• Aucun résultat trouvé

Effet de la perméabilité (k)

E. Résolution Numérique Sous ComsolComsol

E.3. Analyse temporelle

E.3.1. Critère de convergence

E.3.1.1. Solveurs temporel

|Ei | Ai+ R |Ui | avec,

Ui, le vecteur approximation de la solution, – Ei, l’erreur estimée dans ce vecteur,

– N, le nombre de degrés de liberté,

– Ai, la tolérance absolue spécifiée pour le degré de liberté i, – R, la tolérance relative fixée par l’utilisateur.

E.3.1.1. Solveurs temporel

Deux solveurs temporels sont disponibles : le solveur BDF (Backward Differentiation Formula) et le solveur generalized alpha.

1. Le solveur BDF utilise une formulation différentielle implicite d’ordre m va-riable m = [1, 5]. Il est utilisé pour sa stabilité et sa robustesse. Néanmoins, quand l’ordre m du solveur est petit, il peut produire de grands effets d’amor-tissement sur les hautes fréquences.

2. Le solveur generalized alpha utilise également une formulation différentielle im-plicite de second ordre mais contient un paramètre α (α = [0, 1]) qui contrôle le degré d’amortissement des hautes fréquences. Pour α = 1, il n’y a pas d’amor-tissement numérique alors que pour α = 0, le maximum d’amord’amor-tissement est obtenu.

Bibliographie

[1] F. H. Netter, Atlas d’anatomie humaine, 5th Edition, no. 1, ELSEVIER and MASSON, 2011.

[2] D. R. Furlong, A. N. Palazoito, A finite element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc., Journal of Biomechanics 16 (December 1982) (1983) 785–795.

[3] T. Belytschko, R. Kulak, A. Schultz, J. Galante, Finite element stress analysis of an intervertebral disc, Journal of biomechanics 7(3) (1974) 227–285. [4] N. L. Nerurkar, D. M. Elliott, R. L. Mauck, Mechanical design criteria for

intervertebral disc tissue engineering., Journal of Biomechanics 43(6) (2010) 1017–1030.

[5] J. P. G. Urban, S. Roberts, Intervertebral discs (1996).

[6] S. Ferguson, Biomechanics of the Spine, in : N. Boss, M. Abei (Eds.), Spinal Disorders, Springer, 2008, pp. 41–66.

[7] H.-j. Wilke, S. Wolf, E. C. Lutz, M. Arandt, A. Wiesend, Influence of varying muscle forces on lumbar intradiscal pressure : An in vitro study, Journal of biomechanics 29 (4) (1996) 549–555.

[8] H. J. Wilke, P. Neef, M. Caimi, T. Hoogland, L. E. Claes, New in vivo measu-rements of pressures in the intervertebral disc in daily life., Spine 24 (8) (1999) 755–762.

[9] H. Wilke, P. Neef, B. Hinz, H. Seidel, L. Claes, Intradiscal pressure together with anthropometric data–a data set for the validation of models., Clinical biomechanics 16 Suppl 1 (1) (2001) 111–126.

[10] Rosemary Elizabeth Thompson, Mechanical effects of degeneration in lumbar intervertebral discs, Ph.D. thesis, Queensland University of Technology (2002). [11] J. Antoniou, T. Steffen, F. Nelson, N. Winterbottom, A. P. Hollander, R. A. Poole, M. Aebi, R. Alini, The human intervertebral disc : evidence for changes in biosynthesis and denaturation of extracellular matrix with growth, ma-turation, ageing and degeneration, J. of Clinical Investigation 98 (4) (1996) 996–1003.

[12] B. Kastler, D. Vetter, Comprendre l’IRM : Manuel d’auto-apprentissage , 7th Edition, Elsevier Masson, 2011.

[13] C. Wang, J. D. Auerbach, W. R. T. Witschey, R. A. Balderston, R. Reddy, A. Borthakur, Advances in Magnetic Resonance Imaging for the Assessment

Bibliographie of Degenerative Disc Disease of the Lumbar Spine, Spine surgey 19 (2) (2007) 65–71.

[14] S. Majumdar, Magnetic resonance imaging and spectroscopy of the interver-tebral disc, NMR in biomedecine 19 (6) (2006) 894–903.

