• Aucun résultat trouvé

Normes d'exposition aux ELF

Dans le document Faculté de Médecine (Page 184-200)

que micr

Annexe 6 Normes d'exposition aux ELF

Les champs électrique et magnétique terrestres, extrêmement faibles, sont respectivement de l'ordre de 10-4V.m-1 et 10-5µT. L'exposition humaine la plus importante aux champs ELF est associée principalement à la production, au transport et à l'utilisation de l'énergie électrique. Les champs électriques et magnétique en-dessous des lignes électriques aériennes peuvent atteindre respectivement 12kV.m-1 et 30µT. A proximité des centrales et des sous-stations, les champs électriques peuvent atteindre 16kV.m-1 et les champs magnétiques 270µT. Les travailleurs chargés de l'entretien des lignes de transport et de distribution de courant peuvent donc être exposés à des champs très importants. Les champs électriques au voisinage de la plupart des appareils domestiques ne dépassent pas 500V.m-1 et le champ magnétique est généralement inférieur à 150µT. Dans les deux cas, le champ peut être nettement plus élevé à proximité immédiate de l'appareil, mais il diminue rapidement avec la distance [OMS, 2007b; Classic K, 2014].

L'International Commission on Non-Ionizing Radiation Protection (ICNIRP), commission reconnue par l'OMS, a pour objectif d'établir des recommandations limitant l'exposition visant à protéger les personnes des effets des EF et MF 50Hz sur la santé. Un facteur de réduction est appliqué au niveau des recommandations et permet de prendre en compte l'hétérogénéité du grand public. Les restrictions de base des EF internes considérées comme acceptables dans le cerveau et la rétine sont 10-1V.m-1 pour l'exposition professionnelle et 2.10-2V.m-1 pour l'exposition du grand public. Les valeurs des champs électriques induits sont traduites en grandeurs électriques directement mesurables. Les niveaux de référence sont obtenus par modélisation mathématique à partir des restrictions de base et utilisent un facteur de réduction additionnel de 3 de manière à tenir compte des incertitudes dosimétriques. Les niveaux de référence de l'exposition aux EF et MF 50Hz sont [ICNIRP, 2010] :

- pour l'exposition professionnelle: 10kV.m-1 - 800A.m-1 - 1000µT; - pour la population générale: 5kV.m-1 - 160A.m-1 - 200µT.

L'Union Européenne a également émis des recommandations et des directives. Pour l'exposition du grand public, le Conseil de l'Union Européenne [1999] a adopté la recommandation 1999/519/CE relative à la limitation de l'exposition du public aux EMF. Pour l'exposition professionnelle, le Conseil de l'Union Européenne et le Parlement Européen ont arrêté la directive 2013/35/EU [2013] définissant les prescriptions minimales de sécurité et de santé relatives à l'exposition des travailleurs aux risques dus aux agents physiques (EMF). Les valeurs limites d'exposition de cette recommandation sont basées sur les directives de l'ICNIRP [2010]. La terminologie sur les "valeurs déclenchant l’action" (VA) utilisée dans la directive reprend la terminologie "VA basses" et "VA hautes". Pour les EF, ce sont les niveaux en lien avec les mesures de protection ou de prévention spécifiques établies dans la directive; et pour les MF, les "VA basses" sont les niveaux en lien avec les "valeurs limites d’exposition" (VLE) relatives aux effets sensoriels et les "VA hautes" sont les niveaux en lien avec les VLE relatives aux effets sur la santé.

Les niveaux de référence de l'exposition aux EF et MF 50Hz sont : - valeurs pour l'exposition professionnelle 50Hz :

▪ Champ électrique : VA basse de 10kV.m-1 rms et VA haute de 20kV.m-1 rms.

▪ Induction magnétique : VA basse de 1000µT rms, VA haute de 6000µT rms et de 18mT rms pour une exposition des membres à un MF localisé.

- valeurs pour la population générale 50Hz : ▪ Champ électrique : 5kV.m-1 rms. ▪ Induction magnétique : 100µT rms.

