• Aucun résultat trouvé

CHAPITRE 4: Discussion

4.3.2 L’ORF 41

Selon la figurer 3.9, les outils bio-informatiques prédisent que l’ORF41, composé de 51 résidus, serait constitué d’une hélice α et de deux feuillets β. Malheureusement, le peptide synthétisé de l’ORF41 n’a pas pu être solubilisé. Sans une solution du peptide, il est impossible de générer des spectres de dichroïsme circulaire et donc les seules données disponibles sur la structure de l’ORF41 sont celles des prédictions bio-informatiques.

85

Conclusion et perspectives

Les bactéries et les bactériophages sont au cœur d’une guerre microscopique responsable d’une coévolution rapide. Les phages surpassent de 10 fois le nombre de bactéries sur la planète. Pourtant, la grande majorité des protéines qu’ils codent ont une fonction inconnue. Les génomes de phages sont séparés selon l’expression temporelle des gènes au moment de l’infection (expression précoce, médiane et tardive). Les gènes tardifs sont souvent bien caractérisés, car ils codent pour des protéines structurales, plus faciles à étudier, car le phénotype est observable par microscopie électronique. Toutefois, énormément de gènes précoces et médians codant pour des protéines non structurales n’ont aucune fonction déterminée, malgré le fait qu’ils sont d’une grande importance pour la réplication virale et jouent un rôle majeur dans la régulation. L’outil génétique CRISPR-Cas9, qui a révolutionné le monde de l’édition de génome, permet la modification de ces gènes et ainsi l’étude du phénotype de phages mutants.

Sur les 14 gènes du phage 2972 qui codent pour des protéines aux fonctions inconnues, nous en avons sept, ce qui confirme la robustesse de notre approche expérimentale. De ces sept mutants, trois présentent une difficulté significative au niveau de la réplication virale en conditions de laboratoire. Lorsque le phage 2972 infecte la souche S. thermophilus DGCC7710, approximativement 120 virions sont relâchés dans l’environnement pour chaque cellule lysée. Les phages 2972Δ22, 2972Δ41 et 2972Δ43 ont une progéniture diminuée d’au moins la moitié ou plus. De plus, le phage mutant 2972Δ22 possède aussi une capacité d’adsorption à la surface cellulaire de 30% moins efficace. Plusieurs hypothèses ont été émises quant au rôle que ces protéines peuvent jouer, cependant aucune fonction n’a encore été déterminée avec certitude. Il est connu que la structure d’une protéine est fortement liée à sa fonction. Ainsi, des études préliminaires quant à la structure secondaire de certaines protéines codées par ces gènes ont été entreprises.

En perspective, il est évident que des tests plus approfondis seront nécessaires à chaque gène à l’étude, en plus de la détermination de la structure secondaire des gènes impossible à muter. Il serait aussi très intéressant d’étudier les interactions de ces protéines avec les protéines de l’hôte ou du phage. En somme, les données recueillies permettront une meilleure compréhension des interactions moléculaires entre les phages et les bactéries, ainsi que l’approfondissement des connaissances des mécanismes de réplication et d’infection des bactériophages pour éventuellement perfectionner les méthodes de contrôle appliquées en industrie laitière.

86

BIBLIOGRAPHIE

1. Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. 2008. Phage response to CRISPR-encoded resistance in Streptococcus

thermophilus. J Bacteriol 190:1390–1400.

2. Emond E, Moineau S. 2007. Bacteriophages and food fermentations, p. 93–124. In McGath, S, Van Sideren, D (eds.), Bacteriophage: genetics and molecular biology. Caister Academic Press, U.K.

3. Rohwer F, Youle M, Maughan H, Hisakawa N. 2014. Life in our phage world. Wholon, San Diego, CA.

4. Wiley J, Sherwood L, Woolverton C. 2013. Prescott’s Microbiology, 4th ed. McGrawth-Hill. 5. Keen EC. 2015. A century of phage research: bacteriophages and the shaping of modern

biology. Bioessays 37:6–9.

