• Aucun résultat trouvé

Comme nous avons pu le voire lors des paragraphes précédents, une hyperglycémie chronique est capable d’induire d’importantes perturbations de la sécrétion d’insuline. La modulation de l’expression de plusieurs protéines des cellules ȕ, lors d’une hyperglycémie chronique, pourrait expliquer cette toxicité du glucose [44].

Au niveau des granules de sécrétion à insuline, il est connu que certaines protéines de cette organelle jouent un rôle essentiel dans le bon fonctionnement de la libération de l’insuline [71, 75]. De plus, il a été montré que le glucose est capable de moduler l’expression de certaines protéines des granules à insuline [79]. Cependant, au début de ce travail de thèse, les identités et les fonctions de nombreuses protéines des granules à insuline restaient inconnues, puisque seule une petite partie du protéome de cette organelle était connue.

Nous avons ainsi émis l’hypothèse que la modulation de l’expression de certaines protéines encore inconnues des granules à insuline, pourrait être en partie responsables des perturbations de la sécrétion d’insuline observées lors d’une hyperglycémie chronique.

Le but de ce travail de thèse a consisté à établir à partir de la lignée cellulaire ȕ INS-1E, l’identité des ces protéines, grâce à des techniques de spectrométries de masse et de biologie cellulaires et moléculaires.

Ce manuscrit de thèse se divise ainsi en 5 grandes parties:

1) Trois études bibliographiques correspondants à:

i) Chapitre II: Un chapitre de livre publié portant sur les différentes méthodes pouvant être employées lors d’analyses protéomiques.

ii) Chapitre III: Un manuscrit soumis pour publication portant sur les différents mécanismes impliqués dans le contrôle de la glycémie ainsi que dans le développement de la glucotoxicité.

Différents travaux publiées portant sur l’étude de la glucotoxicité envers les cellules pancréatiques, grâce à des méthodes protéomiques, sont également présentés dans ce manuscrit.

iii) Chapitre IV: Un manuscrit soumis pour publication présentant les principaux mécanismes régulant la sécrétion cellulaire. Différentes analyses protéomiques de vésicules sécrétoires sont également présentées dans ce manuscrit (chapitre IV).

Ces trois chapitres permettent de compléter le chapitre d’introduction de ce manuscrit de thèse.

2) La caractérisation du protéome des granules à insuline qui a permis de mettre en évidence la colocalisation avec les granules à insuline de nouvelles protéines. Ce travail a été publié en 2007 dans Molecular and Cellular Proteomics et correspond au chapitre V de ce manuscrit de thèse.

3) L’étude des modifications quantitatives du protéome des granules à insuline en réponse à une hyperglycémie chronique. Dans un premier temps, l’effet de la présence d’acides aminés isotopiques sur l’expression des gènes et des protéines des cellules INS-1E a été étudié. Un manuscrit présentant ces résultats a été soumis au journal «Nature Methods» et correspond au chapitre VI de ce manuscrit de thèse. Dans un deuxième temps, les conditions d’hyperglycémie cellulaire ont été déterminées et les protéines dont l’expression est modulée par cette hyperglycémie chronique ont été identifiées par spectrométries de masse. Ces résultats sont présentés dans le chapitre VII de ce manuscrit de thèse.

4) L’étude de l’une des protéines, nommée ProSAAS, trouvée sous-exprimée en réponse à une hyperglycémie chronique des cellules ȕ. Cette étude a consisté à déterminer la localisation de la protéine, ainsi que son expression en fonction de la concentration de glucose. Enfin, une étude a été débutée afin d’étudier le rôle de la ProSAAS dans la sécrétion d’insuline des cellules INS-1E.

L’ensemble de ces résultats se retrouvent dans le chapitre VII de manuscrit de thèse.

5) Une discussion générale sur l’ensemble des résultats obtenus lors de ce travail de thèse est présentée dans le chapitre VIII de ce manuscrit.

7. Références:

[1] Goldfine, I. D., Youngren, J. F., Contributions of the American Journal of Physiology to the discovery of insulin. Am J Physiol 1998, 274, E207-209.

[2] Rosenfeld, L., Insulin: discovery and controversy. Clin Chem 2002, 48, 2270-2288.

[3] Bliss, M., Resurrections in Toronto: the emergence of insulin. Horm Res 2005, 64 Suppl 2, 98-102.

