• Aucun résultat trouvé

Les objectifs et moyens définis par le Grenelle de l’environnement

ANNEXE I : LA MAITRISE DE L’E NERGIE EN FRANCE : TENDANCES PASSEES ET ENJEUX FUTURS

2.2 Les objectifs et moyens définis par le Grenelle de l’environnement

Reprenant l’une des conclusions de la table ronde finale, le COMOP3 définit un des objectifs phares du Grenelle de l’environnement, inscrit à l’article 5 de la loi Grenelle 1 :

« L'Etat se fixe comme objectif de réduire les consommations d'énergie du parc des bâtiments existants d'au moins 38 % d'ici à 2020 »

La loi ne précise pas si l’objectif est défini en énergie primaire ou finale, ni s’il est défini en intensité ou en valeur absolue. Ces lacunes rendent plusieurs interprétations possibles. La plus élémentaire laisse penser que l’objectif s’applique à la consommation totale d’énergie finale des bâtiments résidentiels et tertiaires, existant lors de la promulgation de la loi, c’est-à-dire avant 2009. L’interprétation la plus vraisemblable, qui figure dans les documents officiels accompagnant l’article de loi (Pelletier, 2008, p.27 ; Plan Climat, 2009, p.39), favorise plutôt la consommation d’énergie primaire unitaire (par mètre carré). L’objectif « Grenelle -38% » correspond en réalité à une réduction de la consommation moyenne du parc de bâtiments construits avant 2009 de 240 à 150 kWhep/m²/an, soit un déplacement de la performance énergétique moyenne de la fourchette basse

79 Loi n°2005-781 du 13 juillet 2005 de programme fixant les orientations de la politique énergétique

80 Loi n° 2009-967 du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de

l'environnement

162 de la classe E (231 à 330 kWhep/m²/an) à la fourchette haute de la classe C (91 à 150 kWhep/m²/an) du diagnostic de performance énergétique (DPE). Les points de passage -12% en 2012 et -70 à -80% pour 2050 sont également définis par le COMOP3. Appliqué à la consommation d’énergie finale pour le chauffage dans les logements, l’ordre de grandeur de -38% est de 1,5 fois la décroissance tendancielle : la prolongation sur 12 années (2008 à 2020) de la consommation unitaire de chauffage correspond à une diminution de 20 à 30%, selon que l’on se réfère à l’évolution récente (-3,3% en 2006 par rapport à 2005) ou à la moyenne des 30 dernières années (environ 2%/an).

Pour atteindre cet objectif, le COMOP3 définit 47 mesures. Le renforcement du crédit d’impôt développement durable (CIDD), dont l’éligibilité est étendue aux propriétaires bailleurs, s’accompagne de la mise en place d’un éco-prêt à taux zéro pour la rénovation énergétique des logements (EcoPTZ) par la loi de finances de 200982. Selon la logique d’ « aider puis contraindre, mesurer et garantir », le COMOP3 recommande l’inscription dans la loi du principe d’une obligation de rénovation, dont les modalités doivent être définies par des études complémentaires. Ce principe n’a finalement pas été inscrit dans la loi Grenelle 1.

Le COMOP1 définit de façon largement consensuelle la nouvelle réglementation thermique, qui fixe la performance énergétique minimale des constructions neuves au niveau « bâtiment basse consommation » (BBC) en 2012 et au niveau « bâtiment à énergie positive (BEPOS) en 2020. Enfin, la mise en place d’une taxe carbone ou « contribution climat énergie » (CCE) est décidée par le Président de la République83, qui s’y était engagé en signant le Pacte écologique de Nicolas Hulot en 2007. Inscrite dans le projet de loi de finances de 2009, elle est votée par le Parlement avant d’être annulée par le Conseil constitutionnel, qui juge qu’en exemptant les installations industrielles couvertes par le système communautaire d’échange des quotas d’émissions (SCEQE), au sein duquel les quotas sont attribués gratuitement, elle viole le principe de l'égalité devant l'impôt. Le principe d’une taxe carbone n’a pas été repris depuis par le gouvernement.

