• Aucun résultat trouvé

Random Opportunisti Beamforming

2.9 Linear Preoding and Sheduling with Limited Feedbak

2.9.3 Random Opportunisti Beamforming

h ˆ H k h ¯ k

2

under RVQ, the interested

readerisreferredto[10,61℄. Nevertheless,performaneanalysisofmultiuserMIMOshemes

employing RVQ, despite its simpliity, does not often result in simple alulations and

integralswithlosed-formsolution. Insuhase,thefollowingodebookdesignframework

mightbeof interest.

ApproximateCell VetorQuantization

A geometrialframework forvetorquantizationwaspresentedin [56℄. Therein,in order

to evaluatetheareaofno-outageregions,theauthorsdenedspherialaps onthesurfae

of the hypersphere,whih yields agood approximationfor the area of no-outage regions.

Assuming that eah odewordis isotropially distributed in

C M

, the unit norm sphere

U

wherearandomvetor

h ¯ k

liesispartitionedinto

N D

`quantizationregions'(deisionregions)

{ H ¯ i ; i = 1, . . . , N d }

, where

H ¯ i = { h ¯ k ∈ U : | h ¯ H k v i | 2 ≥ | h ¯ H k v j | 2 , ∀ j 6 = i, 1 ≤ j ≤ N D }

.

If the hannel

h ¯ k ∈ H ¯ i

, the reeiver

k

feeds bak the index

i

. Approximate ell vetor quantization results assuming that eah quantizationell is a Voronoi region of spherial

apwiththesurfaearea

1/N D

ofthetotalsurfaeareaoftheunitsphere[62℄. Sine

h ¯ k

is

uniformlydistributedover

U

,wehavethat

Pr { h ¯ k ∈ H ¯ i } ≈ 1/N D , ∀ i

,andthe(approximate) quantizationellisgivenby[55,56,63,64℄

H ˜ i = { h ¯ k ∈ U : 1 − | h ¯ H k v i | 2 ≤ δ } , ∀ i, k

for

δ = (1/N D ) M−1 1 = 2 B D /(M 1)

. Althoughgenerally thereare overlapsin the

approxi-mate quantizationells,thisapproximationisshownthroughnumerialresultstobequite

aurateevenforsmall

N D

[63℄. Furthermore,itanbeshownthatACVQyieldsanaurate lowerbound tothequantizationerrorforanyvetorquantizationodebook[55,56℄.

2.9.3 Random Opportunisti Beamforming

Ifweonsiderthateahuserisallowedtouseonly

B D = log 2 M

bitsforCDIquantization, the optimal hoie for a randomly generated odebook is one that ontains orthonormal

vetors. Therefore, the above vetor quantization-basedtehniques anbe viewed as

ex-tensiontoapopular,alternativelow-ratefeedbaksheme,oinedasrandomopportunisti

beamforming(RBF).

InRBF,

1 ≤ B ≤ M

mutuallyorthogonalrandombeamsaregeneratedatthe

transmit-ter. Thesingle-beamRBF(

B = 1

)wasproposedin[53℄,whilemulti-beamRBF(

B = M

)is

proposedin [53℄andanalyzedin[9℄. Aunitarypreodingmatrix

Q

isgeneratedrandomly

aordingtoanisotropidistribution. Its

M

olumns(vetors)

q m ∈ C M × 1

aninterpreted as randomorthonormal beams. An isotropially distributed (i.d.) unitary matrix anbe

generated byrstgeneratinga

M × M

randommatrix

X

whoseelementsareindependent irularly symmetri omplex normal

CN (0, 1)

, and then perform the QR deomposition

X = QR

,where

R

isuppertriangularand

Q

is ani.d. unitarymatrix. Attimeslot

t

the

transmittedsignalisgivenby

x (t) =

B

X

m=1

q m (t)s m (t)

(2.59)

where

s m (t)

isasalarsignalintendedfortheuserservedonbeam

m

. TheSINRofuser

k

nds the beam

b k

that provides the maximum SINR, i.e.

b k =

arg

max

1 ≤ m ≤B

SINR

k,m

, and

feeds bak the value of SINR

k,b k

in addition to the orresponding beam index

b k

. An

underlyingassumption hereis thattheusersknowtheirownhannel oeients. Inturn,

thetransmitterassignseahbeam

m

to theuser

k m

withthehighestorrespondingSINR, i.e.

k m =

arg

max

1 ≤ k ≤ K

SINR

k,m

. Sinetheusershavei.i.d. hannels,theCDFoftheSINRof

aseleteduser(after sheduling)

F s (x)

isgivenby[9℄:

F s (x) = (F SIN R (x)) K = 1 − e x B σ 2 /P (1 + x) B− 1

! K

(2.61)

Theahievablesumrate(assumingGaussiansignaling)isgivenby

R RBF ≈ E

wheretheapproximationisusedsinethereisaprobabilitythatusermaybethestrongest

userformorethanonebeam.

