• Aucun résultat trouvé

Danslecadredecechapitre,nousnoussommesintéressésàlarégulationthermiquematernelleet aucomportementdethermorégulation.NousnoussommesdoncconcentréssurVapsis(Article3) espèce pour laquelle nous disposons de données écologiques très détaillées. Ces aspects ont en partie été étudiés en chez A childreni (gravidité et incubation). La prédation est une pression écologique très forte qui influence les stratégies d’exposition et l’activité notamment chez les squamates.Suiteuneattaquel’utilisationd’unrefugeestunmoyenefficacepoursesoustraireaux prédateurs mais peut entraîner des coûts physiologiques avec notamment un abaissement de la températurecorporelle.

Chezlessquamateslapriseenchargematernelledesembryonsestgénéralementassociéeà une augmentation des activités de thermorégulation et à un changement des préférences thermiques(chapitre1).Lagestationpeutaugmenterlesrisquesdeprédationavecuneexposition renforcée et des contraintes locomotrices dues à la charge physique. Dans ce contexte, il est important de comparer les stratégies comportementales des femelles selon leur état reproducteur (gestantes ou non) afin d’examiner dans quelle mesure l’état de gestation modifie les tactiques d’exposition. Par ailleurs, considérant l’évolution des contraintes de la gestation, on peut faire l’hypothèsed’unajustementcomportementalmaternelaucoursdelagestation,liéd’unepartaux besoinsthermiquesembryonnairesmoindresenfindegestationetd’autrepart,laprogressiondes contraintesaucoursdutemps.

Pourcela,nousavonsréaliséunensembledesuiviscomportementauxàdifférentsstadesde la gestation (début, milieu et fin). Une quatrième session a été réalisée pour les femelles reproductrices après la miseͲbas. La distinction des grandes périodes du développement a été renduepossiblegrâceausuiviéchographiquedesfemellesreproductrices.L’étudeaétémenéesur 11 femelles reproductrices et 19 femelles nonͲreproductrices. Les femelles étaient équipées d’enregistreursdetempératureminiaturisés(1pointdetempératuretoutesles2minutes).Cecinous a permis de reconstruire les profils précis de thermorégulation en situation de «confort» (thermorégulation libre et sans dérangement). Nous avons ensuite mesuré le comportement d’utilisationderefugesuiteàunesimulationd’attaquedansdesenclosstandardisés(cagede1mde long,équipéed’unelampefournissantunpointchaud,etd’unabrisituéàl’opposé,danslapartiela plus fraîche). L’ensemble de la session était filmé afin de quantifier ultérieurement les

individus suite aux attaques (séjour dans le refuge, observation, sortie) et évalué les coûts thermiquesdel’utilisationdurefuge.

Lesrésultatsobtenusonttoutd’aborddémontréquelesfemellesreproductricesn’ajustaient pas leur comportement au cours de la gestation: elles maintiennent des préférences thermiques préféréesplusélevées(33.45°C)quecellesdesfemellesnonͲreproductrices(30.62°C),etbienmoins variables, tout au long de la gestation. Par ailleurs, la préférence thermique et la qualité de la thermorégulationmaternellenedépendentpasdunombredejeunesvivants.

