• Aucun résultat trouvé

Chapitre 7. Article : Association entre les changements de l’ostéocalcine décarboxylée et de l’homéostasie du

8.4 Perspectives

D’un point de vue populationnel, la chirurgie bariatrique est efficace pour améliorer le profil métabolique des individus qui présentent une obésité sévère. La chirurgie bariatrique est efficace pour réduire les comorbidités telles que le diabète de types 2, l’hypertension artérielle et les maladies cardiovasculaires qui alourdissent le fardeau économique du système de santé, et pour réduire la mortalité. Le nombre de chirurgies bariatriques pratiquées au Canada et au Québec est grandissant, et plus du tiers des patients opérés souffrent de diabète de type 2. Il est donc important de reconnaitre les impacts de la chirurgie bariatrique sur le métabolisme osseux, surtout chez des individus ayant déjà une fragilité osseuse secondaire à l’obésité et au diabète de type 2. Plusieurs études ont montré que la DMO était diminuée après tous les types de chirurgie bariatrique (excepté la bande gastrique ajustable), alors que le risque de fracture était augmenté principalement au niveau vertébral, au niveau de la hanche et au niveau du membre supérieur après les chirurgies de type mixtes. Ces fractures de type ostéoporotique entraînent une morbidité et une mortalité importantes, ainsi qu’un fardeau économique sur le système de santé. Cependant, les mécanismes responsables de ces altérations ne sont pas totalement compris, et certaines évidences portent à croire que les changements osseux se manifestent très tôt après la chirurgie, bien que les conséquences visibles, soit les fractures, surviennent généralement dans les années suivantes. Il est donc nécessaire d’investiguer et de comprendre les mécanismes impliqués, pour ensuite cibler des interventions précoces pour limiter la perte osseuse et la détérioration de la microarchitecture osseuse des patients subissant une chirurgie bariatrique. Cela permettra de maximiser le ratio bénéfice/risque de la chirurgie.

Les études futures devront également s’attarder aux changements osseux et au risque de fracture associés à la chirurgie qui est maintenant la plus pratiquée au Canada et dans le monde, la gastrectomie en manchon. Par exemple, il serait nécessaire de réaliser des études longitudinales ayant une taille d’échantillon suffisante pour avoir une bonne puissance statistique, où la gastrectomie en manchon et les chirurgies de type mixtes seraient comparées, et où la DMO et la qualité osseuse (marqueurs du remodelage osseux et microarchitecture) seraient tous deux mesurés à l’aide d’outils valides et précis pour cette population. De plus, des études rigoureuses devront être menées afin de tester des interventions, par exemple, l’administration d’anti-résorptifs tôt après la chirurgie, pour freiner la perte osseuse et la détérioration de la microarchitecture.

De plus, puisque l’amélioration de la sensibilité à l’insuline apparaît très tôt après la chirurgie bariatrique, donc bien avant une perte de poids significative, ces résultats suggèrent que d’autres mécanismes sont responsables. Il serait ainsi intéressant d’approfondir les associations que nous avons observées entre les changements des marqueurs du remodelage osseux et l’amélioration du métabolisme du glucose. De plus, il serait nécessaire de réaliser des études avec de plus grandes tailles d’échantillon, avec des individus ayant ou non un diabète de type 2, et suite à d’autres types de chirurgie, afin d’avoir une puissance statistique nécessaire pour comparer ces deux populations et valider les associations trouvées entre l’ostéocalcine décarboxylée et les indices d’homéostasie du glucose. De plus, puisque des changements osseux et métaboliques sont également observés suite à une perte de poids non-chirurgicale, il serait intéressant d’analyser si les mêmes associations sont présentes dans un groupe d’individus obèses subissant une perte de poids par un changement des habitudes de vie. Finalement, il serait possible de réaliser une étude chez l’animal pour tester le lien de cause à effet en administrant un anti-résorptif directement après la chirurgie bariatrique. Il serait ainsi possible d’observer si le fait de bloquer la résorption osseuse diminue la décarboxylation de l’ostéocalcine et, par le fait même, réduit l’amélioration de la sensibilité à l’insuline après la chirurgie.

