• Aucun résultat trouvé

Positive nonlinearity

A positive nonlinearity of the defect leads to the effect observed in Fig. A.8.

Such unexpected patterns can probably be explained in terms of instability phase modulation.

We didn’t investigate deeply this effect because we were in condition not related to (super)fluidity of photons, where it is required to be in a Kerr defocusing regime.

I report it briefly anyway, hoping that it will be useful for someone.

Here the defect is focused and all the parameter and the setup, except the frequency, are the same of section A.2. In this situation the observed effect depends on the relative angle between the two beams.

Here the observed effect is presented with the defect atfdef = 384,2330T Hz, where it is in focusing regime and the other beam has a frequency lower than the higher energy transitions of the D2 line.

The defect and the photon fluid are both in Kerr self-focusing regime.

When the defect beams overcome a frequency of fdef = 384,2324 T Hz, that is '220 M Hz higher than the higher energy D2 transition 5S1/2(F = 2) −→ 5P3/2 (f0= 384,23218T Hz), it is possible to observe this effect and there is an immediate (not smooth) switch between a bright spot (without fringes) and the image observed.

Figure A.8. On the left the relative ∆k=0, on the right there is a relative angle ∆k6=0 between fluid and the defect. Herefdef = 384,2324T Hz.

105

Bibliography

[1] P. Kapitza. “Viscosity of Liquid Helium below theλ-Point”. In: Nature 141.3558 (1938), pp. 74– 74. doi: 10.1038/141074a0.

[2] J. F. Allen and A. D. Misener. “Flow Phenomena in Liquid Helium II”. In:

Nature 142.3597 (1938), pp. 643–644. doi: 10.1038/142643a0.

[3] F. London. “Theλ-Phenomenon of Liquid Helium and the Bose-Einstein Degen-eracy”. In: Nature 141.3571 (1938), pp. 643–644. doi: 10.1038/141643a0.

[4] N. N. Bogoliubov. On the theory of superluidity. J. Phys. (USSR), 11:23, 1947.

[5] I.Carusotto, Superfluid light in bulk nonlinear media (2014).

[6] L. Landau,Theory of the Superfluidity of Helium II,Phys. Rev. 60, 356, 1941.

[7] L. Pitaevskii and S. Stringari. Bose-Einstein Condensation. Clarendon Press, Oxford, 2003.

[8] Quantum fluids of light. I.Carusotto. Phys. Rev. A 85, 2013.

[9] D.Vocke et al. The role of geometry in superfluid flow of non-local photon fluids(2016).

[10] D. Vocke, T. Roger, F. Marino, E. M. Wright, I. Carusotto, M. Clerici, and D. Faccio. ”Experimental characterization of nonlocal photon fluids”. Optica, 2(5):484, 2015.

[11] A.Amo et al.. Superfluidity of polaritons in semiconductor microcavities.Nat.

Phys 5, 805-810.

[12] G.Lerario et al, Room-temperature superfluidity in a polariton condensate, Nature Physics (2017) doi:10.1038/nphys4147.

[13] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-Einstein condensation of photons in an optical microcavity.,” Nature, vol. 468, pp. 545–548, nov 2010.

[14] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J.

Keeling, F. M. Marchetti, M. H. Szyman, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “BoseEinstein condensation of exciton polaritons,” Nature, vol. 443, pp. 409–414, sep 2006.

[15] Boris V. Svistunov, Egor S. Babaev, Nikolay V. Superfluid States of Matter.

[16] Quantum Analogues: From Phase Transitions to Black Holes and Cosmology edited by William Unruh, Ralf Schützhold. doi 10.1007/3-540-70859-6 .

[17] Pierre-Élie Larré and Iacopo Carusotto Phys. Rev. A 91, 053809,2015.

[18] Nardin G, Grosso G, Leger Y, Pietka B, Morier-Genoud F, Deveaud-Pledran B.

