SK.  A   prospective,  population-­‐based  study  of  the  role  of  visual  impairment  in   motor  vehicle  crashes  among  older  drivers:  the  SEE  study.  Invest   Ophthalmol  Vis  Sci.  2007;48(4):1483-­‐91.  

111.   Hoffman  L,  McDowd  JM,  Atchley  P,  Dubinsky  R.  The  role  of  visual  

attention  in  predicting  driving  impairment  in  older  adults.  Psychol  Aging.  

2005;20(4):610-­‐22.  

112.   Whelihan  WM,  DiCarlo  MA,  Paul  RH.  The  relationship  of  

neuropsychological  functioning  to  driving  competence  in  older  persons   with  early  cognitive  decline.  Arch  Clin  Neuropsychol.  2005;20(2):217-­‐28.  

113.   Treisman  AM.  Strategies  and  models  of  selective  attention.  Psychol  Rev.  

1969;76(3):282-­‐99.  

114.   Rabbitt  PM.  Set  and  Age  in  a  Choice-­‐Response  Task.  J  Gerontol.  

1964;19:301-­‐6.  

115.   Plude  DJ,  Doussard-­‐Roosevelt  JA.  Aging,  selective  attention,  and  feature   integration.  Psychol  Aging.  1989;4(1):98-­‐105.  

116.   Commodari  E,  Guarnera  M.  Attention  and  aging.  Aging  clinical  and   experimental  research.  2008;20(6):578-­‐84.  

117.   Allen  PA,  Madden  DJ,  Groth  KE,  Crozier  LC.  Impact  of  age,  redundancy,   and  perceptual  noise  on  visual  search.  J  Gerontol.  1992;47(2):P69-­‐74.  

117.   Allen  PA,  Madden  DJ,  Groth  KE,  Crozier  LC.  Impact  of  age,  redundancy,   and  perceptual  noise  on  visual  search.  J  Gerontol.  1992;47(2):P69-­‐74.