• Aucun résultat trouvé

Expériences d’incorporation de tritium

Les mêmes types de solution mère que lors des expériences sur le peptide H3122-135 sont utilisés, à l’exception de 3H-BPASS (2 mM et 1072 MBq.mL-1 ; AS = 536 GBq.mmol-1) ou (2 mM et 1258 MBq.mL-1 ; AS = 629 GBq.mmol-1).

Dans la glace, une solution est réalisée en ajoutant 100 µL de solution de 3H-BPASS (200 µM final), 400 µL ou 640 µL de tampon phosphate pH 7,9 10 mM, respectivement avec ou sans ajout de 140 µL de solution de H3122-135 (400 µM finale), puis 360 µL d’hAsf11-156 (200 µM finale). La solution résultante est dégazée avec N2O pendant 5 min sans buller. Le flux est coupé, et la solution est agitée doucement puis laissée à équilibrer en échangeant l’O2 dissous avec les molécules de N2O pendant 10 min. Le flux de N2O est rallumé pendant 2 min, puis recoupé. La solution est agitée doucement puis laissée à équilibrer de nouveau pendant 10 min. Cette opération est réalisée 4 fois au total. Le mélange réactionnel est irradié à 4°C avec le LINAC avec 50 impulsions (avec 3H-BPASS d’AS 536 GBq.mmol-1) ou 200 impulsions (avec 3H-BPASS d’AS= 629 GBq.mmol-1) de 20 Gy à 0,4 Hz, soit respectivement une concentration de 582 µM ou 2330 µM cumulée en HO•.

Purification sur colonne échangeuse d’ions

La protéine irradiée est purifiée directement sur une colonne semi-préparative échangeuse d’anions Resource Q 1 mL (Amersham) selon le gradient : 0 % B en 10 min, 0 à 20 % B en 22 min et 20 à 50 % en 50 min à 1 mL.min-1 (tR Asf = 25 min) avec les éluants (A : Tampon Tris 50 mM pH 8 ; B : Tampon Tris 50 mM pH 8 / NaCl 1M), avec une détection UV à 216 et 280 nm. Les puretés UV et radiochimique sont contrôlées selon le même gradient.

Digestion de la protéine hAsf11-156 et purification sur phase inverse C18

La protéine dans l’éluât de 2 mL est digérée avec la trypsine 1/50 (v/v) au bain-marie à 37°C pendant 10 h. Les peptides sont ensuite séparés par HPLC sur une colonne analytique (Agilent Zorbax C18, 300 Å, 250*4.6 mm) selon le gradient 2 à 50 % B en 45 min à 1 mL.min-1 avec les éluants (A : H2O / FA 0,1 % ; B : ACN / FA 0,1 %), avec une détection UV à 216 et 280 nm. Les puretés UV et radiochimique de chaque peptide sont contrôlées selon le même gradient. Les peptides sont identifiés par LC-MS. Les temps de rétention de chacun des peptides obtenus sont : 124-134 (15,0 min), 138-145, (16,0 min) 109-123 et 109-134 (21,6 min), 149-156 (22,9 min), 42-69 (31,2 min), 70-102 et 70-108 (36,2 min) et 4-41 (41,8 min).

Les peptides sélectionnés sont séquencés selon le protocole général (IV.H)

Normalisation

Afin de comparer nos résultats, les activités spécifiques des résidus de hAsf11-156 sont normalisées selon trois facteurs correspondant au rapport entre l’activité spécifique d’un résidu donné respectivement en absence et en présence de H3122-135.

La valeur moyenne est calculée à partir des acides aminés les mieux marqués (> à 200 Bq.nmol-1) et ne présentant aucune variation d’accessibilité, soit : E124, P127, V128, K129, N152, et E154. Cette valeur moyenne est de 2.

Le plus grand rapport est observé pour le résidu E124 avec de 2,9 et le plus petit avec le résidu P127 avec 1,5 du peptide 124-ENPPVKPDFSK-134.