Allaire, D., G. Gaudière, Y. Majchrzak, C. Masi, 2008, Problématique qualitative et quantitative de la sortie du parc national de bâtiments, Mémoire du Groupe d’Analyse d’Action Publique, ENPC

Girault, M., 2008, « Baisse des consommations d’énergies de chauffage dans les logements depuis 2001 »,

Notes de synthèse du SESP, n°170, 29-34

Leray, T., B. de la Roncière, 2002, 30 ans de maîtrise de l’énergie, Association technique énergie environnement, Arcueil

Martin, Y., Y. Carsalade, J.-P. Leteurtrois, F. Moisan, 1998, La maîtrise de l’énergie : rapport d’évaluation, Paris: La Documentation française

Traisnel, J.-P., 2001, Habitat et développement durable. Bilan rétrospectif et prospectif, Les cahiers du CLIP, n°13

82 Loi n° 2008-1425 du 27 décembre 2008 de finances pour 2009

83

Discours de M. le Président de la République à l’occasion de la restitution des conclusions du Grenelle de l’Environnement, Palais de l'Elysée, Jeudi 25 Octobre 2007

163

Annexe II: Efficiency and distributional

impacts of tradable white certificates

compared to taxes, subsidies and

regulations

Cette annexe détaille les équations, le calibrage et les résultats du modèle du chapitre II. Elle retranscrit un article publié dans la Revue d’économie politique :

Giraudet, L.-G., P.Quirion, “Efficiency and distributional impacts of tradable white certificates compared to taxes, subsidies and regulations”, Revue d’économie politique, 2008(6), Volume 118, p. 885-914

165

Introduction

Energy efficiency and energy savings, which had somewhat dropped from the political agenda following the counter-oil shock of the late 1980's, have recently raised more attention, especially due to climate change and security of supply concerns. Meanwhile, the end of state monopolies in the electricity and gas sectors has led to design new policy instruments to save energy.

In particular, energy efficiency certificates, dubbed Tradable White Certificates (TWC), were recently implemented in Great Britain (UK Ofgem, 2005; Sykes, 2005), Italy (Pagliano et al., 2003; Pavan, 2005) and France (Moisan, 2004; Dupuis, 2007). Setting aside various differences among these systems, they may be schematically described as follows. Energy suppliers have to generate a given quantity of energy savings, or, if they are short of their target, to buy certificates from other suppliers. Vice versa, suppliers who have funded more measures than their target are allowed to sell such white certificates to those who are short of their target. In general, in order to be taken into account, energy savings have to take place in energy consumers' dwellings or plants, not in energy suppliers' facilities. In practice, suppliers typically fund energy savings in their own customers' dwellings, or contract with retailers who increase their sales of energy-efficient goods in exchange for a funding from the energy supplier.

The peer-reviewed literature on TWC schemes is increasing but still scarce. Langniss and Praetorius (2006) as well as Mundaca (2007) discuss the transaction costs associated with the generation of TWC and their implication for TWC markets, an issue that we do not address here. Bertoldi and Huld (2006) discuss some implementation issues as well as the interaction of TWC schemes with other trading systems, a question that we do not address either. Vine and Hamrin (2008) present the experience to date with TWC schemes and outline potential opportunities in the United States. Farinelli et al. (2005), Mundaca (2008) and Oikonomou et al. (2007) quantify the potential for a TWC scheme, in Europe for the first two papers and in the Netherlands for the latter. To date, an analysis of the economic mechanisms at stake when implementing a TWC scheme and of its relative efficiency compared to other policy instruments seems to be lacking.

In the present paper, we compare two types of TWC schemes to other policy instruments for energy efficiency, i.e., taxes, subsidies and regulations. On this purpose, we develop a simple partial equilibrium model representing the markets for four commodities: energy, energy-saving goods or services, a composite good and TWCs. This paper builds on a working paper by Quirion (2006) but enhances it by (i) using more general functional forms (CES instead of Cobb-Douglas) thereby allowing a sensitivity analysis of the elasticities; (ii) allowing for an endogenous level of energy service; (iii) assessing another policy instrument (the subsidy).

Although this simple model cannot by far address all the issues raised when choosing between TWC schemes and other policy instruments, it is able to shed a first light on their economic efficiency and on their contrasted distributional consequences.

The paper is organised as follows. In the first section we present some background information on TWC schemes in practice. The first model and the policy instruments are presented in section 2 and numerical results in section 3. These results are discussed in section 4 and section 5 concludes. Appendix 1 lists the model's variables and parameters and Appendix 2 provides the method used to compare the national targets.

166

1 Tradable white certificates in practice

What is generally called a TWC is the commodity potentially traded between suppliers84. A TWC scheme can then formally be understood as an obligation to save a given quantity of energy coupled with a flexibility mechanism, actually the market for TWCs. Although this instrument targets potentially every final consumption sector (including industry or transports), it focuses in practice on existing buildings (mainly residential but commercial as well), considered as the greatest potential for cost-efficient energy savings.