[15] M. Recuerda, S.-P. Coté, I. Villemure, D. Périé, Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression, Journal of Biomechanical Engineering 133 (7) (2011) 1–5. [16] K. Chatani, Y. Kusaka, T. Mifune, H. Nishikawa, Topographic differences of

1H-NMR relaxation times (T1, T2) in the normal intervertebral disc and its relationship to water content., Spine 18 (15) (1993) 2271–2275.

[17] A. Jacques, F. Bonnel, G. Captier, E. Blotman, E. Thomas, M. Alcalay, G. Du-bois, B. Comet, Disque intervertébral, L’observatoire du mouvement 4 (Fe-vrier) (2002) 1–10.

[18] J. P. Thompson, R. H. Pearce, M. T. Schechter, M. E. Adams, IK.Tsang, P. B. Bishop, Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc, Spine 15 (1990) 411–415.

[19] A. Nachemson, Newest knowledge of low back pain. A critical look., clinical orthopedics and related research 279 (1992) 8–20.

[20] S. Campana, E. Charpail, J. a. de Guise, L. Rillardon, W. Skalli, D. Mitton, Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI., Journal of the mechanical behavior of biomedical materials 4 (4) (2011) 593–599.

[21] M. B. Coventry, R. K. Ghormley, J. W. Kernohan, The intervertebral disc : its microscopic anatomy and pathology Part III. Pathological Changes in the Intervertebral Disc, The Journal of bone and joint surgery 27 (3) (1945) 460– 474.

[22] C. W. A. Pfirrmann, A. Metzdorf, M. Zanetti, J. Hodler, N. Boos, Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration, Spine 26 (17) (2001) 1873–1878.

[23] A. Nachemson, G. Elfstöm, Intravital dynamic pressure measurements in lum-bar discs : A study of common movements, maneuvers and exercises, Scandi-navian journal of rehabilitation medicine 15 (35) (1970) 1–40.

[24] T. Steffen, H. G. Baramki, R. Rubin, J. Antoniou, M. Aebi, Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading., Clinical biomechanics 13 (7) (1998) 495–505.

[25] K. Sato, S. Kikuchi, T. Yonezawa, In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems, Spine 24 (23) (1999) 2468–2474.

[26] M. Alini, S. M. Eisenstein, K. Ito, C. Little, a. A. Kettler, K. Masuda, J. Mel-rose, J. Ralphs, I. Stokes, H. J. Wilke, Are animal models useful for studying

Bibliographie

human disc disorders/degeneration ?, European spine journal 17 (1) (2008) 2–19.

[27] H. Ohshima, H. Tsuji, N. Hirano, H. Ishihara, Y. Katoh, H. Yamada, Wa-ter diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load, Spine 14 (11) (1989) 1234–1244. [28] N. Panagiotacopulos, M. Pope, R. Bloch, M. Krag, Water content in human

intervertebral discs. Part I. Measurement by magnetic resonance imaging., Spine 12 (9) (1987) 912–918.

[29] N. Panagiotacopulos, M. Pope, R. Bloch, M. Krag, Water content in human intervertebral discs. Part II. Viscoelastic behavior, Spine 12 (9) (1987) 918– 924.

[30] M. A. Adams, P. Dolan, Spine biomechanics., Journal of biomechanics 38 (10) (2005) 1972–1983.

[31] S. M. Belkoff, Biomechanics of the Spine, in : J. W. M. V. Goethem, L. van den Hauwe, P. M. Parizel (Eds.), Spinal imaging, Springer Berlin Heidelberg, 2007, pp. 87–93.

[32] N. Boos, M. Aebi, Spinal Disorders, Springer Berlin Heidelberg, 2008.

[33] R. Dath, A. D. Ebinesan, K. M. Porter, A. W. Miles, Anatomical measure-ments of porcine lumbar vertebrae, Clinical Biomechanics 22 (2007) 607–613. [34] S. R. S. Bibby, D. A. Jones, R. B. Lee, J. Yu, J. P. G. Urban, Biochimie, biologie et physiologie du disque intervertébral, Revue du Rhumatisme 68 (1) (2001) 903–907.