Bibliographie

1. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2014;384(9945):766-781.

2. Twells LK, Gregory DM, Reddigan J, Midodzi WK. Current and predicted prevalence of obesity in Canada: a trend analysis. CMAJ open. 2014;2(1):E18-26.

3. Anis AH, Zhang W, Bansback N, Guh DP, Amarsi Z, Birmingham CL. Obesity and overweight in Canada: an updated cost-of-illness study. Obesity reviews : an official journal of the International

Association for the Study of Obesity. 2010;11(1):31-40.

4. Janssen I. The public health burden of obesity in Canada. Canadian journal of diabetes. 2013;37(2):90- 96.

5. Roberts KC, Shields M, de Groh M, Aziz A, Gilbert JA. Overweight and obesity in children and adolescents: results from the 2009 to 2011 Canadian Health Measures Survey. Health reports. 2012;23(3):37-41.

6. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, et al. Obesity. Nature reviews Disease primers. 2017;3:17034.

7. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis.

Jama. 2004;292(14):1724-1737.

8. Evans AL, Paggiosi MA, Eastell R, Walsh JS. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. Journal of bone and mineral research

: the official journal of the American Society for Bone and Mineral Research. 2015;30(5):920-928.

9. Walsh JS, Vilaca T. Obesity, Type 2 Diabetes and Bone in Adults. Calcified tissue international. 2017;100(5):528-535.

10. Nielson CM, Srikanth P, Orwoll ES. Obesity and fracture in men and women: an epidemiologic perspective. Journal of bone and mineral research : the official journal of the American Society for Bone

and Mineral Research. 2012;27(1):1-10.

11. Rousseau C, Jean S, Gamache P, et al. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study. BMJ (Clinical research ed). 2016;354:i3794.

12. Compston J. Type 2 diabetes mellitus and bone. Journal of internal medicine. 2017.

13. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporosis international : a journal established as result of cooperation

between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2007;18(4):427-444.

14. Dixon JB, Zimmet P, Alberti KG, Rubino F. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabetic medicine : a journal of the British Diabetic Association. 2011;28(6):628-642. 15. Ozsoy Z, Demir E. Which Bariatric Procedure Is the Most Popular in the World? A Bibliometric

Comparison. Obesity surgery. 2018.

16. Paltser G, Dudevich A, Chen A, Gula C, Fagbemi J. The State of Bariatric Surgery in Canada.

Healthcare quarterly (Toronto, Ont). 2015;18(2):10-11.

17. Anvari M, Lemus R, Breau R. A Landscape of Bariatric Surgery in Canada: For the Treatment of Obesity, Type 2 Diabetes and Other Comorbidities in Adults. Canadian journal of diabetes. 2018;42(5):560-567.

18. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. The New England journal of medicine. 2012;366(17):1577-1585.

19. Koliaki C, Liatis S, le Roux CW, Kokkinos A. The role of bariatric surgery to treat diabetes: current challenges and perspectives. BMC endocrine disorders. 2017;17(1):50.

20. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. The American journal of medicine. 2009;122(3):248-256.e245.

21. Mingrone G, Castagneto-Gissey L. Mechanisms of early improvement/resolution of type 2 diabetes after bariatric surgery. Diabetes & metabolism. 2009;35(6 Pt 2):518-523.

22. Aschner P. New IDF clinical practice recommendations for managing type 2 diabetes in primary care.

Diabetes research and clinical practice. 2017;132:169-170.

23. Claudia G, L SA. Bone Health After Bariatric Surgery. JBMR Plus. 2018;2(3):121-133.

24. Lu CW, Chang YK, Chang HH, et al. Fracture Risk After Bariatric Surgery: A 12-Year Nationwide Cohort Study. Medicine. 2015;94(48):e2087.

25. Yu EW, Wewalka M, Ding SA, et al. Effects of Gastric Bypass and Gastric Banding on Bone Remodeling in Obese Patients With Type 2 Diabetes. The Journal of clinical endocrinology and

metabolism. 2016;101(2):714-722.