Les directives européennes doivent être transposées dans la législation des Etats membres. En Belgique, pour le grand public, la valeur du champ électrique généré par une installation de transport de l'électricité doit rester inférieure aux valeurs suivantes mesurées à 1,5m du sol ou des habitations :

- dans les zones habitées ou destinées à l'habitat sur les plans de secteur: 5kV.m-1; - lors des surplombs de routes: 7kV.m-1;

- dans les autres lieux: 10kV.m-1.

Il n'existe pas à ce jour une législation belge particulière au sujet de l'exposition à des champs d'induction magnétique.

Au niveau de l'exposition professionnelle, la directive européenne 2013/35/UE devra être transposée par la Belgique avant le 1er juillet 2016.

Bibliographie

Bibliographie clôturée le 1er août 2015. Adey R.W.

A growing scientific consensus on the cell and molecular biology mediating. In: Biological Effects of Magnetic and Electromagnetic Fields.

Plenum Press, Springer US, pp. 45-62, 1996. Affymetrix.

Data sheet: GeneChip® Human Genome U133 Arrays.

http://www.affymetrix.com/support/technical/datasheets/hgu133arrays_datasheet.pdf Dernier accès le 07/09/ 2015. Ahlbom A., Day N., Feychting M., Roman E., Skinner J., Dockerty J., Linet M., McBride M., Michaelis J., Olsen J., Tynes T., Verkasalo P.

A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83(5):692-8, 2000.

Al-Shahrour F., Díaz-Uriarte R., Dopazo J.

FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 20(4):578-80, 2004.

Allen D., Winters E., Kenna P., Humphries P., Farrar G.

Reference gene selection for real-time rtPCR in human epidermal keratinocytes. J Dermsci. 49:217-25, 2008.

Ashburner M., Ball C., Blake J., Botstein D., Butler H., Cherry J., Davis A., Dolinski K., Dwight S., Eppig J., Harris M., Hill D., Issel-Tarver L., Kasarskis A., Lewis S., Matese J., Richardson J., Ringwald M., Rubin G., Sherlock G.

Gene ontology: tool for the unification of biology. Nat Genet. 25(1):25-9, 2000.

Aston-Mourney K., Zraika S., Udayasankar J., Subramanian S., Green P., Kahn S., Hull R.

Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide. J Biol Chem. 288:3553-9, 2013.

Aydin-Abidin S., Trippe J., Funke K., Eysel U., Benali A.

High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain.

Exp Brain Res. 188(2):249-61, 2008.

Bai W., Xu W., Feng Y., Huang H., Li X., Deng C., Zhang M.

Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons.

Cytotherapy. 15(8):961-70, 2013.

Baliatsas C., Van Kamp I., Lebret E., Rubin G.

Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): a systematic review of identifying criteria.

BMC Public Health. 12:643, 2012. Bassett C, Pawluk R., Becker R.

Effects of electric currents on bone in vivo. Nature. 204:652-4, 1964.

Bassett C.

Biophysical principles affecting bone structure. In: Tue Biochemistry and Physiology of Bone.

Edited by G. H. Bourne. New York and London: Academic Press. Second edition, Volume III, pp.1-76, 1971.

Bassett C., Mitchell S., Gaston S.

Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 63(4):511-23, 1981.

Bawin S., Adey W.

Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA. 73(6):1999-2003, 1976.

Bernerd F., Asselineau D., Vioux C., Chevallier-Lagente O., Bouadjar B., Sarasin A., Magnaldo T.

Clues to epidermal cancer proneness revealed by reconstruction of DNA repair-deficient xeroderma pigmentosum skin in vitro.

Proc Natl Acad Sci USA. 98:7817-22, 2001. Bikkavilli R., Feigin M., Malbon C.

p38 mitogen-activated protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of GSK3beta. J Cell Sci. 121(Pt 21):3598-607, 2008.

Binhi V., Goldman R.

Ion-protein dissociation predicts 'windows' in electric field-induced wound-cell proliferation. Biochim Biophys Acta. 1474(2):147-56, 2000.

Binns D., Dimmer E., Huntley R., Barrell D., O'Donovan C., Apweiler R. QuickGO: a web-based tool for Gene Ontology searching.