[35] S. R. Bibby, D. a. Jones, R. B. Lee, J. Yu, Urban JPG, The pathophysiology of the intervertebral disc, Joint Bone Spine 68 (6) (2001) 537–542.

[36] A. Colombini, G. Lombardi, M. M. Corsi, G. Banfi, Pathophysiology of the human intervertebral disc, Int J Biochem Cell Biol 40 (5) (2008) 837–842. [37] P. Rabishong, R. Louis, J. V. C. Massare, Le disque intervertébral, Anatomia

Clinica 1 (1978) 55–64.

[38] F. Rannou, M.A.Mayoux-Benhamou, S.Poiraudeau, M. Revel, Disque inter-vertébral et structures voisines de la colonne lombaire : anatomie, biologie, physiologie et biomécanique, EMC-Rhumatologie Orthopédie 1 (6) (2004) 487– 507.

[39] R. J. Moore, The vertebral end-plate : what do we know ?, European spine journal 9 (2) (2000) 92–6.

[40] M. Cannella, A. Arthur, S. Allen, M. Keane, A. Joshi, E. Vresilovic, M. Mar-colongo, The role of the nucleus pulposus in neutral zone human lumbar inter-vertebral disc mechanics., Journal of biomechanics 41 (10) (2008) 2104–2111. [41] G. O’Connell, B. Sounok Sen, D. Elliott, Human Annulus Fibrosus Material Properties from Biaxial Testing and Constitutive Modeling are Altered with Degeneration, Biomechanics and modeling in mechanobiology 11 (3-4) (2012) 493–503.

Bibliographie [42] H. A. L. Guerin, D. M. Elliott, Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load., Journal of biomechanics 39 (8) (2006) 1410–1418.

[43] J. J. Cassidy, M. S. Silverstein, a. Hiltner, E. Baer, A water transport model for the creep response of the intervertebral disc, Journal of Materials Science : Materials in Medicine 1 (2) (1990) 81–89.

[44] D. W. McMillan, G. Garbutt, M. A. Adams, Effect of sustained loading on the water content of intervertebral discs : implications for disc metabolism, Annals of the Rheumatic Diseases 55 (1996) 880–887.

[45] S. R. S. Bibby, D. a. Jones, R. M. Ripley, J. P. G. Urban, Metabolism of the intervertebral disc : effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells., Spine 30 (5) (2005) 487–496.

[46] F. Rannou, La biologie du disque intervertébral aide-t-elle à comprendre les lombalgies communes ?, Revue du Rhumatisme 78 (2) (2011) 48–51.

[47] E. Okuno, L. Fratin, Biomechanics of the Human Body, Springer New York, 2014.

[48] M. Adams, W. Hutton, The Effect of Posture on the Role of the Apophysial Forces Resisting Intervertebral Compressive Forces, The Journal of bone and joint surgery 62 (3) (1980) 358–362.

[49] M. Panjabi, I. Yamamoto, T. Oxland, J. Crisco, How does posture affect cou-pling in the lumbar spine ?, Spine 14 (9) (1989) 1002–1011.

[50] A. Nachemson, Lumbar Intradiscal Pressure, Master’s thesis, Acta Orthopae-dica scandinavica (1960).

[51] A. Nachemson, Disc Pressure Measurements, Spine 6(1) (1981) 93–97.

[52] H. S. An, K. Masuda, N. Inoue, Intervertebral disc degeneration : biological and biomechanical factors., Journal of orthopaedic science 11 (5) (2006) 541– 552.

[53] J. Buckwalter, Spine update : aging and degeneration of the human interver-tebral disc, Spine 20 (11) (1995) 1307–1314.

[54] S. A. Howard, M. Koichi, I. Nozomu, Intervertebral disc degeneration : biolo-gical and biomechanical factors., Journal of orthopaedic science 11 (5) (2006) 541–552.

[55] P. Kurowski, A. Kubo, The relationship of degeneration of the intervertebral disc to mechanical loading conditions on lumbar vertebrae, Spine 11 (1986) 726–731.

[56] C. K. Kepler, R. K. Ponnappan, C. a. Tannoury, M. V. Risbud, D. G. An-derson, The molecular basis of intervertebral disc degeneration., The spine journal 13 (3) (2013) 318–30.