6. Hershey AD. 1952. Inheritance in bacteriophage. Ann New York Acadamy Sci 54:960–962. 7. Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z. 2017. Phage therapy in bacterial

infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol 74:277–283.

8. Ebrahimizadeh, W. Rajabibazl M. 2014. Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr Microbiol 69:109–120.

9. Bradley DE. 1967. Ultrastructure of bacteriophages and bacteriocins. Bacteriol Rev 31:230– 314.

10. Ackermann HW, Prangishvili D. 2012. Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849.

11. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM. 2009. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224.

12. Ackermann H. 2003. Bacteriophage observations and evolution. Res Microbiol 245–251. 13. Ackermann H-W. 2001. Frequency of morphological phage descriptions in the year 2000.

Arch Virol 146:843–857.

14. Kutter E, Raya R, Carlson K. 2005. Molecular mechanisms of phage infection, p. 165–222. In Kutter, E, Sulakvelidze, A (eds.), Bacteriophages: biology and applications. CRC Press. 15. Rakhuba D, Kolomiets E, Szwajcer Dey E, Novik G. 2010. Bacteriophage receptors,

mechanisms of phage adsorption and penetration into host cell. Pol Journal Microbiol 59:145– 155.

16. Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Muhlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ. 2007. The structures of bacteriophages K1E and K1-5 explain processive degradation of polysaccharide capsules and evolution of new host specificities. J Mol Biol 371:836–849.

17. Labrie SJ, Samson JE, Moineau S. 2010. Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327.

18. Kostyuchenko VA, Chipman PR, Leiman PG, Arisaka F, Mesyanzhinov V V., Rossmann MG. 2005. The tail structure of bacteriophage T4 and its mechanism of contraction. Nat Struct Mol Biol 12:810–813.

19. Leiman PG, Shneider MM. 2012. Contractile tail machines of bacteriophages, p. 93–114. In Rossmann, MG, Rao, VB (eds.), Viral Molecular Machines. Springer, New-York.

20. Davidson AR, Cardarelli L, Pell LG, Radford DR, Maxwell KL. 2012. Long noncontractile tail machines of bacteriophages, p. 115–142. In Rossmann, MG, Rao, VB (eds.), Viral Molecular Machines. Springer, New-York.

87

22. Bhardwaj A, Olia AS, Cingolani G. 2014. Architechture of viral genome-delivery molecular machines. Curr Opin Struct Biol 25:1–8.

23. Casjens SR, Molineux IJ. 2012. Short noncontractile tail machines: adsorption and DNA delivery by Podoviruses, p. 143–180. In Rossmann, MG, Rao, VB (eds.), Viral molecular machines. Springer, New-York.

24. Weigel C, Seitz H. 2006. Bacteriophage replication modules. FEMS Microbiol Rev 30:321– 381.

25. Dupuis MÈ, Moineau S. 2010. Genome organization and characterization of the virulent lactococcal phage 1358 and its similarities to Listeria phages. Appl Environ Microbiol 76:1623–1632.

26. Lévesque C, Duplessis M, Labonté J, Labrie S, Fremaux C, Tremblay D, Moineau S. 2005. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl Environ Microbiol 71:4057–4068.

27. Rao VB, Feiss M. 2008. The bacteriophage DNA packaging motor. Annu Rev Genet 42:647– 681.

28. Molineux IJ, Panja D. 2013. Popping the cork: Mechanisms of phage genome ejection. Nat Rev Microbiol 11:194–204.

29. Casjens SR, Gilcrease EB. 2009. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 502:91–111. 30. Ramanculov E, Young R. 2001. Genetic analysis of the T4 holin: timing and topology. Gene

265:25–36.

31. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R. 2017. Communication between viruses guides lysis-lysogeny decisions. Nature 541:488–493.

32. Casjens SR, Hendrix RW. 2015. Bacteriophage lambda: Early pioneer and still relevant. Virology 479–480:310–330.

33. Harshey RM. 2014. Transposable phage Mu. Microbiol Spectr 2:MDNA3-0007-2014. 34. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. 2017. Lysogeny in nature:

mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520.