2011 Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641. (doi:10.1038/nphys1959).

[19] A.Amo et al. 2011 Polariton superfluids reveal quantum hydrodynamic solitons.

Science 332,1167–1170.

[20] T.Boulieret al. Injection of orbital angular momentum and storage of quantized vortices in polariton superfluids.Physical review letters,116(11):116402,2016.

[21] Nardin G, Grosso G, Leger Y, Pietka B, Morier-Genoud F, Deveaud-Pledran B.

2011 Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641.

[22] J.Goldstoneet al, Broken symmetries Phys. Rev. 127, 965 – Published 1 August 1962.

[23] Sanvitto D et al. 2011 All-optical control of the quantum flow of a polariton condensate. Nat. Phot. 5, 610–614.

[24] Bohm, David (1952). "A Suggested Interpretation of the Quantum Theory in Terms of "Hidden Variables", II". Physical Review. 85: 180–193.

[25] J. Michael Kosterlitz - Nobel Lecture: Topological Defects and Phase Transitions, 2016.

[26] R.Y. Chiao, J. Boyce:Bogoliubov dispersion relation and the possibility of superfluidity for weakly interacting photons in a two-dimensional photon fluid.

Phys. Rev. A 60 (1999).

[27] P.E.Larrè,I.Carusotto. Propagation of a quantum fluid of light in a cavityless non-linear optical medium: General theory and response to quantum quenches.Phys.

Rev. A 92, 043802 (2015).

[28] G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995).

[29] R. W. Boyd, Nonlinear Optics (Academic, Orlando, 2008).

[30] Daniel A. Steck, “Rubidium 85 D Line Data,” available online at http://steck.us/alkalidata (revision 2.1.6, 20 September 2013).

[31] E. Arimondo, M. Inguscio, and P. Violino, “Experimental determinations of the hyperfine structure in the alkali atoms,” Reviews of Modern Physics 49, 31 (1977).

[32] A. Banerjee, D. Das, and V. Natarajan, “Absolute frequency measurements of the D1 lines in 39K,85Rb, and87Rb with'0.1 ppb uncertainty,” Europhysics Letters 65, 172 (2004).

[33] Wan W, Muenzel S, Fleischer JW. 2010. Wave tunneling and hysteresis in nonlinear junctions. Phys. Rev. Lett. 104, 073903.

[34] M.Andrews et al., Phys.Rev.Lett. 79,553(1997).

Bibliography 107

[35] W Heisenberg and H Euler. “Folgerungen aus der diracschen theorie des positrons”. In: Zeitschrift fur Physik 98.11-12 (1936), pp. 714–732.

[36] C.Gerry and P.Knights, Introductory Quantum Optics.

[37] Paul Siddons et al. “Absolute absorption on the rubidium D lines: comparison between theory and experiment”. In: Journal of Physics B: Atomic, Molecular and Optical Physics 41.15 (2008), p. 155004. doi: 10.1088/0953-4075/41/15/155004.

[38] E. Madelung, “Quantentheorie in hydrodynamischer Form,” Z. Phys. 40, 322–326 (1927).

[39] http://ziemann.web.cern.ch/ziemann/gadget/usbtmc/raspi-usbtmc.html [40] F. Marino, “Acoustic black holes in a two-dimensional photon fluid,” Physical

Review A, vol. 78, p. 063804, dec 2008.

[41] E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, Nat. Photonics 7, 783 (2013).

[42] S. Jia, M. Haataja, and J. W. Fleischer, New J. Phys. 14, 075009 (2012).

[43] J. Fatome, C. Finot, G. Millot, A. Armaroli, and S. Trillo, Phys. Rev. X 4, 021022 (2014).

[44] F. Dalfovo, S. Giorgini, L. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463, (1999).

[45] Guang S. He. "Nonlinear Optics and Photonics".

[46] W. Wan, S. Jia, and J. W. Fleischer, “Dispersive, superfluid-like shock waves in nonlinear optics,” Nature Physics, 2007.