Although the existing schemes in the UK, Italy and France largely conform to this definition, there are some differences among them, for example the obligation to achieve half of the target in poor households in the UK.

In the UK, the first such system, labelled the “Energy Efficiency Commitment” (EEC1), required suppliers to save 62 TWh of energy in three years, from 1st April 2002 to 31 March 2005. This target refers to savings cumulated and discounted over the lifetime of the equipments funded, not only over the 3-year commitment period. This aggregate goal was exceeded by 40% and the suppliers who exceeded their target were allowed to bank these energy efficiency measures for the second period (EEC2), running from 1st April 2005 to 31 March 2008, with a roughly twice more ambitious target of 130 TWh. This was indeed the reason for the overachievement of the target: as in the U.S. SO2 cap-and-trade programme (Ellerman and Montero, 2002), emitters used the banking provision to ease the transition between the first and the second (more ambitious) commitment period. Twelve suppliers groups were set a target under the EEC. Among them, two did not meet their target, generating a shortfall of nearly 1 TWh. Since these companies had ceased energy trading, no penalty was imposed on them because it would have served no practical purpose.

To tackle "fuel poverty", at least half of the target had to be achieved in the "Priority group", defined as those households receiving certain-income related benefits and tax credits. This requirement was fulfilled during EEC1. The last available information indicates that one quarter before the end of the EEC2, the target had already been overachieved by 26%, including the carry-over from EEC1 (UK Ofgem, 2008). Although committed suppliers were allowed to trade commitments or energy efficiency activities, such trades occurred neither in the first nor in the second period.

Note that for the third period (2008-2011) the government replaced the EEC by the CERT (carbon emission reduction target) with the following characteristics: a target expressed in CO2 equivalent rather than in energy; a roughly doubled quantitative objective (154 Mt CO2) compared to the EEC2; a larger scope including micro-generation and biomass heating; and increased trading opportunities (UK Ofgem, 2008).

In France, the three-year scheme started in July 2006 and the target is 54 TWh, also cumulated and discounted over the lifetime of the equipments funded. The latest available data (September 2008) show that 25 TWh have already been achieved, most of them (93%) in the residential sector. The

84Bertoldi and Rezessy (2006, p. 35) give the following definition: “A white certificate is an instrument issued by an authority or an authorised body providing a guarantee that a certain amount of energy savings has been achieved. Each certificate is a unique and traceable commodity that carries a property right over a certain amount of additional savings and guarantees that the benefit of these savings has not been accounted for

167 actors' strategies are still not well described, but we know that some agents have already banked some certificates.

In Italy, the five-year scheme started in 2005, but energy saved by suppliers between 2001 and 2004 can be accounted to achieve the target until 2009. The 2005 and 2006 targets were respectively 0.2 and 0.4 Mtoe (million tonnes of oil-equivalent) increasing each year up to 2.9 Mtoe in 2009. Contrarily to the two other TWC schemes, these figures refer to annual savings, neither cumulated nor discounted. The 2005 and 2006 targets were both largely exceeded and 240% of the 2006 objective were achieved, including the 2001-2004 savings. In comparison to the British scheme, the Italian one has an active market since 24% of the certificates or “titles” (equivalent to one toe) delivered have been traded (76% through bilateral transactions and 24% on a specific market). Between 2006 and 2007 the part of traded titles has increased from 17 to 24% and the average market price has decreased (-57% for electricity titles and -11% for gas titles).

In Table 15 we compare the targets in the three existing TWC schemes by translating them in a standardised unit, which leads to the following results (see Appendix 2 for calculation steps and hypotheses). As is apparent from table 15, these targets amount to roughly 1 to 2% of final national energy consumption.

UK 02-05 UK 05-08 Italy 05-09 France 06-09

Absolute target

(cumulated & discounted)

27 TWh/year 43 TWh/year 25 TWh/year 18 TWh/year

Target in % of final energy consumption

1.4 2.3 1.5 0.9

Table 15: Targets in the British, Italian and French schemes

The savings occur through different measures as indicated in Figure 47, based on reports from the public bodies in charge of the TWC schemes (UK Ofgem 2007, AEEG 2007 and DGEMP 2008). It appears that even though similar measures are addressed in different countries their share in the savings differs a lot. For further developments on the existing TWC schemes see the above-mentioned references, Bertoldi and Rezessy (2006) or Giraudet (2007).

168 Figure 47: Types of saving in the existing TWC schemes

2 The model

85