35. Quiberoni A, Moineau S, Rousseau GM, Reinheimer J, Ackermann HW. 2010. Streptococcus

thermophilus bacteriophages. Int Dairy J 20:657–664.

36. Marcó MB, Moineau S, Quiberoni A. 2012. Bacteriophages and dairy fermentations. Bacteriophage 2:149–158.

37. Quiberoni A, Tremblay D, Ackermann H-W, Moineau S, Reinheimer JA. 2006. Diversity of

Streptococcus thermophilus phages in a large-production cheese factory in Argentina. J Dairy

Sci 89:3791–3799.

38. Lucchini S, Desiere F, Brüssow H. 1999. Comparative genomics of Streptococcus

thermophilus phage species supports a modular evolution theory. J Virol 73:8647–8656.

39. Le Marrec C, Van Sinderen D, Walsh L, Stanley E, Vlegels E, Moineau S, Heinze P, Fitzgerald G, Fayard B. 1997. Two groups of bacteriophages infecting Streptococcus

thermophilus can be distinguished on the basis of mode of packaging and genetic determinants

for major structural proteins. Appl Environ Microbiol 63:3246–3253.

40. Fujisawa H, Morita M. 1997. Phage DNA packaging. Genes to Cells 2:537–545.

41. Mills S, Griffin C, O’Sullivan O, Coffey A, McAuliffe OE, Meijer WC, Serrano LM, Ross RP. 2011. A new phage on the “Mozzarella” block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int Dairy J 21:963–969.

42. McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben JP, Lugli GA, Ventura M, Kouwen TR, van Sinderen D. 2017. Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Front Microbiol 8:1754.

88

2016. Identification and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Appl Environ Microbiol 82:5153–5165.

44. Martel B. 2014. CRISPR-Cas : un nouvel outil pour l’étude des génomes de bactériophages. Université Laval, Québec.

45. Duplessis M, Moineau S. 2001. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol Microbiol 41:325–336. 46. Duplessis M, Lévesque CM, Moineau S. 2006. Characterization of Streptococcus

thermophilus host range phage mutants. Appl Environ Microbiol 72:3036–3041.

47. Szymczak P, Janzen T, Neves AR, Kot W, Hansen LH, Lametsch R, Neve H, Franz CMAP, Vogensen FK. 2017. Novel variants of Streptococcus thermophilus bacteriophages are indicative of genetic recombination among phages from different bacterial species. Appl Environ Microbiol Microbiol 83:e02748-16.

48. Martel B, Moineau S. 2014. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res 42:9504–9513.

49. Duplessis M, Russell WM, Romero DA, Moineau S. 2005. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology 340:192– 208.

50. Lysenko A, Botina S, Ganina V, Sukhodolets V. 2001. DNA relatedness, divergence, and sibling species of the lactic acid bacterium Streptococcus thermophilus. Microbiology 70:59– 63.

51. Hatmaker EA, Riley LA, O’Dell KB, Papanek B, Graveley BR, Garrett SC, Wei Y, Terns MP, Guss AM. 2018. Complete genome sequence of industrial dairy Strain Streptococcus

thermophilus DGCC 7710. Genome Announc 6:e01587-17.

52. Snyder L, Peters JE, Hankins TM, Champness W. 2013. Molecular genetics of bacteria, 4th ed. ASM Press.

53. Halász A. 2009. Lactic acid bacteria, p. 70–82. In Lasztity, R (ed.), Food Quality and Standards. EOLSS Publications.

54. De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177.

55. Drider D, Prevost H. 2009. Bactéries lactiques : Physiologie, métabolisme, génomique et applications industrielles. Economica, Paris.

56. Hassan AN, Frank JF, Schmidt KA, Shalabi SI. 1996. Textural properties of yogurt made with encapsulated nonropy lactic cultures. J Dairy Sci 79:2098–2103.

57. Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S. 2003. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423.

58. Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. 2015. Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments. Int J Mol Sci 16:13172–13202.

59. Xiao J, Zhang Y, Yang Z. 2014. Lactic acid bacteria in health and disease, p. 303–374. In Zhang, H, Cai, Y (eds.), Lactic Acid Bacteria : Fundamentals and Pratice. Springer.