Bibliographie

[57] F. Rannou, M. Corvol, M. Revel, S. Poiraudeau, Dégénérescence discale et hernie discale : rôle des contraintes mécaniques, Revue du Rhumatisme 68 (4) (2001) 908–912.

[58] F. Rannou, Le traitement de la dégénérescence discale : mythe ou réalité ?, Revue du Rhumatisme 76 (10-11) (2009) 965–966.

[59] J. P. G. Urban, S. Roberts, Degeneration of the intervertebral disc, Arthritis Research & Therapy 5 (3) (2003) 120–130.

[60] C.-Q. Zhao, L.-S. Jiang, L.-Y. Dai, Programmed cell death in intervertebral disc degeneration., Apoptosis : an international journal on programmed cell death 11 (12) (2006) 2079–2088.

[61] A. Kettler, F. Rohlmann, C. Neidlinger-Wilke, K. Werner, L. Claes, H.-J. Wilke, Validity and interobserver agreement of a new radiographic grading system for intervertebral disc degeneration : Part II. Cervical spine., European spine journal 15 (6) (2006) 732–741.

[62] Z. Sun, M. Liu, Y. Zhang, An animal model to create intervertebral disc degeneration characterized by radiography and molecular biology, Journal of Nanjing Medical University 22 (5) (2008) 308–312.

[63] H.-J. Wilke, F. Rohlmann, C. Neidlinger-Wilke, K. Werner, L. Claes, A. Ket-tler, Validity and interobserver agreement of a new radiographic grading sys-tem for intervertebral disc degeneration : Part I. Lumbar spine, European Spine Journal 15 (6) (2006) 720–730.

[64] N. Boos, A. Wallin, T. Gbedegbegnon, M. Aebi, C. Boesch, Quantitative MR imaging of lumbar intervertebral disks and vertebral bodies : influence of diur-nal water content variations, Radiology 188 (2) (1993) 351–354.

[65] N. Boos, A. Wallin, T. Schmucker, M. Aebi, C. Boesch, Quantitative MR imaging of lumbar intervertebral discs and vertebral bodies : Methodology, reproducibility, and preliminary results, Magnetic Resonance Imaging 12 (4) (1994) 577–587.

[66] A. Grenier, T. Lucas, G. Collewet, A. Le Bail, Assessment by MRI of local porosity in dough during proving. theoretical considerations and experimental validation using a spin-echo sequence, Magnetic Resonance Imaging 21 (9) (2003) 1071–1086.

[67] S. M. Han, S. Y. Lee, M. H. Cho, J. K. Lee, Disc hydration measured by ma-gnetic resonance imaging in relation to its compressive stiffness in rat models., Journal of engineering in medicine 215 (5) (2001) 497–501.

[68] V. Haughton, Medical imaging of intervertebral disc degeneration : current status of imaging, Spine 29 (23) (2004) 2751–2756.

[69] E. Southern, M. Fye, M. Panjabi, T. Patel, J. Cholewicki, Disc Degenera-tion : A Human Cadaveric Study Correlating Magnetic Resonance Imaging and Quantitative Discomanometry, Spine 25 (17) (2000) 2171–2175.

Bibliographie [70] M. Wybier, lmagerie du disque intervertébral lombaire, Revue du Rhumatisme

67 (4) (2000) 232–246.

[71] M. B. Coventry, R. K. Ghormley, J. W. Kernohan, The intervertebral disc : its microscopic anatomy and pathology Part I. Anatomy, Development, and Physiology, The Journal of bone and joint surgery 27 (1) (1945) 105–112. [72] M. B. Coventry, R. K. Ghormley, J. W. Kernohan, The intervertebral disc :

its microscopic anatomy and pathology Part II. Changes in the Intervertebral Disc Concomitant with Age, The Journal of bone and joint surgery 27 (2) (1945) 233–247.

[73] M. Gibson, J. Buckley, R. Mulholland, B. Worthington, The changes in the intervertebral disc after chemonucleolysis demonstrated by magnetic resonance imaging., Journal of bone and joint surgey 68 (5) (1986) 719–723.