[4] Pickup, J. C., Bilous, R. W., Viberti, G. C., Keen, H., et al., Plasma insulin and C-peptide after subcutaneous and intravenous administration of human insulin (recombinant DNA) and purified porcine insulin in healthy men. Diabetes Care 1982, 5 Suppl 2, 29-34.

[5] Rathmann, W., Giani, G., Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 2568-2569; author reply 2569.

[6] Lai, L. C., Prevention of type 2 diabetes. Malays J Pathol 2002, 24, 71-76.

[7] Plaisance, V., Abderrahmani, A., Perret-Menoud, V., Jacquemin, P., et al., MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006, 281, 26932-26942.

[8] Stumvoll, M., Goldstein, B. J., van Haeften, T. W., Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005, 365, 1333-1346.

[9] Ulrich, P., Cerami, A., Protein glycation, diabetes, and aging. Recent Prog Horm Res 2001, 56, 1-21.

[10] Simmons, D., Thompson, C. F., Engelgau, M. M., Ethnic differences in diabetes symptoms among people without known diabetes in New Zealand. Diabetes Care 2003, 26, 2221-2222.

[11] Warren, R. E., Deary, I. J., Frier, B. M., The symptoms of hyperglycaemia in people with insulin-treated diabetes: classification using principal components analysis. Diabetes Metab Res Rev 2003, 19, 408-414.

[12] Weijman, I., Ros, W. J., Rutten, G. E., Schaufeli, W. B., et al., Fatigue in employees with diabetes: its relation with work characteristics and diabetes related burden. Occup Environ Med 2003, 60 Suppl 1, i93-98.

[13] Screening for type 2 diabetes. Diabetes Care 2003, 26 Suppl 1, S21-24.

[14] Sanders, R. J., Wilson, M. R., Diabetes-related eye disorders. J Natl Med Assoc 1993, 85, 104-108.

[15] Skyler, J. S., Marks, J. B., Schneiderman, N., Hypertension in patients with diabetes mellitus. Am J Hypertens 1995, 8, 100s-105s.

[16] Horton, E. S., NIDDM--the devastating disease. Diabetes Res Clin Pract 1995, 28 Suppl, S3-11.

[17] Taplin, C. E., Barker, J. M., Autoantibodies in type 1 diabetes. Autoimmunity 2008, 41, 11-18.

[18] Rodger, W., Non-insulin-dependent (type II) diabetes mellitus. CMAJ 1991, 145, 1571-1581.

[19] Ferrannini, E., Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998, 19, 477-490.

[20] Frayn, K. N., Visceral fat and insulin resistance--causative or correlative? Br J Nutr 2000, 83 Suppl 1, S71-77.

[21] Menzaghi, C., Trischitta, V., Doria, A., Genetic influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 1198-1209.

[22] Kadowaki, T., Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000, 106, 459-465.

[23] Glaser, B., Type 2 diabetes: hypoinsulinism, hyperinsulinism, or both? PLoS Med 2007, 4, e148.

[24] Kahn, B. B., Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 1998, 92, 593-596.

[25] Poitout, V., Robertson, R. P., Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002, 143, 339-342.

[26] Brady, M. J., Saltiel, A. R., Closing in on the cause of insulin resistance and type 2 diabetes.

J Clin Invest 1999, 104, 675-676.

[27] Kaiser, N., Leibowitz, G., Nesher, R., Glucotoxicity and beta-cell failure in type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2003, 16, 5-22.

[28] Dubois, M., Vacher, P., Roger, B., Huyghe, D., et al., Glucotoxicity inhibits late steps of insulin exocytosis. Endocrinology 2007, 148, 1605-1614.

[29] Implications of the diabetes control and complications trial. Diabetes Care 2003, 26 Suppl 1, S25-27.

[30] Salehi, A., Vieira, E., Gylfe, E., Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 2006, 55, 2318-2323.

[31] Nawano, M., Oku, A., Ueta, K., Umebayashi, I., et al., Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats. Am J Physiol Endocrinol Metab 2000, 278, E535-543.

[32] Stratton, I. M., Adler, A. I., Neil, H. A., Matthews, D. R., et al., Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35):

prospective observational study. BMJ 2000, 321, 405-412.

[33] Elouil, H., Bensellam, M., Guiot, Y., Vander Mierde, D., et al., Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets.

Diabetologia 2007, 50, 1442-1452.

[34] Ma, Y., Hendershot, L. M., ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004, 28, 51-65.