60. Bergey DH. 2009. Bergey’s Manual of Systematic Bacteriology - Volume 3 : The Firmicutes, 2nd ed. Springer, New-York.

61. Zhihong S, Jie Y, Tong D, Wenyi Z, Heping Z. 2014. Phylogenesis and evolution of lactic acid bacteria, p. 1–101. In Lactic acid bacteria : Fundamentals and pratice. Springer.

62. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus

thermophilus. Nat Biotechnol 22:1554–1558.

63. Lourens-Hattingh A, Viljoen BC. 2001. Yogurt as probiotic carrier food. Int Dairy J 11:1–17. 64. Cerning J. 1995. Production of expolysaccharides by lactic acid bacteria and dairy

89 propionibacteria. Lait 75:463–472.

65. Welman AD, Maddox IS. 2003. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol 21:269–274.

66. Duboc P, Mollet B. 2001. Applications of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768.

67. Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. 2014. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 9:e101229.

68. Zhang W, Zhang H. 2014. Genomics of lactic acid bateria, p. 205–247. In Zhang, H, Cai, Y (eds.), Lactic Acid Bacteria : Fundamentals and Pratice. Springer, Nederlands.

69. Moineau S. 1999. Applications of phage resistance in lactic acid bacteria. Antonie Van Leeuwenhoek 76:377–382.

70. Geagea H, Gomaa AI, Remondetto G, Moineau S, Subirade M. 2015. Investigation of the protective effect of whey proteins on lactococcal phages during heat treatment at various pH. Int J Food Microbiol 210:33–41.

71. Campagna C, Villion M, Labrie SJ, Duchaine C, Moineau S. 2014. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int J Food Microbiol 171:41–47. 72. Nordstrom K, Forsgren A. 1974. Effect of protein A on adsorption of bacteriophages to

Staphylococcus aureus. J Virol 14:198–202.

73. Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. 2012. The CRISPRs, They are A-changin’: How prokaryotes generate adaptive immunity. Annu Rev Genet 46:311–339.

74. Lu MJ, Henning U. 1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol 2:137–139.

75. Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, Maxwell KL. 2016. Prophages mediate defense against phage infection through diverse mechanisms. ISME J 10:2854–2866.

76. Chopin MC, Chopin A, Bidnenko E. 2005. Phage abortive infection in lactococci: Variations on a theme. Curr Opin Microbiol 8:473–479.

77. Hyman P, Abedon ST. 2010. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248.

78. Reuter M, Mücke M, Krüger D. 2004. Structure and function of type IIE restriction endonucleases, p. 261–295. In Pingoud, A (ed.), Restriction Endonucleases. Springer. 79. Allison GE, Klaenhammer TR. 1998. Phage resistance mechanisms in lactic acid bacteria. Int

Dairy J 8:207–226.

80. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D a, Horvath P. 2007. CRISPR provides aquired resistance against viruses in prokaryotes. Science (80- ) 315:1709–1712.

81. Bolotin A, Quinquis B, Sorokin A, Dusko Ehrlich S. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561.

82. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182.

83. Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845.

84. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433.

85. Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170.

90

86. Jansen R, Embden J, Gaastra W, Schouls L. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575.

87. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. 2018. The Biology of CRISPR-Cas: backward and forward. Cell 172:1239–1259.

88. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71.

89. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin E V. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736.

90. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, Moineau S, Mojica FJM, Wolf YI, Yakunin AF, van der Oost J, Koonin E V. 2011. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9:467–477.

91. Koonin E V., Makarova KS, Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.

92. Noble C, Olejarz J, Esvelt K, Church G, Nowak M. 2017. Evolutionary dynamics of CRISPR gene drives. Sci Adv e1601964.

93. Koonin E V., Makarova KS, Zhang F. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78.

94. Hao M, Cui Y, Qu X. 2018. Analysis of CRISPR-cas system in Streptococcus thermophilus and its application. Front Microbiol 9:257.

