• Aucun résultat trouvé

AIRE MIXTE G MATERI

6.3. Perspectives d’avenir

Les études que nous nous proposons de faire dans l’avenir peuvent être mentionnées comme suit:

(i) convertir le programme FENALYSE en d’autres langages plus utilisés dans l’analyse des structures, tels que FORTRAN, CP#PB;

(ii) implanter des éléments linéaires à 3- et 4-nœuds dans FENALYSE, qui, malgré qu’ils soient beaucoup moins chers que les éléments de 8- et 9-nœuds, sont plus difficiles à maîtriser;

(iii) appliquer des techniques qui permettent d’additionner de larges rotations dans l’espace tridimensionnel;

(iv) appliquer la théorie des plaques déformables en cisaillement de plus haut ordre. Cette théorie permet de décrire une distribution exacte, en forme parabolique, des contraintes de cisaillement à travers l’épaisseur des parois;

(v) calculer le flambement des barres à parois minces soumises à des charges quelconques par la méthode des bandes finies semi-analytiques;

(vi) appliquer la technique du sixième degré de liberté proposée à la méthode des bandes finies de type spline;

(vii) implanter dans le programme FENALYSE d’autres types d’éléments finis, tels que des éléments de type poutre-poteau, de type coque ‘vraie’ et tridimensionnels, afin d’analyser des structures qui doivent être modélisées par des types d’éléments différents;

(viii) considérer des charges non-conservatives;

(ix) les programmes FLAMBANDE et FENALYSE peuvent servir à l’enseignement et à la recherche sur les structures à parois minces au Département de Bâtiment à l’Ecole supérieure de Génie civil du Vietnam (ESGC).

BIBLIOGRAPHIE

A

A1. ARCELOR GROUP. Profil ARBED. Programme de vente, 2001.

A2. ASHRAF, M., GARDNER, L. and NETHERCOT, D., A. Finite element modelling of structural stainless steel cross-sections. Thin-Walled Structures, 44, pp. 1048-1062, 2006.

A3. ASHRAF, M., GARDNER, L. and NETHERCOT, D. A. Strength enhancement of the corner regions of stainless steel cross-sections. Jour. Construct. Steel Research, 61, pp. 37-52, 2005.

A4. ABDEL-RAHMAN, N. and SIVAKUMARAN, K. S. Material properties models for analysis of cold-formed steel members. Jour. Struct. Engrg, ASCE, 123(9), pp. 1135-1143, 1997.

A5. AU, F. T. K. and CHEUNG, Y. K. Isoparametric spline finite strip for plane structures.

Computers & Structures, 48, pp. 23-32, 1993.

A6. AHMAD, S., IRONS, B. M. and ZIENKIEWICZ, O. C. Analysis of thick and thin shell structures by curved elements. Int. Jour. Num. Meth. Engng., 2, pp. 419-451, 1970.

A7. ALLMAN, D. J. A compatible triangular element including vertex rotations for plane elasticity analysis. Comp. & Struct., 19, pp. 1-8, 1984.

A8. ALLMAN, D. J. Evaluation of the constant strain triangle with drilling rotations. Int. Jour.

Num. Meth. Engng., 26, pp. 2645-2655, 1988.

B

B1. BRAHAM, M., MAQUOI, R. RANGELOV, N. et RICHARD, C. L’influence des défauts de planéité de l’âme des profilés reconstitués soudés sur leur résistance en flexion et compression.

Construction Métallique, NPoP 1, 1995.

B2. BRAHAM, M., GRIMAULT, J. P., MASSONNET, C., MOUTY, J. and RONDAL, J. Buckling of thin-walled hollow sections – Cases of axially-loaded rectangular sections. Acier-Stahl-Steel, pp.

30-36, 1-1980.

B3. BATISTA, E. M. Etude de la stabilité des profils à parois minces et section ouverte de types U et C. Université de Liège, Thèse de doctorat, 1988.