26. Yu EW, Bouxsein ML, Putman MS, et al. Two-year changes in bone density after Roux-en-Y gastric bypass surgery. The Journal of clinical endocrinology and metabolism. 2015;100(4):1452-1459. 27. Shanbhogue VV, Stoving RK, Frederiksen KH, et al. Bone structural changes after gastric bypass

surgery evaluated by HR-pQCT: a two-year longitudinal study. European journal of endocrinology. 2017;176(6):685-693.

28. Yu EW. Bone metabolism after bariatric surgery. Journal of bone and mineral research : the official

journal of the American Society for Bone and Mineral Research. 2014;29(7):1507-1518.

29. Kotidis EV, Koliakos GG, Baltzopoulos VG, Ioannidis KN, Yovos JG, Papavramidis ST. Serum ghrelin, leptin and adiponectin levels before and after weight loss: comparison of three methods of treatment-- a prospective study. Obesity surgery. 2006;16(11):1425-1432.

30. Bruno C, Fulford AD, Potts JR, et al. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. The Journal of clinical

endocrinology and metabolism. 2010;95(1):159-166.

31. Hosseinzadeh-Attar MJ, Golpaie A, Janani L, Derakhshanian H. Effect of weight reduction following bariatric surgery on serum visfatin and adiponectin levels in morbidly obese subjects. Obesity facts. 2013;6(2):193-202.

32. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481(7381):314-320.

33. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456-469.

34. Mera P, Ferron M, Mosialou I. Regulation of Energy Metabolism by Bone-Derived Hormones. Cold

Spring Harbor perspectives in medicine. 2017.

35. Clarke B. Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology

: CJASN. 2008;3 Suppl 3:S131-139.

36. Brodsky B, Persikov AV. Molecular structure of the collagen triple helix. Advances in protein chemistry. 2005;70:301-339.

37. Lewiecki EM. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Therapeutic advances in musculoskeletal disease. 2014;6(2):48-57.

38. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. Journal of bone and mineral research : the official journal of

the American Society for Bone and Mineral Research. 2009;24(10):1651-1661.

39. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. The Journal of clinical investigation. 1987;80(3):706-710.

40. Shahi M, Peymani A, Sahmani M. Regulation of Bone Metabolism. Reports of biochemistry & molecular

biology. 2017;5(2):73-82.

41. Li J, Bao Q, Chen S, et al. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/beta-catenin signaling in mice. Journal of orthopaedic research : official publication

of the Orthopaedic Research Society. 2017;35(4):812-819.

42. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. The Journal of

43. Cashman KD, Ginty F. BONE. In: Caballero B, ed. Encyclopedia of Food Sciences and Nutrition

(Second Edition). Oxford: Academic Press; 2003:557-565.

44. Schwartz HS, Holt GE. Chapter 4 - Pathologic Fractures in Children. In: Mencio GA, Swiontkowski MF, eds. Green's Skeletal Trauma in Children (Fifth Edition). Philadelphia: W.B. Saunders; 2015:44-58. 45. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature.

2003;423(6937):337-342.

46. Kostenuik PJ. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength.

Current opinion in pharmacology. 2005;5(6):618-625.

47. Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene. 2002;282(1-2):1-17.

48. Goltzman D, Mannstadt M, Marcocci C. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis. Frontiers of hormone research. 2018;50:1-13.

49. Broulik P. [Calcitonin and his role in regulation of calcium-phosphate metabolism]. Casopis lekaru

ceskych. 2010;149(6):285-287.

50. Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best practice & research

Clinical endocrinology & metabolism. 2011;25(4):585-591.

51. Delhanty PJ, van der Eerden BC, van Leeuwen JP. Ghrelin and bone. BioFactors (Oxford, England). 2014;40(1):41-48.

52. Zhao C, Liang J, Yang Y, Yu M, Qu X. The Impact of Glucagon-Like Peptide-1 on Bone Metabolism and Its Possible Mechanisms. Frontiers in endocrinology. 2017;8:98.

53. Zhong Q, Itokawa T, Sridhar S, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. American journal of physiology Endocrinology and metabolism. 2007;292(2):E543-548. 54. Wong IP, Driessler F, Khor EC, et al. Peptide YY regulates bone remodeling in mice: a link between

gut and skeletal biology. PloS one. 2012;7(7):e40038.

