• Aucun résultat trouvé

chez l'enfant

De nombreuses études ont été publiées chez l'adulte rapportant des profils proétomiques différents chez l'adulte apnéique et non apnéique : la revue de Feliciano et al. en 2015 [49] conclut à une hétérogénéité métho­

dologique et de résultats qui empêchent tout transfert en routine.

En 2009, Gozal et  al. ont rapporté une étude de pro­

téomique utilisant des électrophorèses 2D et l'étude en spectrométrie de masse. La concentration urinaire de cer­

taines protéines semble être différente dans la population des enfants apnéiques et non apnéiques  : uromoduline, urocortine­3, orosomucoïde­1 et kallicréine [50–52]. Cette approche reste l'apanage d'une seule équipe et mérite des travaux complémentaires.

Conclusion

Si l'on veut tendre vers « une gestion du risque le plus tôt possible dans la vie des individus » du syndrome métabolique, il faut donc aborder de front un grand nombre de paramètres, comportements et pathologies.

Tableau 6.2 Risque d'obésité et temps de sommeil*

Durée de sommeil par rapport aux recommandations Excessivement

1,92 1,15–3,20 1,60 1,22–2,10 1,43 1,07–1,91

* D'après Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity ? A systematic review and meta-analysis. Obesity 2008 ; 16(2) : 265-74.

RR : risque relatif ; IC : intervalle de confiance.

6. Syndrome métabolique de l'enfant et médecine du sommeil

L'effort de chacun dans son domaine est déjà porteur de progrès et l'intégration physiologique du syndrome peut faire espérer un effet domino positif. Cette physio­

pathologie complexe comporte aussi le risque de l'échec

thérapeutique en cas d'action trop spécifique ou peu coordonnée. Le caractère transversal, multidisciplinaire de la future « somnologie » répond à cette nécessité (figure 6.3).

Bien-être psychosocial

Homéostasie glucidique

Inflammation prolifération

adipocyte

Leptine Ghréline

Cortisol

Inactivité physique

Prise de poids

Obésité

Altération tolérance glucose

Altération balance énergétique

Hormones métaboliques et

neuroendocrines Comportement

alimentaire sucres graisses

SAOS Privation chronique de

sommeil/fragmentation

Mode de vie comportement

Environnement TV, hygiène de

sommeil

Prédispositions génétiques

Statut socioéconomique

Figure 6.3

Privation de sommeil : obésité et syndrome d'apnées–hypopnées obstructives du sommeil (SAHOS).

Source : adapté de Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008 ; 1129 : 287–304.

Syndrome d'apnées–hypopnées obstructives du sommeil de l'enfant

46

Références

[1] Bizard  F. Politique de santé – Réussir le changement. Coll. Santé Social. Dunod ; 2015.

[2] Grundy SM, Hansen B, Smith Jr. SC, et al. Clinical management of metabolic syndrome : report of the American Heart Association/

National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management.

Circulation 2004 ; 109(4) : 551–6.

[3] Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome  : a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention ; National Heart, Lung, and Blood Institute ; American Heart Association ; World Heart Federation ; International Atherosclerosis Society ; and International Association for the Study of Obesity. Circulation 2009 ; 120(16) : 1640–5.

[4] Martino F, Pannarale G, Puddu PE, et al. Is it possible a new defini­

tion of metabolic syndrome in childhood ? Eur Rev Med Pharmacol Sci 2015 ; 19 : 4324–31.

[5] Zimmet P, Alberti G, Kaufman F, et al. The metabolic syndrome in children and adolescents. Lancet 2007 ; 369(9579) : 2059–61.

[6] Alberti G, Zimmet P, Shaw J, et al. Type 2 diabetes in the young : the evolving epidemic : the International Diabetes Federation consen­

sus workshop. Diabetes Care 2004 ; 27 : 1798–811.

[7] Morrison JA, Friedman LA, Wang P, et al. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J Pediatr 2008 ; 152(2) : 201–6.

[8] Chinali M, de Simone G, Roman MJ, et al. Cardiac markers of pre­

clinical disease in adolescents with the metabolic syndrome : the strong heart study. J Am Coll Cardiol 2008 ; 52(11) : 932–8.

[9] Toledo­Corral CM, Ventura EE, Hodis HN, et al. Persistence of the metabolic syndrome and its influence on carotid artery intima media thickness in overweight Latino children. Atherosclerosis 2009 ; 206(2) : 594–8.