Ensituationderisquedeprédation,lesfemellesreproductricespassentla majoritédeleur temps en thermorégulation alors que les femelles nonͲreproductrices privilégient l’évitement des risques.  Suite à une attaque, les femelles reproductrices sortent plus rapidement du refuge et passentmoinsdetempsenobservationavantdeprendreladécisiondesortie.Cescomportements nesontpasdépendantdustadedegestationoudelatailledelaportée.Parcontraire,lesfemelles nonͲreproductrices,séjournent4foisplusdetempsdansleurrefugeaprèsuneattaque,etajustent leurcomportementselonlarépétitiondesattaques.Cecontrastesembleétroitementliéauxcoûts thermiquesassociésàl’utilisationderefuge.Lesfemellesreproductricestolèrentunabaissementde températureplusfaibleavantdereprendrelesactivitésdethermorégulation. Lefaitquelesfemellesn’ajustentpasleurcomportementaucoursdelagestationselonla fécondité peut semble contre intuitif. Concernant la fécondité, ce résultat souligne le caractère spécifiquedessoinsprénatauxetducaractèrenonͲdépréciabledelarégulationthermique.Eneffet, latempératureoptimaledépenddelasensibilitéspécifiquedudéveloppementembryonnairemais n’est pas affectée par la fécondité (les embryons partagent les mêmes besoins élevés). La femelle doitdoncinvestirdelamêmemanièredanslathermorégulationquelquesoitlenombredejeunes. L’absence d’ajustement selon le stade de gestation laisse présumer d’autres bénéfices d’une thermorégulation renforcée. Ainsi, la femelle pourrait tirer profit d’une miseͲbas précoce pour reprendresesactivités ets’affranchir«aux plusvite»des contraintesénergétiques etécologiques de la gestation.  Enfin, des stratégies compensatoires basées sur la sélection de l’habitat peuvent exister.Eneffet,lesfemellesgestantessurleterrainsontrelativementcryptiquesetchoisissentdes microͲhabitatsspécifiquespermettantàlafoislathermorégulationetunefuiterapide(bordurede

Runninghead:pregnancy,thermoregulationandescapetacticsinsnakes

Dedicatedmothers:pregnantvipersinvestinnonͲdepreciableand

stageͲindependentcaretotheirembryos

LORIOUXSophie1,3,LISSEHélène1andLOURDAISOlivier1,2

1Centred’EtudesBiologiquesdeChizé,CNRSUPR1934,79360VilliersenBois,France 2SchoolofLifeSciences,ArizonaStateUniversity,Tempe,AZ85287Ͳ4501,USA 3UniversitédePoitiers,40AvenuedurecteurPineau85022Poitiers,France Correspondance: SophieLorioux,CEBCͲCNRSUPR1934 79360VillersenBois,FRANCE Phone:+33(0)549093552 Fax:+33(0)549096526 EͲmail:lorioux@cebc.cnrs.fr Tables:2 Figures:5 Forconsiderationin:FunctionalEcology

Abstract

Escapetacticsattractedconsiderableinterestinectothermsandoptimalrefugeuseshouldbalance thebenefitsderivedfromofpredatoravoidancewithphysiological/opportunitycostsofsheltering. In viviparous squamates, pregnancy imposes major thermoregulatory shift and should influence refuge use. Because embryos are thermally sensitive, pregnant females should minimise thermal costsandrefugeuseinresponsetoapredatorattack.However,embryonicsensitivityandmaternal constraints vary dramatically during pregnancy and these changes should modulate the costsͲ benefitsbalanceofrefugeuse.Femalesshouldthermoregulatemoreatearlystages(i.e.particularly sensitive)whileincreasedpredatoravoidanceareexpectedatlatepregnancystagesduetoincreased physical burdening and locomotor impairment. In addition, the fecundity dependence of maternal behaviourdeservesspecificinteresttoaddresspossibleadjustmentstocurrentreproductiveeffort. WeexperimentallystudiedthermoregulationinpregnantandnonͲreproductiveaspicvipers, Viperaaspis,atdifferentstagesofgestation(first,midandlastthird)intwosetsofconditions.We determinedpreferredbodytemperaturesinacostfreeenvironmenttotestforstageandfecundity dependenceofmaternalthermalpreference.Then,weexaminedbehaviouralresponsestorepeated predatoryattacks.Pregnantfemalewereextremelyaccuratethermoregulatorswhencomparedto non reproductive and preferred body temperature was not dependent of litter size or gestation stage.Aftersimulatedattacks,pregnantfemalesalwaysminimisedrefugeuseandthermaldeviation from their preference. In turn, non reproductive females avoided exposure and modulated their responsetorisklevel.Contrarytoourprediction,pregnantfemalesdidnotadjusttheirbehaviour over the course of gestation suggesting that stage independent benefits may be derived from accentuatedmaternalthermoregulationandexposure.