Les valeurs maximale (2,9), minimale (1,5) ou moyenne (2) sont appliquées (Figure III-22).

b. Essais de digestion de la protéine hAsf11-156 et de purification

Différents essais de digestion sont réalisés avec la trypsine (R, K en C-ter), l’endoprotéinase V8 (D et E en C-ter), la chymotrypsine (), le pepsine, la pronase (non spécifique) dans divers tampon en présence ou en absence de réduction et alkylation, de détergents et de dénaturants. Enzyme Quantité (m/m) T°C Tampon Durée (h) Réducteur, détergent, dénaturant. Trypsine 1/20 37 NH4HCO3 50 mM pH 7,8 2 à 24 Trypsine 1/20 37 Tris 50 mM pH 8 20

Trypsine 1/20 37 Tris 50 mM pH 8 24 R/A

Trypsine 1/20 37 Tris 50 mM pH 8 24 R/A

Urée 3M SDS 0,1 % Trypsine 1/20 37 Phosphate 50 mM pH 8 24 Trypsine 1/20 37 Phosphate 50 mM pH 8 / ACN 10 % 24 V8 1/10 à 1/50 37 Tris 50 mM pH 8 2 à 24 V8 1/20 37 Tris 50 mM pH 8 24 R/A Urée 2M V8 1/20 37 Tris 50 mM pH 8 24 R/A Urée 3M SDS 0,1 % V8 1/10 à 1/20 37 Phosphate 10 mM pH 8 24 V8 1/20 25 Phosphate 10 mM pH 8 24 V8 1/20 25 NH4HCO3 pH 7,8 24 V8 1/20 25 NH4HCO3 pH 7,8 24 Urée 3 M SDS 0,1 % V8 1/20 25 NH4HCO3 pH 7,8 24 R/A V8 1/20 25 NH4HCO3 pH 7,8 24 Urée 3 M SDS 0,1 % R/A Trypsine + V8 1/20 37 Tris 50 mM pH 8 24 Trypsine puis V8 1/20 37 Tris 50 mM pH 8 10 + 24 Chymotrypsine 1/50 37 Phosphate 10 mM pH 7,8 1, 2, 8 Chymotrypsine 1/20 25 Tris 50 mM pH 8 18, 24 Pronase 1/100 37 Tris 50 mM pH 8 2 pepsine 1/20 à 1/50 37 pH 3 (HCl) 1 et 24

L’ensemble de ces digestions est ensuite analysé par HPLC et/ou par LC-MS. En HPLC, les colonnes en phase inverse suivantes sont testées :

- Agilent Zorbax C18, 300 Å, 5 µ, 250 mm * 4,6 mm - Agilent Zorbax C8, 300 Å, 5 µ, 250 mm * 4,6 mm - Luna C18, 100 Å, 5 µ, 250 mm * 4,6 mm

- Waters Atlantis dC18, 100 Å, 5 µ, 250 mm * 4,6 mm

Différents systèmes d’élution sont utilisés à TA ou à 42°C, à un débit de 1 mL.min-1: - A: H2O/FA 0,1 %, B: ACN/FA 0,1 %

- A: H2O/TFA 0,1 %, B: ACN/TFA 0,1 % - A: Tp acetate d’ammonium pH 6, B: ACN

Certains échantillons ont aussi été analysés en LC-MS-MS ou par séquençage automatique d’Edman. La colonne HPLC utilisée en LC-MS est une colonne analytique Waters Atlantis dC18 (100 Å, 5 µ, 150 mm * 4,6 mm), avec les éluants A: H2O/FA 0,1 %, B: ACN/FA 0,1 % à 800 µ L.min-1.

Aucune des conditions testées de digestions et de purification en phase inverse n’a permis de détecter le peptide contenant V92, V94 et V96, les trois acides aminés les plus impliqués dans l’interaction avec H3122-135, à l’exception du peptide 70-102 obtenu lors de la digestion avec la trypsine. Cependant, ce peptide est trop long et est récupéré en trop faible quantité pour pouvoir l’utiliser pour analyser les résidus d’intérêt.