Asymptotisum-rateanalysisshowedthat,forxed

M

,

P

and

K → ∞

,theaveragesum

rateofRBFsalesas

M log log K

,whihisthesameasthesalinglawoftheapaitywhen

perfetCSIisavailable. Thisisduetothefatthatthe

max

1 ≤ k ≤ K

SINR

k,m

behaveslike

log K

,

whihisthebehaviorofthenumerator(maximumof

K

i.i.d.

χ 2 (2)

r.v.'s),astheinterferene termsbeomearbitrarysmall. Inotherwords,inthelarge

K

regime,RBFwithpartialCSIT

doesnotsuer anyapaitylossduetointer-userinterferenedespiterelyingonimperfet

(salar) CSIT. The intuition behind that sheme is that for large

K

, there exists almost

surelyauserwell-alignedto eahbeam, aswellaswith verylittleinterferene from other

beams. Thus, we have

M

data streams being transmitted simultaneously in orthogonal spatialdiretions and asaresult,full spatial multiplexinggainis exploited. Furthermore,

the authors in [9℄ show that if

M = O(log K)

, then alinear apaity saling with

M

is

guaranteed, and fairnessis ahievedasa byprodut. Here, theterm fairness impliesthat

theprobabilityofhoosinguserswithunequalSNRsisequalized.

A limitationof [9℄isthat it isoptimalfor averylarge,typiallyunrealisti numberof

users. Theperformaneisquiklydegradingwithdereasingnumberofusers. Furthermore,

thisdegradationisampliedwhenthenumberoftransmitantennasinreases. Thereasonis

intuitive: asthenumberofativeusersdereasesand

M

inreases,itbeomesmoreandmore

unlikelythat

M

randomlygenerated,equipoweredbeamswillmathwellthevetorhannels of any set of

M

usersin theell. In Chapters 3and 4weproposeseveral enhanements in order to restore robustness and inrease the sum-rate performane of RBF in sparse

networks. Moreover,RBF is highly sub-optimal at high SNR,i.e.

lim

P →∞

R RBF

log P = 0

, asit

beomesinterferenedominated. Asinterferenesaleswith

P

andannotbeeliminateddue

Scheduled users Step 1

The BS sends M random orthogonal beams

Step 2

Users feed back their maxSINR

Step 3

The BS assigns each beam to the user with the maxSINR for this beam

Figure2.4: ShematiofRandomOpportunistiBeamforming.

to partial hannelknowledgeofxed rate,the multiplexinggainof

M

annotbeahieved

at highSNR.

Enhaned Multiuser Random

Beamforming

3.1 Introdution

In this hapter, we onsider the downlink of a wireless system with a

M

-antenna base

stationand

K

single-antennausers. Alimitedfeedbak-basedshedulingandbeamforming senarioisstudiedthatbuildsuponthemulti-beamRBFframework[9℄presentedindetail

in Setion 2.9.3. The popularity of RBF has been spurred by the fat that it yields the

sameapaitysaling,intermsofmultiplexingandmultiuserdiversitygain,astheoptimal

fullCSIT-basedpreodingsheme. Theoptimalapaitysalingof

M log log K

isahieved

whenthenumberofusers

K

isarbitrarylarge,withonlylittlefeedbakfromtheusers,i.e.

in the form of individual SINR. RBF-based approahes havein fat evolvedin atopi of

researhin itsownrightandmanypossiblestrategiesanbepointedout[6568℄.