55. Zhang W, Shen X, Wan C, et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell biochemistry and function. 2012;30(4):297-302.

56. Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. The Journal of endocrinology. 2002;175(2):405-415.

57. Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res. 2006;21(10):1648-1656. 58. Almeida M, Laurent MR, Dubois V, et al. Estrogens and Androgens in Skeletal Physiology and

Pathophysiology. Physiological reviews. 2017;97(1):135-187.

59. Riggs BL. The mechanisms of estrogen regulation of bone resorption. The Journal of clinical

investigation. 2000;106(10):1203-1204.

60. Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clinical

interventions in aging. 2016;11:1317-1324.

61. Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. The Journal of

clinical endocrinology and metabolism. 2004;89(12):5898-5907.

62. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008;42(4):606- 615.

63. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. Journal of

bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

2007;22(8):1155-1164.

64. Rubin CT. Skeletal strain and the functional significance of bone architecture. Calcified tissue

international. 1984;36 Suppl 1:S11-18.

65. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31(1):57-61.

66. Yavropoulou MP, Tomos K, Tsekmekidou X, et al. Response of biochemical markers of bone turnover to oral glucose load in diseases that affect bone metabolism. European journal of endocrinology. 2011;164(6):1035-1041.

67. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Therapeutic advances in musculoskeletal disease. 2016;8(6):225- 235.

68. Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015;58(10):2238-2246.

69. Zaitseva OV, Shandrenko SG, Veliky MM. Biochemical markers of bone collagen type I metabolism.

Ukrainian biochemical journal. 2015;87(1):21-32.

70. Halleen JM, Tiitinen SL, Ylipahkala H, Fagerlund KM, Vaananen HK. Tartrate-resistant acid phosphatase 5b (TRACP 5b) as a marker of bone resorption. Clinical laboratory. 2006;52(9-10):499- 509.

71. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of

biochemistry and biophysics. 2008;473(2):139-146.

72. Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian journal of endocrinology and metabolism. 2016;20(6):846-852. 73. Garg MK, Kharb S. Dual energy X-ray absorptiometry: Pitfalls in measurement and interpretation of

bone mineral density. Indian journal of endocrinology and metabolism. 2013;17(2):203-210. 74. Morgan SL, Prater GL. Quality in dual-energy X-ray absorptiometry scans. Bone. 2017;104:13-28. 75. Chun KJ. Bone densitometry. Seminars in nuclear medicine. 2011;41(3):220-228.

76. Faulkner KG. The tale of the T-score: review and perspective. Osteoporosis international : a journal

established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2005;16(4):347-352.

77. Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporosis international :

a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2000;11(3):192-202.

78. Blake GM, Fogelman I. The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgraduate medical journal. 2007;83(982):509-517.

79. Adams JE. Bone Densitometry in Children. Seminars in musculoskeletal radiology. 2016;20(3):254- 268.

80. Seeman E. Growth in bone mass and size--are racial and gender differences in bone mineral density more apparent than real? The Journal of clinical endocrinology and metabolism. 1998;83(5):1414-1419. 81. Blake GM, Fogelman I. How important are BMD accuracy errors for the clinical interpretation of DXA scans? Journal of bone and mineral research : the official journal of the American Society for Bone and

Mineral Research. 2008;23(4):457-462.

82. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. Journal of bone and mineral research : the official

journal of the American Society for Bone and Mineral Research. 2012;27(1):119-124.

83. Yu EW, Bouxsein ML, Roy AE, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. Journal of bone and mineral research : the official journal of the American

Society for Bone and Mineral Research. 2014;29(3):542-550.

84. Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Italian journal of pediatrics. 2016;42(1):88.

85. Angrisani L, Santonicola A, Iovino P, et al. Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey 2014. Obesity surgery. 2017;27(9):2279-2289.

86. Yu EW, Lee MP, Landon JE, Lindeman KG, Kim SC. Fracture Risk After Bariatric Surgery: Roux-en-Y Gastric Bypass Versus Adjustable Gastric Banding. Journal of bone and mineral research : the official

87. Nakamura KM, Haglind EG, Clowes JA, et al. Fracture risk following bariatric surgery: a population- based study. Osteoporosis international : a journal established as result of cooperation between the

European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA.