La synthèse du peptide AVGVTVVLITCTYRGQE contenant V94 et correspondant à un peptide théorique de la double digestion trypsine / V8 a été commandé. Ce peptide est uniquement soluble dans 100 % DMSO et peu soluble dans des systèmes H2O/ACN. Les analyses HPLC et LC-MS menées ont montré que ce peptide est très hydrophobe et reste accroché sur la colonne. Le peptide sort sur une durée de 20 min. Les tentatives de digestions et de purifications n’ont pas été menées plus loin en raison de problème de temps.

1. Fu, H., Protein-protein interactions. Methods in Molecular Biology, Humana Press, 2004. 261.

2. Phizicky, E.M. and S. Fields, Protein-protein interactions: methods for detection and analysis. Microbiol Rev, 1995. 59(1): p. 94-123.

3. Hall, R.A., Studying protein-protein interactions via blot overlay or Far Western blot. Methods Mol Biol, 2004. 261: p. 167-74.

4. Park, S.H. and R.T. Raines, Green fluorescent protein chimeras to probe protein- protein interactions. Methods Enzymol, 2000. 328: p. 251-61.

5. Bauer, A. and B. Kuster, Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem, 2003. 270(4): p. 570-8. 6. Ho, Y., et al., Systematic identification of protein complexes in Saccharomyces

cerevisiae by mass spectrometry. Nature, 2002. 415(6868): p. 180-3.

7. Krogan, N.J., et al., Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006. 440(7084): p. 637-43.

8. Li, S., et al., A map of the interactome network of the metazoan C. elegans. Science, 2004. 303(5657): p. 540-3.

9. Lim, J., et al., A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006. 125(4): p. 801-14.

10. Miller, J.P., et al., Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci U S A, 2005. 102(34): p. 12123-8.

11. Nyfeler, B., S.W. Michnick, and H.P. Hauri, Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci U S A, 2005. 102(18): p. 6350-5. 12. Uetz, P., et al., Herpesviral protein networks and their interaction with the human

proteome. Science, 2006. 311(5758): p. 239-42.

13. Collins, S.R., et al., Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature, 2007.

14. Ooi, S.L., et al., Global synthetic-lethality analysis and yeast functional profiling. Trends Genet, 2006. 22(1): p. 56-63.

15. Pan, X., et al., A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell, 2006. 124(5): p. 1069-81.

16. Tong, A.H., et al., Global mapping of the yeast genetic interaction network. Science, 2004. 303(5659): p. 808-13.

17. Lu, L., et al., Multimeric threading-based prediction of protein-protein interactions on a genomic scale: application to the Saccharomyces cerevisiae proteome. Genome Res, 2003. 13(6A): p. 1146-54.

18. Obenauer, J.C. and M.B. Yaffe, Computational prediction of protein-protein interactions. Methods Mol Biol, 2004. 261: p. 445-68.

19. Prinz, A., M. Diskar, and F.W. Herberg, Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. Chembiochem, 2006.

7(7): p. 1007-12.

20. Wallrabe, H. and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol, 2005. 16(1): p. 19-27.

21. Welsh, D.K. and S.A. Kay, Bioluminescence imaging in living organisms. Curr Opin Biotechnol, 2005. 16(1): p. 73-8.

22. Yan, Y. and G. Marriott, Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol, 2003. 7(5): p. 635-40.

23. Greenfield, N.J., Circular dichroism analysis for protein-protein interactions. Methods Mol Biol, 2004. 261: p. 55-78.

24. Leavitt, S. and E. Freire, Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol, 2001. 11(5): p. 560-6.

25. Yu, X., D. Xu, and Q. Cheng, Label-free detection methods for protein microarrays. Proteomics, 2006. 6(20): p. 5493-503.