[74] R. Gunzburg, R. Parkinson, R. Moore, F. Cantraine, W. Hutton, B. Vernon-Roberts, R. Fraser, A cadaveric study comparing discography, magnetic reso-nance imaging, histology, and mechanical behavior of the human lumbar disc., Spine 17 (4) (1992) 417–426.

[75] L. Rillardon, S. Campana, D. Mitton, W. Skalli, A. Feydy, Analyse de l’es-pace intervertébral avec un système de radiographie basse dose, Journal de Radiologie 86 (3) (2005) 311–319.

[76] A. Fujiwara, T. H. Lim, H. S. An, N. Tanaka, C. H. Jeon, G. B. Andersson, V. M. Haughton, The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine., Spine 25 (23) (2000) 3036– 3044.

[77] E. C. Soulas, D. Canet, J.-C. Boubel, La RMN. Concepts, méthodes et appli-cation, Dunod, 2002.

[78] J. Niinimäki, A. Korkiakoski, O. Parviainen, M. Haapea, M. Kuisma, R. O. Ojala, J. Karppinen, R. Korpelainen, O. Tervonen, M. T. Nieminen, Associa-tion of lumbar artery narrowing , degenerative changes in disc and endplate and apparent diffusion in disc on postcontrast enhancement of lumbar interver-tebral disc, Magnetic Resonance Materials in Physics, Biology and Medicine 22 (2) (2009) 101–109.

[79] J. W. M. V. Goethem, Clinical MR Imaging, Springer Berlin Heidelberg, Ber-lin, Heidelberg, 2010.

[80] E. M. Shapiro, A. Borthakur, J. H. Kaufman, J. S. Leigh, R. Reddy, Water distribution patterns inside bovine articular cartilage as visualized by 1H ma-gnetic resonance imaging., Osteoarthritis and cartilage 9 (6) (2001) 533–538. [81] D. Périé, D. Korda, J. C. Iatridis, Confined compression experiments on bovine

nucleus pulposus and annulus fibrosus : sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability, Journal of biomechanics 38 (2005) 2164–2171.

Bibliographie

[82] D. Périé, J. Iatridis, C. Demers, T. Goswami, G. Beaudoin, F. Mwale, J. Anto-niou, Assessment of compressive modulus , hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI, Journal of biomechanics 39 (8) (2006) 1392–1400.

[83] M. Recuerda, D. Périé, G. Gilbert, G. Beaudoin, Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magne-tic resonance imaging, BioMed Central Musculoskeletal Disorders 13 (2012) 1–14.

[84] F. Mwale, J. Iatridis, J. Antoniou, Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity, European Spine Journal 17 (4) (2008) 432–440.

[85] J. Antoniou, G. Pike, T. Steffen, H. Baramki, A. Poole, M. Aebi, M. Alini, Quantitative magnetic resonance imaging in the assessment of degenerative disc disease, Magnetic Resonance in Medecine 40 (1) (1998) 900–907.

[86] N. Boos, A. Wallin, M. Aebi, C. Boesch, A new magnetic resonance imaging analysis method for the measurement of disc height variations, Spine 21, 5 (1996) 563–570.

[87] N. Boos, D. Dreier, E. Hilfiker, V. Schade, R. Kreis, J. Hora, M. Aebi, C. Boesch, Tissue characterization of symptomatic and asymptomatic disc herniations by quantitative magnetic resonance imaging, Jornal of orthopae-dic research 15 (1997) 141–149.

[88] E. Chiu, D. Newitt, M. Segal, S. Hu, J. Lotz, S. Majumdar, Magnetic resonance imaging measurement of relaxation and water diffusion in the human lumbar intervertebral disc under compression in vitro., Spine 26 (19) (2001) 437–444. [89] J. Auerbach, W. Johannessen, A. Borthakur, A. Wheaton, C. Dolinskas, R. Balderston, R. Reddy, D. Elliott, In vivo quantification of human lumbar disc degeneration using T1ρ-weighted magnetic resonance imaging, European Spine Journal 15 (3) (2006) 338–344.

[90] G. Blumenkrantz, J. Zuo, X. Li, J. Kornak, T. M. Link, S. Majumdar, In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in sub-jects with intervertebral disc degeneration and clinical symptoms., Magnetic resonance in medicine 63 (5) (2010) 1193–1200.