[35] Eizirik, D. L., Cardozo, A. K., Cnop, M., The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008, 29, 42-61.

[36] Vincent, A. M., Russell, J. W., Low, P., Feldman, E. L., Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev 2004, 25, 612-628.

[37] Robertson, R. P., Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr Opin Pharmacol 2006, 6, 615-619.

[38] Shin, C. S., Moon, B. S., Park, K. S., Kim, S. Y., et al., Serum 8-hydroxy-guanine levels are increased in diabetic patients. Diabetes Care 2001, 24, 733-737.

[39] Del Guerra, S., Lupi, R., Marselli, L., Masini, M., et al., Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes 2005, 54, 727-735.

[40] Bernardi, P., Rasola, A., Calcium and cell death: the mitochondrial connection. Subcell Biochem 2007, 45, 481-506.

[41] Verkhratsky, A., Calcium and cell death. Subcell Biochem 2007, 45, 465-480.

[42] Sen, S., Kar, M., Roy, A., Chakraborti, A. S., Effect of nonenzymatic glycation on functional and structural properties of hemoglobin. Biophys Chem 2005, 113, 289-298.

[43] Federici, M., Hribal, M., Perego, L., Ranalli, M., et al., High glucose causes apoptosis in cultured human pancreatic islets of Langerhans: a potential role for regulation of specific Bcl family genes toward an apoptotic cell death program. Diabetes 2001, 50, 1290-1301.

[44] Weir, G. C., Laybutt, D. R., Kaneto, H., Bonner-Weir, S., Sharma, A., Beta-cell adaptation and decompensation during the progression of diabetes. Diabetes 2001, 50 Suppl 1, S154-159.

[45] Olofsson, C. S., Gopel, S. O., Barg, S., Galvanovskis, J., et al., Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Arch 2002, 444, 43-51.

[46] Marchetti, P., Dotta, F., Lauro, D., Purrello, F., An overview of pancreatic beta-cell defects in human type 2 diabetes: implications for treatment. Regul Pept 2008, 146, 4-11.

[47] Easom, R. A., Beta-granule transport and exocytosis. Semin Cell Dev Biol 2000, 11, 253-266.

[48] Itoh, Y., Kawamata, Y., Harada, M., Kobayashi, M., et al., Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003, 422, 173-176.

[49] van Loon, L. J., Kruijshoop, M., Menheere, P. P., Wagenmakers, A. J., et al., Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 2003, 26, 625-630.

[50] Arvan, P., Halban, P. A., Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 2004, 5, 53-61.

[51] Buchanan, C. M., Phillips, A. R., Cooper, G. J., Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion.

Biochem J 2001, 360, 431-439.

[52] Rorsman, P., Renstrom, E., Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003, 46, 1029-1045.

[53] Fujimoto, S., Nabe, K., Takehiro, M., Shimodahira, M., et al., Impaired metabolism-secretion coupling in pancreatic beta-cells: role of determinants of mitochondrial ATP production. Diabetes Res Clin Pract 2007, 77 Suppl 1, S2-10.

[54] Molinete, M., Irminger, J. C., Tooze, S. A., Halban, P. A., Trafficking/sorting and granule biogenesis in the beta-cell. Semin Cell Dev Biol 2000, 11, 243-251.

[55] Kim, T., Gondre-Lewis, M. C., Arnaoutova, I., Loh, Y. P., Dense-core secretory granule biogenesis. Physiology (Bethesda) 2006, 21, 124-133.

[56] Tooze, S. A., Biogenesis of secretory granules in the trans-Golgi network of neuroendocrine and endocrine cells. Biochim Biophys Acta 1998, 1404, 231-244.

[57] Creemers, J. W., Jackson, R. S., Hutton, J. C., Molecular and cellular regulation of prohormone processing. Semin Cell Dev Biol 1998, 9, 3-10.

[58] Tooze, S. A., Biogenesis of secretory granules. Implications arising from the immature secretory granule in the regulated pathway of secretion. FEBS Lett 1991, 285, 220-224.

[59] Wendler, F., Page, L., Urbe, S., Tooze, S. A., Homotypic fusion of immature secretory granules during maturation requires syntaxin 6. Mol Biol Cell 2001, 12, 1699-1709.

[60] Klumperman, J., Kuliawat, R., Griffith, J. M., Geuze, H. J., Arvan, P., Mannose 6-phosphate receptors are sorted from immature secretory granules via adaptor protein AP-1, clathrin, and syntaxin 6-positive vesicles. J Cell Biol 1998, 141, 359-371.