26. Heyduk, T., et al., Fluorescence anisotropy: rapid, quantitative assay for protein-DNA and protein-protein interaction. Methods Enzymol, 1996. 274: p. 492-503.

27. Tseng, W.L., et al., Immunoaffinity capillary electrophoresis: determination of binding constant and stoichiometry for antibody-antigen interaction. Electrophoresis, 2002. 23(6): p. 836-46.

28. Wan, Q.H. and X.C. Le, Fluorescence polarization studies of affinity interactions in capillary electrophoresis. Anal Chem, 1999. 71(19): p. 4183-9.

29. Wyatt, P.J., Light scattering and the absolute characterization of macromolecules. Anal Chim Acta, 1993. 272: p. 1-40.

30. Laue, T.M. and W.F. Stafford, 3rd, Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct, 1999. 28: p. 75-100.

31. Rivas, G. and A.P. Minton, New developments in the study of biomolecular associations via sedimentation equilibrium. Trends Biochem Sci, 1993. 18(8): p. 284- 7.

32. Wilton, R., E.A. Myatt, and F.J. Stevens, Analysis of protein-protein interactions by simulation of small-zone gel filtration chromatography. Methods Mol Biol, 2004. 261: p. 137-54.

33. Fenn, J.B., et al., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989. 246(4926): p. 64-71.

34. Hillenkamp, F., et al., Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem, 1991. 63(24): p. 1193A-1203A.

35. Puig, O., et al., The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 2001. 24(3): p. 218-29.

36. Rigaut, G., et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999. 17(10): p. 1030-2. 37. Gavin, A.C., et al., Proteome survey reveals modularity of the yeast cell machinery.

Nature, 2006. 440(7084): p. 631-6.

38. Gavin, A.C., et al., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002. 415(6868): p. 141-7.

39. Bouwmeester, T., et al., A physical and functional map of the human TNF-alpha/NF- kappa B signal transduction pathway. Nat Cell Biol, 2004. 6(2): p. 97-105.

40. Forler, D., et al., An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol, 2003. 21(1): p. 89-92.

41. Vasilescu, J. and D. Figeys, Mapping protein-protein interactions by mass spectrometry. Curr Opin Biotechnol, 2006. 17(4): p. 394-9.

42. Fields, S. and O. Song, A novel genetic system to detect protein-protein interactions. Nature, 1989. 340(6230): p. 245-6.

43. Dove, S.L. and A. Hochschild, A bacterial two-hybrid system based on transcription activation. Methods Mol Biol, 2004. 261: p. 231-46.

44. Lee, J.W. and S.K. Lee, Mammalian two-hybrid assay for detecting protein-protein interactions in vivo. Methods Mol Biol, 2004. 261: p. 327-36.

45. Fields, S., High-throughput two-hybrid analysis. The promise and the peril. Febs J, 2005. 272(21): p. 5391-9.

46. Vidal, M. and P. Legrain, Yeast forward and reverse 'n'-hybrid systems. Nucleic Acids Res, 1999. 27(4): p. 919-29.

47. Inouye, C., et al., Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: application of a differential interaction trap assay for examining protein-protein interactions. Genetics, 1997. 147(2): p. 479-92.

48. Serebriiskii, I., V. Khazak, and E.A. Golemis, A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem, 1999. 274(24): p. 17080- 7.

49. Serebriiskii, I.G. and E. Kotova, Analysis of protein-protein interactions utilizing dual bait yeast two-hybrid system. Methods Mol Biol, 2004. 261: p. 263-96.

50. Xu, C.W., A.R. Mendelsohn, and R. Brent, Cells that register logical relationships among proteins. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12473-8.

51. Vidal, M., et al., Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci U S A, 1996.

93(19): p. 10315-20.

52. Vidal, M., et al., Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc Natl Acad Sci U S A, 1996.

93(19): p. 10321-6.

53. Parrish, J.R., K.D. Gulyas, and R.L. Finley, Jr., Yeast two-hybrid contributions to interactome mapping. Curr Opin Biotechnol, 2006. 17(4): p. 387-93.