budgetandbehavior.Escapetacticsandrefugeusehaveattractedconsiderableinterestnotablyin an optimality context (Ydenberg and Dill 1986). Behavioral decisions under the risks of predation respondtoconflictingdemands(timeandenergy)andshouldbalancethefitnesscostsandbenefits of predator avoidance (Sih 1980, Lima and Dill 1990; Cooper and Fredericks 2007; Cooper 2009a). These behavioural decisions will depend on external environmental cues, the assessment of predationrisk(BouskilaandBlumstein1992;Sih1997;Amoetal.2004a;Amoetal.2004b;Martin and López 2005) but also physiological requirements. Although predation risk can be reduced by selecting refuges that offer effective protection (Bauwens et al. 1999; Cooper et al. 1999; Goldsbroughetal.,2004;CooperandWilson,2008).SomelifeͲhistorystagesandsomephysiological and behavioral processes require the decision to come out of a refuge. Thus in ectotherms, this decision and emergence time from refuges is predicted to result from external factors such as external temperatures (Cooper 2009b), food availability (Martín et al. 2003) and individual physiological factors (e.g. body temperature, body mass loss, Martín et al. 2003; Amo et al. 2003; MartínandLópez1999).

Temperatureisamajorenvironmentalparameterforectothermssinceitinfluencesdirectly bodytemperatureandtherebymajorphysiologicalprocessesandfitnessrelatedperformancesuch assprintspeed(HueyandKingsolver1989;Angilletta2009).Behavioralthermoregulationconstitutes a robust mean to maintain body temperature in an optimal range (Huey and Slatkin 1976). Meanwhile, thermoregulation usually increases exposure to predators and predation risks (Pianka andPianka1970;Hertzetal.1982;SchwarzkopfandShine1992; Webb and Whiting 2005). Hence optimal thermoregulation strategies should minimise ecological risks and maximise physiological benefits (Huey and Slatkin 1976).   Usually, terrestrial squamate reptiles escape from predators by fleeing into the nearest refuge and optimal use of shelters implies maximizing predator avoidance whileminimizingthermalcosts(Cooper1998;MartinandLópez1999;Downes2001).Indeed,under temperateclimates,sinceambienttemperatureisgenerallylimiting,naturalsheltersareusuallytoo cool and thus provide lower thermal conditions than the optimal temperature for performance (Martin,2001).Thereforerefugeuseisoftenassociatedwiththermalcostssinceitwillinduceatime dependent decrease in body temperature. In that context, emergence behavior should balance a decrease of predation risk over time against the opportunity costs for other activities and thermal costs(Martín2001;Amoetal.2007).

Thompson2007).Sincesquamatesarepredominantlylecithotrophic(StewartandThompson2000; Blackburn2005),pregnancyismainlyassociatedwiththermalinfluences(TinkleandGibbons1979; Shineand Harlow1993;Shine1995; Bernardo 1996). Especially, viviparous gravid females typically display intense basking behaviors and shift in their thermal preferences (Robert et al. 2006; Shine 2006;Webbetal.2006),usuallyselectinghighertemperatures.Modifiedmaternalthermoregulation is predicted to be beneficial either by accelerating developmental rate (Tinkle and Gibbons 1977; ShineandBull1979;Shine1983b)andimprovingoffspringphenotype(Shine1995;Shine2004;Shine 2006b). We expect that thermal costs of refuge use should be more important when females are gravid due to embryos thermal needs. Meanwhile pregnancy is associated to significant physical mass burdening (Shine 1980; Seigel et al. 1987; Brown and Shine 2004), leading to locomotor impairment(LimaandDill1990;LeGalliardetal.2003).Thus,accentuatedthermoregulatoryneeds (increased exposure), combined with locomotor impairment are likely to increase predation risk. Hence gravid females will have to trade thermoregulation benefits with predation risks and adjustmentsareexpectedtooccur.