[10] Zardast M, Namakin K, Chahkandi T, et al. Prevalence of metabolic syndrome in elementary school children in east of Iran. J Cardiovasc Thorac Res 2015 ; 7(4) : 158–63.

[11] Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syn­

drome in children and adolescents. N Engl J Med 2004 ; 350(23) : 2362–74.

[12] Guyon A, Balbo M, Morselli LL, et al. Adverse effects of two nights of sleep restriction on the hypothalamic­pituitary­adrenal axis in healthy men. J Clin Endocrinol Metab 2014 ; 99(8) : 2861–8.

[13] Tasali E, Leproult R, Ehrmann DA, et al. Slow­wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A 2008 ; 105(3) : 1044–9.

[14] Wilcox  I, McNamara  SG, Collins  FL, et  al. « Syndrome Z »  : the interaction of sleep apnoea, vascular risk factors and heart disease.

Thorax 1998 ; 53(Suppl 3) : S25–8. Review.

[15] Xu S, Wan Y, Xu M, et al. The association between obstructive sleep apnea and metabolic syndrome  : a systematic review and meta­

analysis. BMC Pulm Med 2015 ; 15 : 105.

[16] Seicean S, Kirchner HL, Gottlieb DJ, et al. Sleep­disordered breathing and impaired glucose metabolism in normal­weight and over­

weight/obese individuals : the Sleep Heart Health Study. Diabetes Care 2008 ; 31(5) : 1001–6.

[17] de la Eva RC, Baur LA, Donaghue KC, et al. Metabolic correlates with obstructive sleep apnea in obese subjects. J Pediatr 2002 ; 140(6) : 654–9.

[18] Punjabi NM, Shahar E, Redline S, et al. Sleep Heart Health Study Investigators. Sleep­disordered breathing, glucose intolerance, and insulin resistance : the Sleep Heart Health Study. Am J Epidemiol 2004 ; 160(6) : 521–30.

[19] Lavie  L. Obstructive sleep apnoea syndrome­­an oxidative stress disorder. Sleep Med Rev 2003 ; 7(1) : 35–51. Review.

[20] Iiyori N, Alonso LC, Li J, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med 2007 ; 175 : 851–7.

[21] Aljadeff G, Gozal D, Schechtman VL, et al. Heart rate variability in children with obstructive sleep apnea. Sleep 1997 ; 20(2) : 151–7.

[22] Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on meta­

bolic and endocrine function. Lancet 1999 ; 354(9188) : 1435–9.

[23] Spiegel K, Leproult R, L'hermite­Balériaux M, et al. Leptin levels are dependent on sleep duration : relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 2004 ; 89(11) : 5762–71.

[24] Gottlieb DJ, Punjabi NM, Newman AB, et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med 2005 ; 165(8) : 863–7.

[25] Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration : a 12­year follow­up study of a middle­aged population. Diabetes Care 2005 ; 28(11) : 2762–7.

[26] Liu J, Zhang A, Li L. Sleep duration and overweight/obesity in child­

ren : review and implications for pediatric nursing. J Spec Pediatr Nurs 2012 ; 17(3) : 193–204.

[27] Hart CN, Cairns A, Jelalian E. Sleep and obesity in children and ado­

lescents. Pediatr Clin North Am 2011 ; 58(3) : 715–33.

[28] Cappuccio FP, Taggart FM, Kandala NB, et al. Meta­analysis of short sleep duration and obesity in children and adults. Sleep 2008 ; 31(5) : 619–26.

[29] Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity ? A systematic review and meta­analysis. Obesity 2008 ; 16(2) : 265–74.

[30] Redline  S, Storfer­Isser  A, Rosen  CL, et  al. Association between metabolic syndrome and sleep­disordered breathing in adoles­

cents. Am J Respir Crit Care Med 2007 ; 176(4) : 401–8.

[31] Iglowstein I, Jenni OG, Molinari L, et al. Sleep duration from infancy to adolescence : reference values and generational trends. Pediatrics 2003 ; 111(2) : 302–7.

[32] Williams  JA, Zimmerman  FJ, Bell  JF. Norms and trends of sleep time among US children and adolescents. JAMA Pediatr 2013 ; 167(1) : 55–60.

[33] Harsch IA, Schahin SP, Radespiel­Tröger M, et al. Continuous posi­

tive airway pressure treatment rapidly improves insulin sensitivity in patients with obstructive sleep apnea syndrome. Am J Respir Crit Care Med 2004 ; 169 : 156–62.

[34] Gozal D, Capdevila OS, Kheirandish­Gozal L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am J Respir Crit Care Med 2008 ; 177(10) : 1142–9.