[61] Kuliawat, R., Klumperman, J., Ludwig, T., Arvan, P., Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta-cells. J Cell Biol 1997, 137, 595-608.

[62] Urbe, S., Page, L. J., Tooze, S. A., Homotypic fusion of immature secretory granules during maturation in a cell-free assay. J Cell Biol 1998, 143, 1831-1844.

[63] Barg, S., Eliasson, L., Renstrom, E., Rorsman, P., A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse beta-cells.

Diabetes 2002, 51 Suppl 1, S74-82.

[64] Hao, M., Li, X., Rizzo, M. A., Rocheleau, J. V., et al., Regulation of two insulin granule populations within the reserve pool by distinct calcium sources. J Cell Sci 2005, 118, 5873-5884.

[65] Straub, S. G., Sharp, G. W., Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol 2004, 287, C565-571.

[66] Barg, S., Ma, X., Eliasson, L., Galvanovskis, J., et al., Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells. Biophys J 2001, 81, 3308-3323.

[67] Duncan, R. R., Greaves, J., Wiegand, U. K., Matskevich, I., et al., Functional and spatial segregation of secretory vesicle pools according to vesicle age. Nature 2003, 422, 176-180.

[68] Sandberg, M., Borg, L. A., Intracellular degradation of insulin and crinophagy are

maintained by nitric oxide and cyclo-oxygenase 2 activity in isolated pancreatic islets. Biol Cell 2006, 98, 307-315.

[69] Gauthier, B. R., Duhamel, D. L., Iezzi, M., Theander, S., et al., Synaptotagmin VII splice variants alpha, beta, and delta are expressed in pancreatic beta-cells and regulate insulin exocytosis. FASEB J 2008, 22, 194-206.

[70] Iezzi, M., Eliasson, L., Fukuda, M., Wollheim, C. B., Adenovirus-mediated silencing of synaptotagmin 9 inhibits Ca2+-dependent insulin secretion in islets. FEBS Lett 2005, 579, 5241-5246.

[71] Iezzi, M., Kouri, G., Fukuda, M., Wollheim, C. B., Synaptotagmin V and IX isoforms control Ca2+ -dependent insulin exocytosis. J Cell Sci 2004, 117, 3119-3127.

[72] Waselle, L., Coppola, T., Fukuda, M., Iezzi, M., et al., Involvement of the Rab27 binding protein Slac2c/MyRIP in insulin exocytosis. Mol Biol Cell 2003, 14, 4103-4113.

[73] Iezzi, M., Regazzi, R., Wollheim, C. B., The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett 2000, 474, 66-70.

[74] Iezzi, M., Escher, G., Meda, P., Charollais, A., et al., Subcellular distribution and function of Rab3A, B, C, and D isoforms in insulin-secreting cells. Mol Endocrinol 1999, 13, 202-212.

[75] Ivarsson, R., Jing, X., Waselle, L., Regazzi, R., Renstrom, E., Myosin 5a controls insulin granule recruitment during late-phase secretion. Traffic 2005, 6, 1027-1035.

[76] Cheviet, S., Coppola, T., Haynes, L. P., Burgoyne, R. D., Regazzi, R., The Rab-binding protein Noc2 is associated with insulin-containing secretory granules and is essential for pancreatic beta-cell exocytosis. Mol Endocrinol 2004, 18, 117-126.

[77] Coppola, T., Frantz, C., Perret-Menoud, V., Gattesco, S., et al., Pancreatic beta-cell protein granuphilin binds Rab3 and Munc-18 and controls exocytosis. Mol Biol Cell 2002, 13, 1906-1915.

[78] Cheviet, S., Bezzi, P., Ivarsson, R., Renstrom, E., et al., Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis. J Cell Sci 2006, 119, 2912-2920.

[79] Abderrahmani, A., Cheviet, S., Ferdaoussi, M., Coppola, T., et al., ICER induced by hyperglycemia represses the expression of genes essential for insulin exocytosis. EMBO J 2006, 25, 977-986.

[80] Trajkovski, M., Mziaut, H., Altkruger, A., Ouwendijk, J., et al., Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells. J Cell Biol 2004, 167, 1063-1074.

[81] Liu, G. E., Matukumalli, L. K., Sonstegard, T. S., Shade, L. L., Van Tassell, C. P., Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences. BMC Genomics 2006, 7, 140.