54. Uetz, P., et al., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000. 403(6770): p. 623-7.

55. Flajolet, M., et al., A genomic approach of the hepatitis C virus generates a protein interaction map. Gene, 2000. 242(1-2): p. 369-79.

56. Giot, L., et al., A protein interaction map of Drosophila melanogaster. Science, 2003.

302(5651): p. 1727-36.

57. Ito, T., et al., A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A, 2001. 98(8): p. 4569-74.

58. LaCount, D.J., et al., A protein interaction network of the malaria parasite Plasmodium falciparum. Nature, 2005. 438(7064): p. 103-7.

59. Rain, J.C., et al., The protein-protein interaction map of Helicobacter pylori. Nature, 2001. 409(6817): p. 211-5.

60. Rual, J.F., et al., Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005. 437(7062): p. 1173-8.

61. Stelzl, U., et al., A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005. 122(6): p. 957-68.

62. Fetchko, M. and I. Stagljar, Application of the split-ubiquitin membrane yeast two- hybrid system to investigate membrane protein interactions. Methods, 2004. 32(4): p. 349-62.

63. Johnsson, N. and A. Varshavsky, Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A, 1994. 91(22): p. 10340-4.

64. Stagljar, I., et al., A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A, 1998.

95(9): p. 5187-92.

65. Dunnwald, M., A. Varshavsky, and N. Johnsson, Detection of transient in vivo interactions between substrate and transporter during protein translocation into the endoplasmic reticulum. Mol Biol Cell, 1999. 10(2): p. 329-44.

66. Laser, H., et al., A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci U S A, 2000. 97(25): p. 13732-7.

67. Wittke, S., et al., Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell, 1999. 10(8): p. 2519-30.

68. Obrdlik, P., et al., K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci U S A, 2004.

69. Remy, I. and S.W. Michnick, Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci U S A, 1999. 96(10): p. 5394-9.

70. Rossi, F., C.A. Charlton, and H.M. Blau, Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A, 1997. 94(16): p. 8405-10.

71. Galarneau, A., et al., Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol, 2002. 20(6): p. 619-22.

72. Wehrman, T., et al., Protein-protein interactions monitored in mammalian cells via complementation of beta -lactamase enzyme fragments. Proc Natl Acad Sci U S A, 2002. 99(6): p. 3469-74.

73. Luker, K.E., et al., Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci U S A, 2004. 101(33): p. 12288-93.

74. Paulmurugan, R. and S.S. Gambhir, Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem, 2003. 75(7): p. 1584-9.

75. Pelletier, J.N., et al., An in vivo library-versus-library selection of optimized protein- protein interactions. Nat Biotechnol, 1999. 17(7): p. 683-90.

76. Ghosh, I., A.D. Hamilton, and L. Regan, Antiparallel leucine zipper-directed protein reassembly: application to the Green Fluorescent Protein. J Am Chem Soc, 2000.

122: p. 5658-5659.

77. Magliery, T.J., et al., Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. J Am Chem Soc, 2005.

127(1): p. 146-57.

78. Hu, C.D. and T.K. Kerppola, Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol, 2003. 21(5): p. 539-45.

79. Remy, I. and S.W. Michnick, Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol, 2004. 24(4): p. 1493-504.

80. Remy, I., A. Montmarquette, and S.W. Michnick, PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol, 2004. 6(4): p. 358- 65.

81. Kanno, A., T. Ozawa, and Y. Umezawa, Intein-mediated reporter gene assay for detecting protein-protein interactions in living mammalian cells. Anal Chem, 2006.

78(2): p. 556-60.

82. Ozawa, T., et al., Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem, 2001. 73(11): p. 2516-21.

83. Ozawa, T., et al., A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal Chem, 2000. 72(21): p. 5151-7.

84. Kehoe, J.W. and B.K. Kay, Filamentous phage display in the new millennium. Chem Rev, 2005. 105(11): p. 4056-72.

85. Sidhu, S.S., W.J. Fairbrother, and K. Deshayes, Exploring protein-protein interactions with phage display. Chembiochem, 2003. 4(1): p. 14-25.