2014;25(1):151-158.

88. Lalmohamed A, de Vries F, Bazelier MT, et al. Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ (Clinical research ed). 2012;345:e5085. 89. Axelsson KF, Werling M, Eliasson B, et al. Fracture Risk After Gastric Bypass Surgery: A Retrospective

Cohort Study. Journal of bone and mineral research : the official journal of the American Society for

Bone and Mineral Research. 2018;33(12):2122-2131.

90. Mikolajewicz N, Bishop N, Burghardt AJ, et al. HR-pQCT Measures of Bone Microarchitecture Predict Fracture: Systematic Review and Meta-analysis. Journal of bone and mineral research : the official

journal of the American Society for Bone and Mineral Research. 2019.

91. Kawalilak CE, Kontulainen SA, Amini MA, Lanovaz JL, Olszynski WP, Johnston JD. In vivo precision of three HR-pQCT-derived finite element models of the distal radius and tibia in postmenopausal women. BMC musculoskeletal disorders. 2016;17(1):389.

92. Bredella MA, Greenblatt LB, Eajazi A, Torriani M, Yu EW. Effects of Roux-en-Y gastric bypass and sleeve gastrectomy on bone mineral density and marrow adipose tissue. Bone. 2017;95:85-90. 93. Muschitz C, Kocijan R, Marterer C, et al. Sclerostin levels and changes in bone metabolism after

bariatric surgery. The Journal of clinical endocrinology and metabolism. 2015;100(3):891-901. 94. Jaruvongvanich V, Vantanasiri K, Upala S, Ungprasert P. Changes in bone mineral density and bone

metabolism after sleeve gastrectomy: a systematic review and meta-analysis. Surgery for obesity and

related diseases : official journal of the American Society for Bariatric Surgery. 2019.

95. Stein EM, Carrelli A, Young P, et al. Bariatric surgery results in cortical bone loss. The Journal of clinical

endocrinology and metabolism. 2013;98(2):541-549.

96. Liu C, Wu D, Zhang JF, et al. Changes in Bone Metabolism in Morbidly Obese Patients After Bariatric Surgery: A Meta-Analysis. Obesity surgery. 2016;26(1):91-97.

97. Crawford MR, Pham N, Khan L, Bena JF, Schauer PR, Kashyap SR. INCREASED BONE TURNOVER IN TYPE 2 DIABETES PATIENTS RANDOMIZED TO BARIATRIC SURGERY VERSUS MEDICAL THERAPY AT 5 YEARS. Endocrine practice : official journal of the American College of Endocrinology

and the American Association of Clinical Endocrinologists. 2018;24(3):256-264.

98. Marceau P, Biron S, Lebel S, et al. Does bone change after biliopancreatic diversion? Journal of

gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract.

2002;6(5):690-698.

99. Schafer AL, Kazakia GJ, Vittinghoff E, et al. Effects of Gastric Bypass Surgery on Bone Mass and Microarchitecture Occur Early and Particularly Impact Postmenopausal Women. Journal of bone and

mineral research : the official journal of the American Society for Bone and Mineral Research.

2018;33(6):975-986.

100. Lindeman KG, Greenblatt LB, Rourke C, Bouxsein ML, Finkelstein JS, Yu EW. Longitudinal 5-Year Evaluation of Bone Density and Microarchitecture After Roux-en-Y Gastric Bypass Surgery. The

Journal of clinical endocrinology and metabolism. 2018;103(11):4104-4112.

101. Biagioni MFG, Mendes AL, Nogueira CR, Leite CV, Gollino L, Mazeto GM. Bariatric Roux-En-Y Gastric Bypass Surgery: Adipocyte Proteins Involved in Increased Bone Remodeling in Humans. Obes Surg. 2017;27(7):1789-1796.

102. Ivaska KK, Huovinen V, Soinio M, et al. Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone. 2017;95:47-54.

103. Stein EM, Silverberg SJ. Bone loss after bariatric surgery: causes, consequences, and management.