[82]

[83] Valdivia, H. H., One gene, many proteins: alternative splicing of the ryanodine receptor gene adds novel functions to an already complex channel protein. Circ Res 2007, 100, 761-763.

[84] Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., et al., From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis.

Biotechnology (N Y) 1996, 14, 61-65.

[85] Anderson, L., Seilhamer, J., A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997, 18, 533-537.

[86] Zhang, J., Montine, T. J., Proteomic discovery of CSF biomarkers for Alzheimer's disease.

Ann Neurol 2007, 61, 497; author reply 497-498.

[87] Rooney, E., Meldolesi, J., The endoplasmic reticulum in PC12 cells. Evidence for a mosaic of domains differently specialized in Ca2+ handling. J Biol Chem 1996, 271, 29304-29311.

[88] Brunner, Y., Coute, Y., Iezzi, M., Foti, M., et al., Proteomics analysis of insulin secretory granules. Mol Cell Proteomics 2007, 6, 1007-1017.

[89] Braun, M., Wendt, A., Birnir, B., Broman, J., et al., Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic beta-cells. J Gen Physiol 2004, 123, 191-204.

[90] Nyblom, H. K., Thorn, K., Ahmed, M., Bergsten, P., Mitochondrial protein patterns correlating with impaired insulin secretion from INS-1E cells exposed to elevated glucose concentrations. Proteomics 2006, 6, 5193-5198.

[91] Nagele, E., Vollmer, M., Horth, P., Vad, C., 2D-LC/MS techniques for the identification of proteins in highly complex mixtures. Expert Rev Proteomics 2004, 1, 37-46.

[92] Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680-685.

[93] Scheele, G. A., Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem 1975, 250, 5375-5385.

[94] O'Farrell, P. H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250, 4007-4021.

[95] Klose, J., Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 1975, 26, 231-243.

[96] Hanash, S. M., Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: current status. Electrophoresis 2000, 21, 1202-1209.

[97] Gorg, A., Weiss, W., Dunn, M. J., Current two-dimensional electrophoresis technology for proteomics. Proteomics 2004, 4, 3665-3685.

[98] Rabilloud, T., A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis 1992, 13, 429-439.

[99] Shevchenko, A., Wilm, M., Vorm, O., Mann, M., Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68, 850-858.

[100] Neuhoff, V., Arold, N., Taube, D., Ehrhardt, W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988, 9, 255-262.

[101] Gillespie, A. S., Elliott, E., Comparative advantages of imidazole-sodium dodecyl sulfate-zinc reverse staining in polyacrylamide gels. Anal Biochem 2005, 345, 158-160.

[102] Dell'angelica, E. C., Bonifacino, J. S., Staining proteins in gels. Curr Protoc Cell Biol 2001, Chapter 6, Unit 6 6.

[103] Appel, R. D., Hochstrasser, D. F., Funk, M., Vargas, J. R., et al., The MELANIE project:

from a biopsy to automatic protein map interpretation by computer. Electrophoresis 1991, 12, 722-735.

[104] Tsugita, A., Developments in protein microsequencing. Adv Biophys 1987, 23, 81-113.

[105] Yates, J. R., 3rd, Mass spectrometry. From genomics to proteomics. Trends Genet 2000, 16, 5-8.

[106] Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y. H., et al., Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: a new approach to protein digestion in minutes. Protein Sci 2002, 11, 2676-2687.

[107] Schmelzer, C. E., Schops, R., Ulbrich-Hofmann, R., Neubert, R. H., Raith, K., Mass spectrometric characterization of peptides derived by peptic cleavage of bovine beta-casein. J Chromatogr A 2004, 1055, 87-92.

[108] Li, A., Sowder, R. C., Henderson, L. E., Moore, S. P., et al., Chemical cleavage at aspartyl residues for protein identification. Anal Chem 2001, 73, 5395-5402.

[109] Domon, B., Aebersold, R., Mass spectrometry and protein analysis. Science 2006, 312, 212-217.

[110] Aebersold, R., A mass spectrometric journey into protein and proteome research. J Am Soc Mass Spectrom 2003, 14, 685-695.

[111] Glish, G. L., Vachet, R. W., The basics of mass spectrometry in the twenty-first century.

Nat Rev Drug Discov 2003, 2, 140-150.

[112] Graves, P. R., Haystead, T. A., Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev 2002, 66, 39-63; table of contents.