[35] Roche F, Sforza E, Pichot V, et al. Obstructive sleep apnoea/hypo­

pnea influences high­density lipoprotein cholesterol in the elderly.

Sleep Med 2009 ; 10(8) : 882–6.

[36] Nadeem R, Singh M, Nida M, et al. Effect of obstructive sleep apnea hypopnea syndrome on lipid profile  : a meta­regression analysis.

J Clin Sleep Med 2014 ; 10(5) : 475–89.

[37] Dorkova Z, Petrasova D, Molcanyiova A, et al. Effects of continuous positive airway pressure on cardiovascular risk profile in patients with severe obstructive sleep apnea and metabolic syndrome.

Chest 2008 ; 134(4) : 686–92.

6. Syndrome métabolique de l'enfant et médecine du sommeil

[38] Coughlin  SR, Mawdsley  L, Mugarza  JA, et  al. Cardiovascular and metabolic effects of CPAP in obese males with OSA. Eur Respir J 2007 ; 29(4) : 720–7.

[39] Xu H, Yi H, Guan J, et al. Effect of continuous positive airway pressure on lipid profile in patients with obstructive sleep apnea syndrome : a meta­analysis of randomized controlled trials. Atherosclerosis 2014 ; 234(2) : 446–53.

[40] Cappuccio  FP, D'Elia  L, Strazzullo  P, et  al. Sleep duration and all­

cause mortality : a systematic review and meta­analysis of prospec­

tive studies. Sleep 2010 ; 33(5) : 585–92.

[41] Ollila HM, Utge S, Kronholm E, et al. TRIB1 constitutes a molecular link between regulation of sleep and lipid metabolism in humans.

Transl Psychiatry 2012 ; 2. e97.

[42] Weber SA, Santos VJ, Semenzati Gde O, et al. Ambulatory blood pressure monitoring in children with obstructive sleep apnea and primary snoring. Int J Pediatr Otorhinolaryngol 2012 ; 76(6) : 787–90.

[43] Enright PL, Goodwin JL, Sherrill DL, et al. Blood pressure elevation asso­

ciated with sleep­related breathing disorder in a community sample of white and Hispanic children : the Tucson Children's Assessment of Sleep Apnea study. Arch Pediatr Adolesc Med 2003 ; 157(9) : 901–4.

[44] Raff  H, Roarty  TP. Renin, ACTH, and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am J Physiol 1988 ; 254(3 Pt 2) : R431–5.

[45] Somers VK, Dyken ME, Mark AL, et al. Sympathetic­nerve activity during sleep in normal subjects. N Engl J Med 1993 ; 328(5) : 303–7.

[46] Javaheri S, Storfer­Isser A, Rosen CL, et al. Sleep quality and elevated blood pressure in adolescents. Circulation 2008 ; 118(10) : 1034–40.

[47] Sinaiko AR, Donahue RP, Jacobs Jr. DR, et al. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin, and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 1999 ; 99(11) : 1471–6.

[48] Tauman R, Serpero LD, Capdevila OS, et al. Adipokines in children with sleep disordered breathing. Sleep 2007 ; 30(4) : 443–9.

[49] Feliciano  A, Torres  VM, Vaz  F, et  al. Overview of proteomics studies in obstructive sleep apnea. Sleep Med 2015 ; 16(4)  : 437–45.

[50] Gozal D, Jortani S, Snow AB, et al. Two­dimensional differential in­

gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med 2009 ; 180(12) : 1253–61.

[51] Snow A, Gozal D, Valdes R, et al. Urinary proteins for the diagnosis of obstructive sleep apnea syndrome. Methods Mol Biol Clifton NJ 2010 ; 641 : 223–41.

[52] Becker L, Kheirandish­Gozal L, Peris E, et al. Contextualised urinary biomarker analysis facilitates diagnosis of paediatric obstructive sleep apnoea. Sleep Med 2014 ; 15 : 541–9.

Chapitre

Syndrome d'apnées-hypopnées obstructives du sommeil de l'enfant

© 2016, SFORL. Publié par Elsevier Masson SAS. Tous droits réservés

7

PLAN DU CHAPITRE

Enregistrements de type 1 et 2 :

polysomnographie 50

Enregistrements de type 3 :

polygraphie ventilatoire 56

Enregistrements de type 4 59

Nouvelles méthodes 60

Conclusion 60

M. Akkari, P. Franco, F. Chalumeau

Enregistrements du sommeil