[91] W. Johannessen, J. D. Auerbach, A. J. Wheaton, A. Kurji, A. Borthakur, R. Reddy, D. M. Elliott, Assessment of Human Disc Degeneration and Pro-teoglycan Content Using T1ρ-weighted Magnetic Resonance Imaging, Spine 31 (11) (2010) 1253–1257.

[92] A. Nguyen, W. Johannessen, J. Yoder, A. Wheaton, E. Vresilovic, A. Bor-thakur, D. Elliott, Noninvasive Quantification of Human Nucleus Pulposus Pressure with Use of T1rho Weighted Magnetic Resonance Imaging, Journal of bone and joint surgey 90 (2008) 796–802.

Bibliographie [93] F. Noury, J. Mispelter, F. Szeremeta, S. Même, MRI methodological deve-lopment of intervertebral disc degeneration : a rabbit in vivo study at 9.4T, Magnetic Resonance Imaging 26 (10) (2008) 1421–1432.

[94] J. Antoniou, C. N. Demers, G. Beaudoin, T. Goswami, F. Mwale, M. Aebi, M. Alini, Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity., Magnetic resonance imaging 22 (7) (2004) 963–972. [95] P. J. Basser, D. K. Jones, Diffusion-tensor MRI : theory , experimental design and data analysis - a technical review, NMR in biomedecine 15 (7-8) (2002) 456–467.

[96] J. Cohen-Adad, H. Benali, G. Barrière, H. Leblond, R. Hoge, S. Rossignol, Développement clinique de l’IRM du tenseur de diffusion de la moelle épinière dans un contexte de lésion médullaire, Irbm 29 (4) (2008) 255–260.

[97] G. E. Gold, D. Burstein, B. Dardzinski, P. Lang, F. Boada, T. Mosher, MRI of articular cartilage in OA : novel pulse sequences and compositional/functional markers., Osteoarthritis and cartilage 14 Suppl A (2006) 76–86.

[98] E. M. Shapiro, A. Borthakur, A. Gougoutas, R. Reddy, 23Na MRI Accurately Measures Fixed Charge Density in Articular Cartilage, Magnetic Resonance in Medecine 47 (2) (2002) 284–291.

[99] C. Wang, E. Mcardle, M. Fenty, W. Witschey, M. Elliott, M. Sochor, R. Reddy, A. Borthakur, Validation of sodium magnetic resonance imaging of interver-tebral disc., Spine 35 (5) (2011) 505–510.

[100] K. R. Keshari, A. S. Zektzer, M. G. Swanson, S. Majumdar, J. C. Lotz, J. Kurhanewicz, Characterization of Intervertebral Disc Degeneration by High-Resolution Magic Angle Spinning ( HR-MAS ) Spectroscopy, Magnetic Reso-nance in Medecine 527 (2005) 519–527.

[101] M. Modic, T. J. Masaryk, J. S.Ross, J. R.Carter, Imaging of degenrative disc disease, Radiology 168 (1988) 177–186.

[102] H. N. Aziz, F. Galbusera, C. M. Bellini, G. V. Mineo, A. Addis, R. Pietra-bissa, M. Brayda-Bruno, Porcine models in spinal research : calibration and comparative finite element analysis of various configurations during flexion-extension., Comparative medicine 58 (2) (2008) 174–179.

[103] K. D. Allen, K. a. Athanasiou, Viscoelastic characterization of the porcine temporomandibular joint disc under unconfined compression., Journal of bio-mechanics 39 (2) (2006) 312–322.

[104] J. P. Callaghan, S. M. McGill, Intervertebral disc herniation : studies on a por-cine model exposed to highly repetitive flexion/extension motion with com-pressive force, Clinical biomechanics 16 (2001) 28–37.

[105] S. Gupta, J. Lin, P. Ashby, L. Pruitt, A fiber reinforced poroelastic model of nanoindentation of porcine costal cartilage : a combined experimental and finite element approach., Journal of the mechanical behavior of biomedical materials 2 (4) (2009) 326–338.

Bibliographie

[106] E. C. Bass, N. A. Duncan, J. S. Hariharan, J. Dusick, H. U. Bueff, J. C. Lotz, Frozen storage affects the compressive creep behavior of the porcine intervertebral disc, Spine 22 (24) (1997) 2867–2876.