B4. BREDENKAMP, P. J. and VAN DEN BERG, G. J. The strength of stainless steel built-up I section columns. Jour. Construct. Steel Research, 34, pp. 131-144, 1995.

B5. BRADFORD, M. A. and HANCOCK, G. J. Elastic interaction of local and lateral buckling in beams. Thin-walled Structures, 2(1), pp. 1-25, 1984.

B6. BLEICH, F. Buckling strength of metal structures. Mc Graw-Hill, London, 1952.

B7. BERGAN, P. G. and FELIPPA, C. A. Efficient implementation of a triangular membrane element with drilling freedoms. In ‘Finite element methods for plate and shell structures’, volume 1:

Element technology. Ed. Hughes, T. J. R. and Hinton, E. Pineridge Press Inter., 1986.

B8. BELYTSCHKO, T., STOLARSKI, H., LIU, W. K., CARPENTER, N. and ONG, J. S-J. Stress projection for membrane and shear locking in shell finite elements. Comp. Meth. Appl. Mech. Eng., 51, pp. 221-258, 1985.

B9. BELYTSCHKO, T., LIN, J. and TSAY, C-S., Explicit algorithms for the nonlinear dynamics of shells. Comp. Meth. Appl. Mech. Engng., 42, 225-251, 1984.

B10. BELYTSCHKO, T., WONG, B. L. and STOLARSKI, H. Assumed strain stabilization procedure for the 9-node Lagrange shell element. Int. Jour. Num. Meth. Engng., 28, pp. 385-414, 1989.

B11. BELYTSCHKO, T. and TSAY, C-S. A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. Jour. Numer. Meth. Engng., 19, pp. 405-419, 1983.

B12. BATHE, K. J. and BOLOURCHI, S. A geometric and material non-linear plate and shell element. Comput. & Struct., 11, pp. 23-48, 1980.

B13. BUI, H. C. and RONDAL, J. Buckling analysis of thin-walled sections by semi-analytical Mindlin-Reissner finite strips – A treatment of drilling rotation problem. Thin-walled structures, 2008, 46, pp.646-652.

B14. BERGAN, P. G., HORRIGMOE, G., KRAKELAND, B. and S∅REIDE, H. T. Solution techniques for non-linear finite element problems. Int. Jour. Num. Meth. Engng., 12, pp. 1677-1696, 1978.

C

C1. COSTA FERREIRA, C. M. et RONDAL, J. Etude expérimentale de la stabilité des cornières à parois minces profilées à froid. Université de Liège, Laboratoire de Stabilité des Constructions, Rapport NPoP149, janvier, 1985.

C2. COSTA FERREIRA, C. M. Essais de cornières en acier pliées à froid. Université de Liège, Laboratoire de Stabilité des Constructions, Rapport NPoP155, Septembre, 1986.

C3. CHEUNG, Y. K. Finite strip method in structural analysis. Pergamon Press, New York, 1976.

C4. CHEUNG, Y. K. and AU, F. T. K. Isoparametric spline finite strip for degenerate shells. Thin-walled structures, 21, pp. 65-92, 1995.

C5. CHU, XT., YE, ZM., KETTLE, R. and LI, LY. Buckling behaviour of cold-formed channel sections under uniformly distributed loads. Thin-walled Structures, 43, pp. 531-542, 2005.

C6. CHOU, S. M. and RHODES, J. Review and compilation of experimental results on thin-walled structures. Computers & Structures, Vol. 65, pp. 47-67, 1997.

C7. CRISFIELD, M. A. Finite elements and Solution procedures for Structural analysis. Vol I:

Linear analysis. Pinneridge, Swansea, UK, 1986.

C8. CRISFIELD, M. A. A fast incremental/iterative solution procedure that handles “snap-through” . Comput. & Struct., 13, pp. 55-62, 1981.

C9. CRISFIELD, M. A. Nonlinear finite element analysis of solids and structures. Volume 1:

Essentials. John Wiley & Sons, 1991.