One major aspect in addressing reproductive status is to consider the dynamic nature of pregnancy and associated embryonic and maternal constraints. For instance, embryonic developmentisamultiphaseprocessthatinvolvescomplexintegratedsteps(Andrews2004).Early embryonic stages (general organization, including neurulation and organogenesis) are particularly susceptibletoenvironmentalperturbationduetostrongdevelopmentalconstraints(Andrews2004). In an experimental study on the aspic viper (Lorioux et al. submitted) we demonstrated that cold maternalbodytemperatureinthefirstthirdofgestationstagesledtomultipledetrimentaleffects andprofoundlyalteredoffspringphenotype.Inturnthesametreatmentappliedinthelastthirdhad onlylimitedeffectonoffspringphenotypicquality.Therefore,wepredictthatthetradeͲoffbetween refuge use and thermoregulatory needs should vary according to the gestation stages. Specifically, females should especially favor thermoregulation and minimize refuge use during early (i.e. thermallysensitive)stagesrelativelytolatterstages.

Meanwhile pregnant females face high energetic costs during gestation due to modified baskingactivityandincreasemetabolicdemand(Schultzetal.2008).Energeticrequirementsimpose

Inviviparoussquamates,littersize canvary considerablywithinagivenspecies (Seigel and Ford1987;Bonnetetal.2001;Lourdaisetal.2002).Thuswemaywondertowhatextentfemalewill adjusttheirthermoregulationandescapetacticsduringpregnancyandaccordingtotheirfecundity. Recentstudiesofferconflictingresultssuggestingeitheraninfluenceoffecundity(Bleuetal.2011) ornot(Ladymanetal.2003).Howeverthermoregulationdatawereeitherpunctualorderivedfrom the field and detailed study in standard condition are thus required to address the impact of fecundity.

Inthisstudy,weassessedthermoregulationandresponsetosimulatedpredatoryattacksin pregnantandnonͲpregnantaspicviper(Viperaaspis)atdifferentstagesofgestation(first,midand lastthird).Wepredictedthat:

i)Gravidfemalesshouldthermoregulatemoreaccuratelythannonreproductiveandpreferredbody temperature(Tset)shouldbeindependentofthenumberofdevelopingembryos.

ii)Duetoembryonicrequirements,gravidfemalesshouldspendmoretimeinthermoregulationthan nonͲreproductivefemalesandemergesoonerformtherefugeafterasimulatedattacktominimize thermalcosts.

iii)Gravidfemalesshouldadjusttheirinvestmentinthermoregulationoverpregnancy.Weexpected higher behavioral investment at early (i.e. thermally sensitive) stages. In turn, lower thermoregulatoryinvestmentandincreaseinpredatoravoidanceareexpectedatlaterstages MaterialandMethods Studyspeciesandbreeding Studyspecies WeusedalongͲtermcaptivecolonyofaspicviper(Viperaaspis).Theaspicviperisasmallvenomous snakeinhabitingthewesternͲPalearticregion.Inthisspecies,femalesaretypicalcapitalbreederand accumulate energy over extended period before engaging into reproduction (Bonnet et al. 2002; Lourdaisetal.2002b).Thisreproductivestrategyleadstoafrequencyofreproductionevery2to3 years.Duringgestation,femalesexperiencehighenergeticconstraints(Ladymanetal.2003,Bonnet et al. 1999; Bonnet et al. 2002), while being anorexic (Lourdais et al. 2002a), inducing significant emaciation after parturition. Gravidity is associated with a shift in thermal preferrenda with an

Breedingprotocol

Aftera2monthwinteringperiodat8°C,30malesand30femalesweretransferredinexperimental cages (100cm x30cmx35cm).  The front side was made in glass allow observations of the snakes (seebelow).A75Wlightbulbwasplacedononesideofthecage(10cmhigh),creatingathermal gradient(18Ͳ41°C)inthecage.Thislightsourceallowedsnakestobaskfor6hrsperday,between10 a.m.and4p.m.Roomtemperaturewasheldconstantat18°C.Ontheoppositeside(coldestzone), an opaque PVC shelter (half cylinder, diameter = 15 cm, length =37 cm) was provided with two circular opening (diameter) facing the light source, and allow snakes to hide, and was used as nocturnalrefuge(Lorioux,Pers.Obs.).