[47] C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer, “Observation of the kinetic condensation of classical waves,” Nature Physics, vol. 8, pp. 471–475, apr 2012.

[48] Alcock, C. B., Itkin, V. P., and Horrigan, M. K., Canadian Metallurgical Quarterly, 23, 309, 1984.

[49] S. Bar-Ad, R. Schilling, and V. Fleurov, “Nonlocality and fluctuations near the optical analog of a sonic horizon,” Phys. Rev. A 87, 013802 (2013).

[50] S. Skupin and al., Nonlocal Stabilization of Nonlinear Beams in a Self-Focusing Atomic Vapor, Phys. Rev. Lett. 98, 263902 (2007).

[51] V.M Lashkinet.al , Phys. Rev. E 73, 066605 (2006).

[52] D. J. Thouless, Mahito Kohmoto, MP Nightingale, and M Den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49(6):405, 1982.

[53] Neil W. Ashcroft and N. David Mermin, Solid State Physics (Harcourt: Orlando, 1976).

[54] L.Deng et al., " Formation and evolution of far field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media", J. Opt. A: Pure Appl. Opt. 7 (2005) 409–415.

[55] E. Santamato,Y. R. Shen. "Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film".1984, Optic Letters.

[56] L Lucchetti et al. "Fine structure in spatial self-phase modulation patterns: at a glance determination of the sign of optical nonlinearity in highly nonlinear films",J. Opt. A: Pure Appl. Opt. 11 (2009) 034002.

[57] E. V. Garcia Ramirez et al. ,"Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media", OSA(2010).

[58] https://www.rp-photonics.com/gaussian_beams.html

[59] P.-E.Larrè et al. Pump-and-probe optical transmission phase shift as a quantita-tive probe of the Bogoliubov dispersion relation in a nonlinear channel waveguide.

arXiv:1612.07485 (submitted to Phys. Rev. A).

[60] W. Unruh, “Experimental Black-Hole Evaporation?,” Physical Review Let-ters,vol. 46, pp. 1351–1353, may 1981.

[61] J. Steinhauer, “Observation of quantum Hawking radiation and its entanglement in an analogue black hole,” Nature Physics, aug 2016.

[62] A. Minovich, D. N. Neshev, A. Dreischuh, W. Krolikowski, and Y. S. Kivshar,

“Experimental reconstruction of nonlocal response of thermal nonlinear optical media.,” Optics letters, vol. 32, pp. 1599–601, jun 2007.

[63] P. G. Savvidis et al. Ring emission and exciton-pair scattering in semiconductor microcavities, Phys. Rev. B, Vol. 65.

[64] Born M. and Wolf E.1980 Principles of Optics (Oxford: Pergamon).

[65] F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G. Ortenzi, L. Rizzi, E.

Rubino, V. G. Sala, and D. Faccio, Phys. Rev. Lett. 105, 203901 – Published 8 November 2010.

[66] Zhang et al. "Research of far field diffraction intensity pattern in hot atomic Rb sample", 2015 OSA, 9 Mar 2015 | Vol. 23, No. 5 | DOI:10.1364/OE.23.005468.

[67] V.Volovik "Superfluid analogies of cosmological phenomena",Physics Reports 351, May 2000.

[68] EIT in ladder type inhomogeneous broadened media: theory and experiment.

Phys. Rev. A 51, 576.

[69] Giant Kerr nonlinearities obtained by EIT, Imamaglu and al., Optics Letters (1996).

[70] K.Ying et al., "Observation of Multi-Electromagnetically Induced Transparency in V-type Rubidium Atoms"Journal of Modern Optics Volume 61, 2014.

[71] D.J. Fulton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn 1995 Phys.

Rev. A 52 ,2302-231.

Dedicato alle mie migliori amiche Eugenia e Valeria, con le quali ho condiviso gli anni di università e che si sono rivelate persone speciali.