95. Carte J, Christopher RT, Smith JT, Olson S, Barrangou R, Moineau S, Claiborne VCGI, Graveley BR, Terns RM, Terns MP. 2014. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol Microbiol 93:98–112.

96. Magadán AH, Dupuis MÈ, Villion M, Moineau S. 2012. Cleavage of phage DNA by the

Streptococcus thermophilus CRISPR3-Cas system. PLoS One 7:e40913.

97. Young JC, Dill BD, Pan C, Hettich RL, Banfield JF, Shah M, Fremaux C, Horvath P, Barrangou R, Verberkmoes NC. 2012. Phage-induced expression of CRISPR-associated proteins is revealed by shotgun proteomics in Streptococcus thermophilus. PLoS One 7:e38077.

98. Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R. 2008. Diversity, activity, and evolution of CRISPR loci in

Streptococcus thermophilus. J Bacteriol 190:1401–1412.

99. van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJJ. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34:401–407.

100. Barrangou R. 2013. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 4:267–278.

101. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R. 2015. CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510.

102. Modell JW, Jiang W, Marraffini LA. 2017. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544:101–104.

103. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740.

104. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945.

91

specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199–202. 106. Nuñez JK, Lee ASY, Engelman A, Doudna J a. 2015. Integrase-mediated spacer acquisition

during CRISPR–Cas adaptive immunity. Nature 519:193–198.

107. McGinn J, Marraffini LA. 2016. CRISPR-Cas systems optimize their immune response by specifying the site of spacer integration. Mol Cell 64:616–623.

108. Rollie C, Graham S, Rouillon C, White MF. 2018. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res 46:1007–1020.

109. Xiao Y, Ng S, Hyun Nam K, Ke A. 2017. How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration. Nature 550:137–141.

110. Arslan Z, Hermanns V, Wurm R, Wagner R, Pul U. 2014. Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system. Nucleic Acids Res 42:7884– 7893.

111. Sashital DG, Jinek M, Doudna JA. 2011. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol 18:680–687. 112. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence- and structure-

specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358.

113. Gesner EM, Schellenberg MJ, Garside EL, George MM, MacMillan AM. 2011. Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18:688–692.

114. Sefcikova J, Roth M, Yu G, Li H. 2017. Cas6 processes tight and relaxed repeat RNA via multiple mechanisms: A hypothesis. BioEssays 39:1700019.

115. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607.

116. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin E V. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397.

117. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E. 2016. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521. 118. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9-crRNA ribonucleoprotein

complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586.

119. Wright A V., Doudna JA. 2016. Protecting genome integrity during CRISPR immune adaptation. Nat Struct Mol Biol 23:876–883.

120. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin E V., Van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science (80- ) 321:960–964.

121. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER, Wanner B, van der Oost J, Brouns SJJ, Severinov K. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci 108:10098–10103.

122. Xiao Y, Luo M, Hayes RP, Kim J, Ng S, Ding F, Liao M, Ke A. 2017. Structure basis for directional R-loop formation and substrate handover mechanisms in type I CRISPR-Cas system. Cell 170:48–60.e11.

123. Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC. 2015. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas System. Cell 163:854–865.

124. Taylor DW, Zhu Y, Staals RHJ, Kornfeld JE, Shinkai A, van der Oost J, Nogales E, Doudna JA. 2015. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning. Science 348:581 LP-585.

92

S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997. 126. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 2014. DNA interrogation by the

CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67.

127. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949.

128. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 2015. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477–1481.

129. East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA. 2017. RNA targeting by functionally orthogonal yype VI-A CRISPR-Cas enzymes. Mol Cell 66:373–383.e3.

130. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DBT, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin E V, Zhang F. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573.

131. Liu L, Li X, Ma J, Li Z, You L, Wang J, Wang M, Zhang X, Wang Y. 2017. The Molecular architecture for RNA-guided RNA leavage by Cas13a. Cell 170:714–726.e10.

132. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278.

133. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. CRISPR-assisted editing of bacterial genomes. Nat Biotechnol 31:233–239.

134. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini

Documents relatifs