[107] V. Gleizes, E. Viguier, J. M. Féron, S. Canivet, F. Lavaste, Effects of free-zing on the biomechanics of the intervertebral disc., Surgical and radiologic anatomy : SRA 20 (6) (1998) 403–407.

[108] S. C. Cowin, M. M. Mehrabadi, Compressible and incompressible constituents in anisotropic poroelasticity : The problem of unconfined compression of a disk, Journal of the mechanics and physics of solids 55 (2007) 161–193. [109] C. Huang, W. Y. Gu, Effects of tension-compression nonlinearity on solute

transport in charged hydrated fibrous tissues under dynamic unconfined com-pression, J. of Biomech. Engineering 129 (2007) 423–429.

[110] L. P. Li, J. Soulhat, M. D. Buschmann, A. Shirazi-Adl, Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model, Clinical Biomechanics 14 (1999) 673–682.

[111] B. Cohen, W. Lai, V. Mow, A Transversely Isotropic Biphasic Model for Un-confined Compression of Growth Plate and Chondroepiphysis, Journal of Bio-mechanical Engineering 120 (4) (1998) 491–496.

[112] P. Julkunen, W. Wilson, J. S. Jurvelin, J. Rieppo, C.-J. Qu, M. J. Lammi, R. K. Korhonen, Stress-relaxation of human patellar articular cartilage in un-confined compression : prediction of mechanical response by tissue composition and structure., Journal of biomechanics 41 (9) (2008) 1978–86.

[113] D. J. Botsford, S. I. Esses, D. J. Ogilvie-Harris, In vivo diurnal variation in intervertebral disc volume and morphology, Spine 19(8) (1994) 935–940. [114] M. Cuchanski, D. Cook, M. Jegapragasan, D. M. Whiting, B. C. Cheng,

Mea-surement of disc bulge of the intervertebral disc : an in vitro study using human cadaver lumbar spine segments, Argo Spine News & Journal 22 (2) (2010) 73–80.

[115] M. Fredericson, S. U. Lee, J. Welsh, K. Butts, a. Norbash, E. J. Carragee, Changes in posterior disc bulging and intervertebral foraminal size associated with flexion-extension movement : a comparison between L4-5 and L5-S1 levels in normal subjects., The spine journal : official journal of the North American Spine Society 1 (1) (2001) 10–17.

[116] B. Johnstone, J. P. G. Urban, S.Roberts, J.Menage, The fluid content of the human intervertebral disc comparison between fluid content and swelling pres-sure profiles of discs removed at surgery and those taken postmortem, Spine 17 (4) (1992) 412–416.

[117] S. Kitano, H. Tsuji, N. Hirano, A. Sano, N. Terahata, Water, fixed charge den-sity, protein contents, and lysine incorporation into protein in chymopapain-digested intervertebral disc of rabbit., Spine 14 (11) (1998) 1226–1233.

Bibliographie [118] M. A. Adams, P. Dolan, D. S. McNally, The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology., Matrix biology 28 (7) (2009) 384–389.

[119] C. Magnier, O. Boiron, S. Wendling-Mansuy, P. Chabrand, V. Deplano, Nu-trient distribution and metabolism in the intervertebral disc in the unloaded state : a parametric study., Journal of Biomechanics 42 (2009) 100–108. [120] C. Balkovec, S. McGill, Extent of nucleus pulposus migration in the annulus

of porcine intervertebral discs exposed to cyclic flexion only versus flexion and extension, Clinical biomechanics 27 (2012) 766–770.

[121] J. J. Moré, The Levenberg-Marquardt algorithm : Implementation and theory, in : Numerical Analysis, no. x, Springer Berlin Heidelberg, 1978, pp. 105–116. [122] J. C. Iatridis, J. J. MacLean, M. O’Brien, I. a. Stokes, Measurements of proteo-glycan and water content distribution in human lumbar intervertebral discs, Spine 32 (14) (2007) 1493–1497.

[123] M. Dreischarf, A. Rohlmann, R. Zhu, H. Schmidt, T. Zander, Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements ? A finite element evaluation., Medical engineering & physics 35 (9) (2013) 1385–1390.