The intuition behind the RBF onept is that although the beamsare generated

ran-domlyandwithoutanyaprioriCSIT,forlarge

K

,theseletedgroupofusersexhibitlarge

hannelgainsaswellasgoodspatialseparability,andtheprobabilitythattherandombeam

diretionisnearlymathedtoertainusersisinreased. However,amajordrawbakofthis

tehniqueisthatitsperformaneisquiklydegradingwithdereasing

K

. Furthermore,this degradationis ampliedwhen thenumberoftransmitantennas inreases. As thenumber

ofativeusersdereasesand

M

inreases,itbeomesmoreandmoreunlikelythat

M

ran-domly generated, equipowered beams will losely math the vetor hannels of any set of

M

users. This situation ould easily be faed astra is normally bursty with frequent

silentperiodsindata-aessnetworks,thustheshedulermaynotountonalargenumber

ofsimultaneouslyative usersat alltimes. Another limitation ofRBF is that it beomes

interferenedominatedathighSNR,anditsmultiplexing gainvanishessineinterferene

-whihsaleswithSNR -annot beeliminatedwithxed-ratepartialCSIT.

Intherstpartofthishapter,weprovideanalytisum-rateexpressionsforonventional

random beamforming [9℄and deriveapaitysaling laws at high SNR. Mainimpliation

ofourresultsisthat inertainasymptotiregimes,itisbeneial toreduethenumberof

ativebeams,i.e. thebeamsalloatednon-zeropower.

Intheseondpartofthishapter,weinvestigatesolutionstoirumventthelimitations

of RBF for

K

dereasing. We introdue a new lass of random unitary beamforming-inspiredshemesthatexhibitsrobustnessinellswith-pratiallyrelevant-lowtomoderate

numberofusers(sparsenetworks),whilepreservingthelimitedfeedbakandlow-omplexity

advantagesofRBF.Onerstkeyideaisbasedonsplittingthedesignbetweenthesheduling

andthenalbeamomputation(or"userserving")stages,thustakingprotfromthefat

the numberof usersto beserved at eah shedulingslot ismuh lessthan thenumberof

ativeusers(i.e.,

B ≤ M << K

). Intheshedulingphase,anitefeedbakratesheduling

shemeispresentedexploitingtheoneptofRBF.WeusetheSINRreportedbyallusers,

whihismeasuredupontheinitialpreodingmatrixasabasisonwhihtofurtherimprove

the designofthe nalbeamsthat will beused to servetheseletedusers. Ingeneral, the

initial preoderanbedesignedbasedonanyapriorihannelknowledge;howeverherewe

assumethattherst-stagebeamsaregeneratedatrandomasin [9℄sinenoaprioriCSIT

isassumed. Onethegroupof

B (1 ≤ B ≤ M )

usersispre-seletedusingtheSINRfeedbak ontherandombeams,additionalCSITmayberequestedtoonlytheseletedusergroupin

order to designthenal preoder. More speially, wemakethefollowing proposalsand

ontributions:

Theseond-stagepreodingmatrixmayrequirevariablelevelsofadditionalCSIT feed-baktobeomputed,dependingon designtargets, andthenal beamswill improve

overtherandom beamforming used in [9℄. In partiular, while weexpet littlegain

over[9℄forlarge

K

,signiantthroughputgainappearsforsparsenetworksin whih

theinitialrandombeamformermaynotprovidesatisfatorySINRforall

M

users.

Ifwerestritourselvestotheasethattheinitial beamdiretionsdonothange,we

propose then to adapt the power and the numberof ative beams aordingto the

numberofusers, theaverageSNR andthe numberoftransmit antennas asameans

tomaximizethesystemthroughput.

Inonevariantoftheproposeddesigns,westudyapoweralloationshemearossthe

B

(initially equipowered) random beamsshowing substantial apaity improvement over[9℄ for a wide range of values of

K

. The sheme requires

B ≤ M

real-valued salar values to be fed bak from eah of the

B

pre-seleted users. For a 2-beam system,the global optimalbeampowersolutionis provided in losed-form, whereas

forthegeneral

B

-beamase,solutionsbasedoniterativealgorithmsareproposedand

numeriallysimulated.

Inanotherproposed robustvariantofRBF, noadditionalCSITfeedbakis required

during the seond stage. Instead, weexploit the SINR information obtained under

therandombeamsintherststage inorderto notonlyperformshedulingbutalso

to rene thebeamforming matrix itself. An on/o beam powerontrol is proposed

as a low-omplexity solution, yielding a dual-mode sheme swithing from TDMA

areativewithequalpower. Thethroughputgainsover[9℄areshowntobesubstantial

forhighSNRand low

K

values.