• Aucun résultat trouvé

Beam Power Alloation for more than two beams

3.7 Beam Power Control with Beam Gain Information

3.7.2 Beam Power Alloation for more than two beams

Forthegeneralaseof

B > 2

beams,ananalytialtreatmentof(3.20)doesnotunfortunately seemtratable, beauseofthe lakofonvexity. Therefore, weproposehereasuboptimal

- yet eient- iterativealgorithm that aims to inrease systemthroughput by alloating

poweroverthebeams. Thealgorithmtriestoidentifytheextremepointsofthesumrateand

ndthepowervetor

P

thatmaximizes(3.20). Theextremumofthesumratefuntionan

be foundanalytially using Lagrangianduality theory and onsidering the

Karush-Kuhn-Tuker(KKT)onditions. LetWloG

B = M

anddenetheobjetivefuntion

G (P) =

Inordertosolvetheoptimizationproblem

max

wemayformulatetheLagrangianfuntion as

L ( p , µ, ν) = G ( p ) +

where

ν ≥ 0

and

µ ≥ 0

aredualvariables. Theostfuntion isneitheronvexnotonave

withrespetto

{ P m } M m=1

,thereforeaglobaloptimalsolutionforanyhannelmodelishard

toobtain. However,KKTonditionsareneessaryforextremum,whether loal orglobal,

of

G (P)

. Bydierentiatingwithrespetto

P m

,wend

∂ G (P)

∂P m

+ ν m − µ = 0, 1 ≤ m ≤ M

(3.33)

P m ≥ 0, 1 ≤ m ≤ M P − X

m

P m ≥ 0

TheKKT onditionsare neessaryand suient ifand onlyif the Hessian of (3.32) is a

negativedenitematrix. Forsuhlassofhannels,aglobalmaximumisidentiedthrough

theKKTonditionsabove. Forgeneralhannels,theKKTpointsanbeaglobalorloal

maximum,asaddle-point,orevenaglobalorloalminimum.

Iterative BeamPower Control Algorithm

Performingtransformationoftheprimalproblem(3.20)intoitsdualandsolvingthelatter

byKKTonditionsdoesnotguaranteeglobaloptimalprimalsolution. Astheprimalisnot

aonvexoptimizationproblem, thereouldbeaduality gap. Nevertheless,weproposean

iterativealgorithm,inspiredbytheiterativewater-lling(IWF)algorithm[73℄andtheKKT

solutionof (3.31), as ameans to identify the extremepointson the boundary of

P M

. In

thisIterativeBeamPowerControlAlgorithm,eahuseriterativelymaximizesitsownrate

byperforming single-userwater-llingand treatingthemultiuserinterferenefromall the

otherusers(beams)asnoise. Clearly,ouralgorithmdoesnotseektondaglobaloptimum,

howeveritanprovidesigniantsum-rateimprovement.

AlgorithmI Let

P (0)

betheinitialpointand

I (P (i) ) = σ 2 + P

j 6 =m P j (i) η k j j

bethe

inter-ferenefuntionat

i

-thiteration. Thestepsof thealgorithmaresummarizedin Table3.1.

IterativeBeamPowerControlAlgorithm

Step1(Initialization)Set

P (0) = 0

Step2Foriteration

i = 1, 2, . . .

,ompute

∀ k m ∈ S

:

λ (i) k m = I (P η km m (i−1) ) = η kmm

σ 2 + P

j6=m P j (i−1) η kj j

Step3(Water-lling): let

π (i)

bethesolutionof:

π (i) =

arg

max

π ≥ 0, P

m π m ≤ P

X

k m ∈S

log 2

1 + π m λ (i) k m

Step4(Update): let

P (i) = π (i)

Table3.1: IterativeBeam PowerControlAlgorithmforSum-RateMaximization

Someobservationsareinorder:

At eah iteration

i

, one

λ (i) k m = η km m

2 + P

j 6 =m P j (i 1) η km j )

is alulatedfor eah user

k m

using

P j (i 1) , j 6 = m

,itiskeptxedandtreatedasnoise. Giventhetotalpoweronstraint

P

,the

`water-llingstep'isaonvexoptimization problem similarto multiuserwater-llingwith

ommonwater-llinglevel. Thus,alltransmitpowersin

P

assignedtobeamsarealulated

simultaneouslyinordertomaintainaonstantwater-llinglevel. Thealgorithmomputes

iteratively thebeam power alloation that leadsto sum rate inreaseand onverges to a

limitvaluegreaterorequaltothesumrateofequalpoweralloation. Formally,thepower

assignedtobeam

m

atiteration

i

yields

P m (i) = [µ − 1/λ (i) k m ] +

,with

X

k m ∈S

[µ − 1/λ (i) k m ] + = P

,

where

µ

is theommonwater-llinglevel. Thebeampowerontrol for strategy3assigns transmitpowersoverthebeamsaordingto theiterativesolutionwhen theahievedsum

rateishigherthanthatoftheboundarypoints.