[124] Y. E. Kim, V. K. Goel, J. N. Weinstein, T. Lim, Effect of disc degeneration at one level on the adjacent level in axial mode, Spine 16 (3) (1991) 331–335. [125] J. L. Wang, M. Parnianpour, A. Shirazi-adl, A. E. Engin, Rate effect on sha-ring of passive lumbar motion segment under load-controlled sagittal flexion : viscoelastic fnite element analysis, Theoretical and Applied Fracture Mecha-nics 32 (1999) 119–128.

[126] W. Ehlers, N. Karajan, B. Markert, An extended biphasic model for charged hydrated tissues with application to the intervertebral disc., Biomechanics and modeling in mechanobiology 8 (3) (2009) 233–251.

[127] A. Malandrino, J. a. Planell, D. Lacroix, Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation., Journal of biomechanics 42 (16) (2009) 2780–2788.

[128] V. C. Mow, I. S. Hou, I. M. Owens, A. Ratcliffe, Biphasic and Quasilinear Viscoelastic Theories for Hydrated Soft Tissues., in : S. L.-Y. Ratcliffe, An-thonyWoo, V. C. Mow (Eds.), Biomechanics of Diarthrodial Joints, Springer New York, 1990, pp. 215–260.

[129] G. A. Ateshian, N. O. Chahine, I. M. Basalo, C. T. Hung, The correspondence between equilibrium biphasic and triphasic material properties in mixture mo-dels of articular cartilage., Journal of biomechanics 37 (3) (2004) 391–400. [130] W. M. Lai, J. S. Hou, A triphasic theory for the swelling and deformation

behaviors of articular cartilage., J. of Biomech. Engineering 113 (1991) 245– 258.

Bibliographie

[131] B. R. Simon, Multiphase Poroelastic Finite Element Models for Soft Tissue Structurese, Applied Mechanics Reviews 45 (6) (1992) 191–218.

[132] W. Wilson, A Comparison Between Mechano-Electrochemical and Biphasic Swelling Theories for Soft Hydrated Tissues, Journal of Biomechanical Engi-neering 127 (1) (2005) 158–165.

[133] M. Etienne, O. Boiron, P. Tropiano, V. Deplano, Nutrient convection and diffu-sion modelling in the intervertebral disc, Computer Methods in Biomechanics and Biomedical Engineering 14 (1) (2011) 145–146.

[134] A. Frijns, J. Huyghe, J. D. Janssen, A validation of the quadriphasic mix-ture theory for intervertebral disc tissur, International Journal of Engineering Science 35 (15) (1997) 1419–1429.

[135] C. Truesdell, R. Toupin, The Classical Field Theories, in : Principles of Clas-sical Mechanics and Field Theory, Springer Berlin Heidelberg, 1960, pp. 226– 858.

[136] C. Truesdell, Mechanical basis of diffusion, The Journal of Chemical Physics 37 (1962) 2336–2344.

[137] B. Best, F. Guilak, L. Setton, W. Zhu, F. Saed-Nejad, A. Ratcliffe, M. Wei-denbaum, V. Mow, Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition., Spine 19 (2) (1994) 212–221.

[138] W. Johannessen, D. Elliott, Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression., Spine 30 (24) (2005) 724–729.

[139] G. Ateshian, W. Warden, J. Kim, R. Grelsamer, V. Mow, Finite deformation biphasic material properties of bovine articular cartilage from confined com-pression experiments, Journal of biomechanics 30 (11/12) (1997) 1157–1164. [140] L. Setton, W. Zhu, V. Mow, The biphasic poroviscoelastic behavior of articular

cartilage : Role of the surface zone in governing the compressive behavior, Journal of biomechanics 26 (4-5) (1993) 581–592.

[141] M. Argoubi, A. Shirazi-Adl, Poroelastic creep response analysis of a lumbar motion segment in compression., Journal of biomechanics 29 (10) (1996) 1331– 1339.

[142] R. M. Bowen, Incompressible porous media models by use of the theory of mixtures, International Journal of Engineering Science 18 (9) (1980) 1129– 1148.

[143] W. Ehlers, A. Acartürk, N. Karajan, Advances in modelling saturated soft biological tissues and chemically active gels, Archive of Applied Mechanics