Two males and 2 females were housed in each experimental cage. Each day, one male was transferredandonenewmalewasintroducedtothe2femalestoallowcourtshipandmating.This protocolwasappliedduring4weeks.

Attheendofthebreedingperiod,13femalesengagedintoreproduction(“R”females)and19were not reproductive (“NR” females). Ovulation was determined by ultrasonography (Micromaxx, SonoSite, Inc., Bothell, WA, USA). Vipers are low energy specialist and low frequent feeders. Long term fasting is ecologically relevant notably during pregnancy. To avoid confounding effects of nutritionalbalance,allfemaleswereunfeduntilthecompletionoftheexperiment.

Pregnancymonitoring

Behavioural trials were repeated over 3 successive sessions corresponding to first, second and last third of pregnancy. These periods are relevant since they match with important step in embryonic lifeincludingorganisation,growthandfoetallife(detailedmethodologyinLoriouxetal.submitted). Embryonic development was monitored by regular ultrasonography of females Vipera aspis. Embryonic stage was estimated considering the amount of residual yolk and developmental tables (Hubert and Dufaure 1968). An additional session was realized two weeks after parturition in reproductivefemales.

assigned a specific number that allows us to correct temperature data when they were got back. Dataloggerswereretrievedbymanualregurgitation(60%)orwerespontaneouslyregurgitated(40 %)afteronaverage15days.

EXPERIMENTALDESIGN

For each session, experiments were conducted over 6 consecutive days. On the first two days we assessed response to simulated attacks. During the last 4 days, females were left undisturbed in a costͲfreeenvironmenttoassessthermalrequirements.

i)Responsetosimulatedpredatorattack

Repeated predatory attacks are known to modify subsequent behavioral decisions (Martín andLópez2001)andweperformedtwoconsecutivepredatorattacksduringeachtrial.Before the experiment,femaleswerecooledonehourat16°Cinaclimaticchamber(LMSLDT,Sevenoaks,Kent, UnitedKingdom;stability±1°C)tocontrolforinitialbodytemperature.Lightsourcewasswitchon1 hour before experiments start to ensure that temperature in the basking section reached its maximum (42°C). Females were then introduced into the experimental cages. The video recording startedandtheexperimenterlefttheroom.Then,90minuteslater,theoperatorsimulatedthefirst attackusing60cmlongpliers(endobabcock)touchingthebackofthesnakeandforcingaretreatin therefuge.Asecondsimulatedattackwasrealized60minuteslaterusingthesameprocedure.The trialwasstopped60minuteslater.AlltrialswererecordedwithaHDcamcorder(Sony,HDRXR100). Betweentrials,cagesandshelterswerecleanedwith70%alcoholtoremoveresidualodors. Inordertoaccountforpotentialvariation,twotrialswereperformedforeachindividualon2 consecutivedays(oneinthemorningandoneintheafternoon)andvalueswerethenaveraged.This procedurewasrepeatedforthethreesessions(early,midandlastthirdofpregnancy).Foreachtrial, wemeasuredasetofparameterdescribedbelow. ͲGeneralbehaviour: Foreachindividual,weassessedtheproportionoftimespentinexploration,thermoregulationand undertheshelter.Wealsoconsideredtheproportionofindividualsalreadyhiddenatthetimeofthe simulatedattacks ͲResponsetoasimulatedattack:

scanning time (time between head emergence and emergence of the midͲbody) and time for full emergence (time between entering the refuge and emergence of the whole body). Finally, we derivedtheproportionofanimalsstayingintherefugeafteranattack(noemergence). ͲThermalcostsofrefugeuse: Weassessedthermalcostsofrefugeusebycalculationofthedifferencebetweenbodytemperature atthetimeoftheattackandminimalvaluesubsequentlyrecordedundertherefuge. ii)ThermoregulationinacostͲfreeenvironment Snakesweremaintainedinsimilarexperimentalcages(100cmx30cmx35cm)butthefrontsideof the cage was covered to avoid any visual disturbance. Additional shelters (tiles) were provided to facilitate movement between the main shelter and the thermoregulation area. Snake were maintained undisturbed for 4 consecutive days and water was provided ad libitum. Light source provided 6hrs of basking opportunities between 10 a.m. and 4 p.m. Room temperature was held constantat18°C. 

WecomparedTbprofilesofthereproductivefemaleswithnonͲreproductivefemaleshoused underthesameconditionsoverthe4consecutivedaysinacostͲfreeenvironment.Wecalculatedthe mean dailyTbduringthebasking period (between10a.m. and 4 p.m) for each individual. We also consideredtwoderivedvariablestoassesswithinfemaleandamongfemalevariationinTb.First,we determined the extent of withinͲfemale daily Tb variation by examining Tb standard deviation calculatedforeachdayandeachfemale.Second,tomeasuretheinfluenceofreproductivestatuson interͲfemalevariationinTb,wecalculatedtheabsolutedeviationbetweentheindividualmeandaily TbandthegrandmeanofdailyTbofthegroupoffemalessharingthesamereproductivestatus.

Weusedtheboundsofthecentral50%ofselectedTbforeachindividualwhentemperature undertheheatsourcewasnotlimitingasourmeasureofTset(ChristianandWeavers1996;Hertzet al.1993).Weusedbodytemperaturebetween12a.m.and4p.m.

Statisticalanalyses

analyzedusinglinearmodelsforlongitudinaldata.Proportionoffemalesalreadyundercover(atthe timeofeachsimulatedattack)wasanalyzedusingʖ²tests.Tukeyposthoctestswererealizedforall pairwisecomparisons.Significancewasdeterminedatalpha<0.05foralltests.Valuesarepresented asmean±se. Results 1)ThermoregulationinacostͲfreeenvironment

Mean Tb during the basking period was influenced by reproductive status, day, session and an interactionbetweenthethreefactors(Table1;Fig.1).MeanTbwashigherinpregnantfemales(Tb= 33.46±0.71°C)comparedtononͲreproductiveones(Tb=30.63±4.22°C).

Considering only reproductive females, thermoregulation was strongly modified after parturition. Preferredmeantemperaturemeasuredinpostreproductivefemalesweremuchlower(Tb=27.33± 6.19°C;sessioneffect:F2,360=2273.140,p<0.001;Fig.1)thanduringpregnancy.

Table1.Effectsofreproductivestatusandtimeonbodytemperature(Tb)variation,inViperaaspis.d.f.: Degreesoffreedom;SS:Sumofsquares.

Traits Factors d.f S.S F-ratio P-value

Reproductive Status (A) 1 28 32.852 < 0.001

Day (B) 2 336 6.562 < 0.001 Session ( C) 2 336 148.068 < 0.001 A*B 3 336 1.763 0.151 A*C 2 336 55.577 < 0.001 B*C 6 336 69.812 < 0.001 A*B*C 6 336 12.834 < 0.001

Reproductive Status (A) 1 28 50.987 < 0.001

Day (B) 3 336 1.380 0.249 Session ( C) 2 336 0.489 0.614 A*B 2 336 0.583 0.627 A*C 2 336 0.231 0.794 B*C 6 336 0.552 0.768 A*B*C 6 336 0.273 0.949 Mean daily Tb (°C) Standard deviation (°C)

mean by the grey circle. Interval between 25 and 75% quartiles is represented by boxes and range by whiskers.Opencirclesareoutliers.

Tb standard deviation was influenced by reproductive status (Table 1; Fig.2). Pregnant