[113] Karas, M., Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988, 60, 2299-2301.

[114] Li, G., Waltham, M., Anderson, N. L., Unsworth, E., et al., Rapid mass spectrometric identification of proteins from two-dimensional polyacrylamide gels after in gel proteolytic digestion. Electrophoresis 1997, 18, 391-402.

[115] Nakanishi, T., Okamoto, N., Tanaka, K., Shimizu, A., Laser desorption time-of-flight mass spectrometric analysis of transferrin precipitated with antiserum: a unique simple method to identify molecular weight variants. Biol Mass Spectrom 1994, 23, 230-233.

[116] Takach, E. J., Hines, W. M., Patterson, D. H., Juhasz, P., et al., Accurate mass

measurements using MALDI-TOF with delayed extraction. J Protein Chem 1997, 16, 363-369.

[117] Bahr, U., Stahl-Zeng, J., Gleitsmann, E., Karas, M., Delayed extraction time-of-flight MALDI mass spectrometry of proteins above 25,000 Da. J Mass Spectrom 1997, 32, 1111-1116.

[118] Gevaert, K., Verschelde, J. L., Puype, M., Van Damme, J., et al., Structural analysis and identification of gel-purified proteins, available in the femtomole range, using a novel computer program for peptide sequence assignment, by matrix-assisted laser desorption

ionization-reflectron time-of-flight-mass spectrometry. Electrophoresis 1996, 17, 918-924.

[119] Finehout, E. J., Lee, K. H., Comparison of automated in-gel digest methods for femtomole level samples. Electrophoresis 2003, 24, 3508-3516.

[120] Spengler, B., Kirsch, D., Kaufmann, R., Jaeger, E., Peptide sequencing by matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 1992, 6, 105-108.

[121] Biemann, K., Scoble, H. A., Characterization by tandem mass spectrometry of structural modifications in proteins. Science 1987, 237, 992-998.

[122] Tabb, D. L., Friedman, D. B., Ham, A. J., Verification of automated peptide identifications from proteomic tandem mass spectra. Nat Protoc 2006, 1, 2213-2222.

[123] Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246, 64-71.

[124] Iavarone, A. T., Williams, E. R., Mechanism of charging and supercharging molecules in electrospray ionization. J Am Chem Soc 2003, 125, 2319-2327.

[125] Nguyen, S., Fenn, J. B., Gas-phase ions of solute species from charged droplets of solutions. Proc Natl Acad Sci U S A 2007, 104, 1111-1117.

[126] Mann, M., Hendrickson, R. C., Pandey, A., Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 2001, 70, 437-473.

[127] Wickremsinhe, E. R., Singh, G., Ackermann, B. L., Gillespie, T. A., Chaudhary, A. K., A review of nanoelectrospray ionization applications for drug metabolism and pharmacokinetics.

Curr Drug Metab 2006, 7, 913-928.

[128] Cottrell, J. S., Protein identification by peptide mass fingerprinting. Pept Res 1994, 7, 115-124.

[129] Kolker, E., Higdon, R., Hogan, J. M., Protein identification and expression analysis using mass spectrometry. Trends Microbiol 2006, 14, 229-235.

[130] Barnidge, D. R., Dratz, E. A., Martin, T., Bonilla, L. E., et al., Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem 2003, 75, 445-451.

[131] Lill, J., Proteomic tools for quantitation by mass spectrometry. Mass Spectrom Rev 2003, 22, 182-194.

[132] Harsha, H. C., Molina, H., Pandey, A., Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008, 3, 505-516.

[133] Aggarwal, K., Choe, L. H., Lee, K. H., Shotgun proteomics using the iTRAQ isobaric tags.

Brief Funct Genomic Proteomic 2006, 5, 112-120.

[134] Dayon, L., Hainard, A., Licker, V., Turck, N., et al., Relative Quantification of Proteins in Human Cerebrospinal Fluids by MS/MS Using 6-Plex Isobaric Tags. Anal Chem 2008.

[135] D'Ascenzo, M., Choe, L., Lee, K. H., iTRAQPak: an R based analysis and visualization package for 8-plex isobaric protein expression data. Brief Funct Genomic Proteomic 2008.

[136] Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 2007, 389, 1017-1031.

[137] Wang, G., Wu, W. W., Zeng, W., Chou, C. L., Shen, R. F., Label-free protein

quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J Proteome Res 2006, 5, 1214-1223.