Convergene Issues As stated before, no global maximum is guaranteed due to the

lakofonvexityofsum-ratemaximizationproblem. Therefore,wedonotexpetthat the

onvergene pointof theiterativealgorithm begenerallyaglobal optimal powersolution.

Interestingly, it an be shown that the onvergene leads to a Nash equilibrium, when

onsidering that eah userpartiipatesin anon-ooperativegame. Theonvergeneto an

equilibrium pointanbeguaranteedsine

I ( P )

isastandardinterferenefuntion [73,74℄.

The proof of existene of Nash equilibrium follows from an easy adaptation of the proof

in[75℄. However,theuniquenessoftheseequilibriumpointsannotbeeasilyderivedforthe

aseofarbitraryhannels.

Letusnowderiveanalytiallytheonvergenepointofthe2-beamaseusingthe

itera-tivealgorithmandompareitwiththeoptimalbeampowersolutiongivenbyTheorem3.2.

Atthesteadystate,sayiteration

s

,wehavethat

( P 1 (s) = µ − 1/λ (s) k 1

fromthesumpoweronstraint. Upononvergeneofthealgorithm,

wehave that

P i (s) = P i (s 1) , i = 1, 2

, whih results into a systemof equations

AP T = b

It an be observed that (3.35) is dierent from (3.25a). Fortunately, it still provides a

heuristipoweralloationalgorithmandasshownthroughsimulationsinSetion3.9,there

is not a signiant redutionin sum rate by alloating the powerover beams using this

algorithm.

Reinterpretationin termsofSuessiveConvex Approximation

Inthis setion, weresortto GeometriProgramming (GP) [72℄ whih representsthestate

beome averypopular and powerfultehnique asit provides eient solutions in power

ontrol problems with non-linear objetive funtions and spei SINR onstraint, by

re-vealing thehidden onvexitystruture. Furthermore,the proposed solutionsareveryfast

and numerially eient, often exhibiting polynomial time omplexity. In partiular, we

apitalizeontheso-alledsuessive onvexapproximation (SCA)tehnique[72,76℄,whih

isshowntobeonvergentandturnsoutthat itoftenomputesthegloballyoptimalpower

alloation. Interestingly, the heuristi iterative algorithm proposed in Table 3.1 nds an

equivalentinterpretation,sineapplyingSCAtoourbeampowerontrolproblemresultsin

thesameiterativealgorithm. Werstlowerbound

log(1 +

SINR

)

intheobjetivefuntion

forsome

a

and

b

[76℄:

log(1 +

SINR

) ≥ a log(

SINR

) + b

(3.36)

Applying(3.36)into theoptimizationproblem(3.20)resultsintherelaxation

max P

whih stillremainsanon-onvexproblemsinetheobjetivefuntion isnotonavein

P

.

However,usingthetransformation

P ˜ m = log(P m )

wehavethefollowingonave

maximiza-tionproblem:

DeningtheLagrangianfuntion as

D ( ˜ P , λ) =

weonsiderthedualproblem(3.38)thatis

min

λ max

P ˜ D ( ˜ P, λ)

. Thedualsolutionoftheinner

maximizationproblem is given by the stationary point of the Lagrangian funtion (3.38)

with

λ

xed. Dierentiatingwrt

P ˜ m

andapplyingtheinversetransformation

P m = e P ˜ m

we

formthefollowingxed-pointequation

∂ D

Remarkably, this xed point-equationprovidesthe samepoweralloation algorithm asin

Table3.1for

a m = 1, ∀ m

(wlog)where thepowersanbeupdatediterativelyusing(3.39).

However,wenotethatazerodualitygapannotbeguaranteedformallyduetolakof

on-vexity,implyingthat notheoretialargumentanshowonvergenetotheglobaloptimum

forgenerallassofhannels.