C10. CLOUGH, R. W. and JOHNSON, C. P. A finite element approximation for the analysis of thin-shells. Int. Jour. Solids Struct., 4, pp. 43-60, 1968.

C11. COWPER, G. R. The shear coefficient in Timoshenko’s beam theory. Jour. App. Mech., pp.

335-340, 1966.

C12. CHIN, C-K., AL-BERMANI, F. G. A. and KITIPORNCHAI, S. Finite element method for buckling analysis of plate structures. Jour. Struct. Engng, Vol. 119, No. 4, pp. 1048-1068, 1993.

C13. CHIN, C. K., AL-BERMANI, F. G. A. and KITIPORNCHAI, S. Non-linear analysis of thin-walled structures using plate elements. Int. j. numer. methods eng., 37, pp. 1697-1711, 1994.

C14. COOK, R. D. Finite element modelling for stress analysis. John Wiley & Sons, 1995.

C15. CHAN, S. L. and KITIPORNCHAI, S. Geometric nonlinear analysis of asymmetric thin-walled beam-columns. Eng. Struct., 9, pp. 243-254, 1987.

C16. CHAKRABARTY, J. Applied plasticity. Springer-Verlag, 2000.

C17. CESCOTTO, S., FREY, F. and MASSONNET, C. On the effective finite element analysis of engineering structures in the nonlinear range. In: Theoretical and applied mechanics, ed. Rimrott, F. P. J. and Tabarrok, B., Amsterdam, North-Holland Publishing Company, 1980.

D

D1. DUBINA, D. and UNGUREANU, V. Effect of imperfections in numerical simulation of instability behaviour of cold-formed steel members. Thin-Walled Structures, 40, pp.239-262, 2002.

D2. DADDI, I. et MAZZOLANI, F. M. Détermination expérimentale des imperfections structurales des profilés en acier. Construction Métallique, NPoP 1, 1974.

D3. DE VILLE DE GOYET, V. L’analyse statique non linéaire par la méthode des éléments finis des structures spatiales formées de poutres à section non symétrique. Université de Liège, Thèse de doctorat, 1989.

D4. DE VILLE DE GOYET, V. Analyse non-linéaire des structures. Note de cours, Université de Liège, 2007.

D5. DAWE, D. J., LAM, S. S. E. and AZIZIAN, Z. G. Finite strip post-local-buckling analysis of composite prismatic plate structures. Computers & Structures, Vol. 48, No. 6, pp. 1011-1023, 1993.

D6. DAWE, D. J. and PESHKAM, V. Buckling and vibration of finite-length composite prismatic plate structures with diaphragm ends, part I: Finite strip formulation. Comput. Meth. Appl. Mech.

Engng., 77, pp. 1-30, 1989.

D7. DAVIES, J. M. and LEACH, P. First-order generalised beam theory. Jour. Construct. Steel Research, 31, pp. 197-220, 1994.

D8. DAVIES, J. M. and LEACH, P. Second-order generalised beam theory. Jour. Construct. Steel Research, 31, pp. 221-241, 1994.

D9. DEBONGNIE, J. F. Physical interpretation and generalization of Marguerre’s shallow shell.

Int. Jour. Engng. Sci., pp. 387-399, 1978.

D10. DEGEE, H. Contribution à la prise en compte de la déformabilité de la section droite dans un élément fini de type poutre.. Université de Liège, Thèse de doctorat, 2000.

D11. DEGEE, H., BOISSONNADE, N. and ROSSI, B. Local and Interactive post-buckling of RHS thin-walled members – Comparing a new special beam finite element with shell FE models. Int.

Jour. Struct. Stability and Dynamics, 7, pp. 213-241, 2007.

E

E1. EUROCODE 3. Calcul des structures en acier. Part 1-1: Règles générales et règles pour les bâtiments, prEN 1993-1-1, 2003.

E2. EUROCODE 3. Design of steel structures. Part 1-3: General rules – Supplementary rules for cold-formed members and sheeting, prEN 1993-1-3, 2004.