86. Sondermann, H., C. Zhao, and D. Bar-Sagi, Analysis of Ras:RasGEF interactions by phage display and static multi-angle light scattering. Methods, 2005. 37(2): p. 197- 202.

87. Sidhu, S.S., et al., Phage display for selection of novel binding peptides. Methods Enzymol, 2000. 328: p. 333-63.

88. Landgraf, C., et al., Protein interaction networks by proteome peptide scanning. PLoS Biol, 2004. 2(1): p. E14.

89. Tong, A.H., et al., A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 2002.

295(5553): p. 321-4.

90. Crameri, R. and R. Kodzius, The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb Chem High Throughput Screen, 2001. 4(2): p. 145-55.

91. Hertveldt, K., et al., Identification of Gal80p-interacting proteins by Saccharomyces cerevisiae whole genome phage display. Gene, 2003. 307: p. 141-9.

92. Ansuini, H., et al., Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Res, 2002. 30(15): p. e78.

93. Gupta, A., et al., High-density functional display of proteins on bacteriophage lambda. J Mol Biol, 2003. 334(2): p. 241-54.

94. Khare, P.D., S.J. Russell, and M.J. Federspiel, Avian leukosis virus is a versatile eukaryotic platform for polypeptide display. Virology, 2003. 315(2): p. 303-12.

95. Urban, J.H., et al., Selection of functional human antibodies from retroviral display libraries. Nucleic Acids Res, 2005. 33(4): p. e35.

96. Georgiou, G., et al., Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol, 1997. 15(1): p. 29-34.

97. Wang, Y., et al., Using a baculovirus display library to identify MHC class I mimotopes. Proc Natl Acad Sci U S A, 2005. 102(7): p. 2476-81.

98. Hanes, J., L. Jermutus, and A. Pluckthun, Selecting and evolving functional proteins in vitro by ribosome display. Methods Enzymol, 2000. 328: p. 404-30.

99. Nemoto, N., et al., In vitro virus: bonding of mRNA bearing puromycin at the 3'- terminal end to the C-terminal end of its encoded protein on the ribosome in vitro. FEBS Lett, 1997. 414(2): p. 405-8.

100. Roberts, R.W. and J.W. Szostak, RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12297-302.

101. Yonezawa, M., et al., DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res, 2003. 31(19): p. e118.

102. Takahashi, T.T., R.J. Austin, and R.W. Roberts, mRNA display: ligand discovery, interaction analysis and beyond. Trends Biochem Sci, 2003. 28(3): p. 159-65.

103. Horisawa, K., et al., In vitro selection of Jun-associated proteins using mRNA display. Nucleic Acids Res, 2004. 32(21): p. e169.

104. Sawata, S.Y., E. Suyama, and K. Taira, A system based on specific protein-RNA interactions for analysis of target protein-protein interactions in vitro: successful selection of membrane-bound Bak-Bcl-xL proteins in vitro. Protein Eng Des Sel, 2004.

17(6): p. 501-8.

105. Thom, G., et al., Probing a protein-protein interaction by in vitro evolution. Proc Natl Acad Sci U S A, 2006. 103(20): p. 7619-24.

106. Bertone, P. and M. Snyder, Advances in functional protein microarray technology. Febs J, 2005. 272(21): p. 5400-11.

107. MacBeath, G. and S.L. Schreiber, Printing proteins as microarrays for high- throughput function determination. Science, 2000. 289(5485): p. 1760-3.

108. Ramachandran, N., et al., Self-assembling protein microarrays. Science, 2004.

305(5680): p. 86-90.

109. Reineke, U., R. Volkmer-Engert, and J. Schneider-Mergener, Applications of peptide arrays prepared by the SPOT-technology. Curr Opin Biotechnol, 2001. 12(1): p. 59- 64.