E3. EUROCODE 3. Design of steel structures. Part 1-4: General rules – Supplementary rules for stainless steels, prEN 1993-1-4, 2004.

E4. E.C.C.S. Ultimate limit state calculations of sway frames with rigid joints. Technical Committee 8 – Structural stability technical working group 8.2. – System. First edition, 1984.

E5. ECCHER, G., RASMUSSEN, K. J. R. and ZANDONINI, R. Elastic buckling analysis of perforated thin-walled structures by the isoparametric spline finite strip method. Thin-walled structures, 46(2), pp. 165-191, 2008.

F

F1. FAN, S. C. and CHEUNG, Y. K. Analysis of shallow shells by spline finite strip method.

Engng. Struct., 5, pp. 255-262, 1983.

F2. FELIPPA, C. A. Nonlinear finite element methods (NFEM). Lecture note, University of Colorado at Boulder, 2007.

F3. FREY, F. L’analyse statique non-linéaire des structures par la méthode des éléments finis et son application. Université de Liège, Thèse de doctorat, 1978.

G

G1. GRUMBACH, M. et PRUDHOMME, M. Propriétés des profilés à froid. Construction Métallique, NPoP 1, 1974.

G2. GARDNER, L. and NETHERCOT, D. A. Experiments on stainless steel hollow sections – Part 1: Material and cross-sectional behaviour. Jour. Construct. Steel Research, 60, pp. 1291-1318, 2004.

G3. SCHULZ, G. W. and ALPSTEN, G. Geometrical and cross-sectional properties of steel structures. European Convention for Constructional Steelwork, Manual on the Stability of Steel Structures, 1976.

G4. GRAVES SMITH, T. R. and SRIDHARAN, S. A finite strip method for the post-locally buckled analysis of plate structures. Int. Jour. Mech. Science, 20(12), pp. 833-842, 1978.

G5. GONÇALVES, R. and CAMOTIM, D. GBT local and global buckling analysis of aluminium and stainless steel columns. Computers & Structures, 82, pp. 1473-1484, 2004.

G6. GONÇALVES, R. and CAMOTIM, D. Thin-walled member plastic bifurcation analysis using generalised beam theory. Adv. Engrg. Software, 38, pp. 637-646, 2007.

G7. GALLAGHER, R. H. Finite element analysis - Fundamentals. Englewood Cliffs, Prentice-Hall, 1975.

H

H1. HANCOCK, G. J. Nonlinear analysis of thin sections in compression. Jour. Struct. Division, ASCE, 25 (1), pp. 147-155, 1981.

H2. HANCOCK, G. J. Local distortional and lateral buckling of I-beams. Jour. Struct. Div., ASCE, 104(ST11), pp. 1787-1798, 1978.

H3. HANCOCK, G. J. Distortional buckling of steel storage rack columns. Jour. Struct. Engrg, ASCE, 111(12), pp. 2270-2283, 1985.

H4. HANCOCK, G. J. Finite strip buckling, nonlinear elastic and elastic-plastic analyses. Coupled instabilities in metal structures. CISM courses and lectures. Ed. RONDAL, J., 1998.

H5. HANCOCK, G. J., DAVIDS, A. J., KEY, P. W., LAU, S. C. W. and RASMUSSEN, K. J. R.

Recent developments in the buckling and nonlinear analysis of thin-walled structural members.

Thin-walled Structures, 9, pp. 309-338, 1990.

H6. HANCOCK, G. J. Design for distortional buckling of flexural members. Thin-walled Structures, 27(1), pp. 3-12, 1997.

H7. HINTON, E. Buckling of initially stressed Mindlin plates using a finite strip method.

Computers & Structures, 8, pp. 99-105, 1978.

H8. HINTON, E. and RAO, N. V. R. Structural shape optimization of shells and folded plates using two-noded finite strips. Computers & Structures, 46, pp. 1055-1071, 1993.