110. Ramachandran, N., et al., Emerging tools for real-time label-free detection of interactions on functional protein microarrays. Febs J, 2005. 272(21): p. 5412-25. 111. Zhu, H., et al., Global analysis of protein activities using proteome chips. Science,

2001. 293(5537): p. 2101-5.

112. Jones, R.B., et al., A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 2006. 439(7073): p. 168-74.

113. Stiffler, M.A., et al., Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. J Am Chem Soc, 2006. 128(17): p. 5913-22. 114. Kanda, V., et al., Label-free reading of microarray-based immunoassays with surface

plasmon resonance imaging. Anal Chem, 2004. 76(24): p. 7257-62.

115. Yuk, J.S., et al., Analysis of protein interactions on protein arrays by a wavelength interrogation-based surface plasmon resonance biosensor. Proteomics, 2004. 4(11): p. 3468-76.

116. Natsume, T., H. Nakayama, and T. Isobe, BIA-MS-MS: biomolecular interaction analysis for functional proteomics. Trends Biotechnol, 2001. 19(10 Suppl): p. S28-33. 117. Yu, X., et al., An impedance array biosensor for detection of multiple antibody-

antigen interactions. Analyst, 2006. 131(6): p. 745-50.

118. Yang, Y., H. Wang, and D.A. Erie, Quantitative characterization of biomolecular assemblies and interactions using atomic force microscopy. Methods, 2003. 29(2): p. 175-87.

119. Hinterdorfer, P. and Y.F. Dufrene, Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods, 2006. 3(5): p. 347- 55.

120. Llorca, O., Introduction to 3D reconstruction of macromolecules using single particle electron microscopy. Acta Pharmacol Sin, 2005. 26(10): p. 1153-64.

121. Rodal, A.A., et al., Conformational changes in the Arp2/3 complex leading to actin nucleation. Nat Struct Mol Biol, 2005. 12(1): p. 26-31.

122. Rossmann, M.G., et al., Combining X-ray crystallography and electron microscopy. Structure, 2005. 13(3): p. 355-62.

123. Chiu, W., et al., Electron cryomicroscopy of biological machines at subnanometer resolution. Structure, 2005. 13(3): p. 363-72.

124. Orlova, E.V. and H.R. Saibil, Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs. Curr Opin Struct Biol, 2004.

14(5): p. 584-90.

125. Svergun, D.I. and M.H.J. Koch, Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys, 2003. 66: p. 1735-1782.

126. Pioletti, M., et al., Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat Struct Mol Biol, 2006. 13(11): p. 987-95.

127. Krueger, J.K., et al., Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase. Biochemistry, 1998. 37(40): p. 13997-4004.

128. Wery, J.P. and R.W. Schevitz, New trends in macromolecular X-ray crystallography. Curr Opin Chem Biol, 1997. 1(3): p. 365-9.

129. Bergfors, T.M., Protein Crystallization, Techniques, Strategies and Tips A laboratory Manual. International University Line, La Jolla, 1999.

130. McPherson, A., Crystallization of biological macromolecules Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1999.

131. Delucas, L.J., et al., Protein crystallization: virtual screening and optimization. Prog Biophys Mol Biol, 2005. 88(3): p. 285-309.

132. Pusey, M.L., et al., Life in the fast lane for protein crystallization and X-ray crystallography. Prog Biophys Mol Biol, 2005. 88(3): p. 359-86.

133. Taylor, G., The phase problem. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 11): p. 1881-90.

134. English, C.M., et al., Structural basis for the histone chaperone activity of Asf1. Cell, 2006. 127(3): p. 495-508.

135. Matsuura, Y. and M. Stewart, Structural basis for the assembly of a nuclear export complex. Nature, 2004. 432(7019): p. 872-7.

136. Vaynberg, J. and J. Qin, Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol, 2006. 24(1): p. 22-7.

137. Fernandez, C. and G. Wider, TROSY in NMR studies of the structure and function of