Bioinformatics. 25(22):3045-6, 2009. Bishop G., Einhorn T.

Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop. 31(6):721-7, 2007.

Block G., Ohkouchi S., Fung F., Frenkel J., Gregory C., Pochampally R., DiMattia G., Sullivan D., Prockop D. Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem Cells. 27:670-81, 2009.

Bodamyali T., Bhatt B., Hughes F., Winrow V., Kanczler J., Simon B., Abbott J., Blake D., Stevens C. Pulsed electromagnetic fields simultaneously induce osteogenesis and upregulate transcription of bone morphogenetic proteins 2 and 4 in rat osteoblasts in vitro.

Biochem Biophys Res Commun. 250(2):458-61, 1998.

Borena B., Martens A., Broeckx S., Meyer E., Chiers K., Duchateau L., Spaas J.

Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments.

Cell Physiol Biochem. 36(1):1-23, 2015. Borhani N., Rajaei F., Salehi Z., Javadi A.

Analysis of DNA fragmentation in mouse embryos exposed to an extremely low-frequency electromagnetic field. Electromagn Biol Med. 30(4):246-52, 2011.

Borovecki F., Pecina-Slaus N., Vukicevic S.

Biological mechanisms of bone and cartilage remodelling-genomic perspective. Int Orthop. 31(6):799-805, 2007.

Bostrom M., Lane J., Berberian W., Missri A., Tomin E., Weiland A., Doty S., Glaser D., Rosen V. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res. 13(3):357-67, 1995.

Bostrom M.

Expression of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res. 355(Suppl):S116-23, 1998.

Bostrom M., Camacho N.

Potential role of bone morphogenetic proteins in fracture healing. Clin Orthop Relat Res. 355(Suppl):S274-82, 1998.

Bouwens M., de Kleijn S., Ferwerda G., Cuppen J., Savelkoul H., Kemenade B.

Low-frequency electromagnetic fields do not alter responses of inflammatory genes and proteins in human monocytes and immune cell lines.

Bioelectromagnetics. 33(3):226-37, 2012.

Boyden L., Mao J., Belsky J., Mitzner L., Farhi A., Mitnick M,Wu D., Insogna K., Lifton R. High bone density due to a mutation in LDL-receptor-related protein 5.

N Engl J Med. 346(20):1513-21, 2002. Brown R., Lockwood A., Sonawane B.

Neurodegenerative diseases: an overview of environmental risk factors. Environ Health Perspect. 113(9):1250-6, 2005.

Bułdak R., Polaniak R., Bułdak L., Zwirska-Korczala K., Skonieczna M., Monsiol A., Kukla M., Duława-Bułdak A., Birkner E.

Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells.

Bioelectromagnetics. 33(8):641-51, 2012.

Burdak-Rothkamm S., Rothkamm K., Folkard M., Patel G., Hone P., Lloyd D., Ainsbury L., Prise K. DNA and chromosomal damage in response to intermittent extremely low-frequency magnetic fields. Mutat Res. 672(2):82-9, 2009.

Burkitt H.G., Young B., Heath J.W. La peau.

In: Histologie Fonctionnelle Wheater. Arnette, Ed. Paris. 153-61. 1993.

Callaghan M., Chang E., Seiser N., Aarabi S., Ghali S., Kinnucan E., Simon B., Gurtner G.

Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release.

Plast Reconstr Surg. 121(1):130-41, 2008.

Canales R., Luo Y., Willey J., Austermiller B., Barbacioru C., Boysen C., Hunkapiller K., Jensen R., Knight C., Lee K., Ma Y., Maqsodi B., Papallo A., Peters E., Poulter K., Ruppel P., Samaha R., Shi L., Yang W., Zhang L., Goodsaid F.

Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol. 24(9):1115-22, 2006.

Cañedo-Dorantes L., García-Cantú R., Barrera R., Méndez-Ramírez I., Navarro V., Serrano G. Healing of chronic arterial and venous leg ulcers through systemic effects of electromagnetic fields. Arch Med Res. 33(3):281-9, 2002.

Cannon J., Greenamyre J.

The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci. 124(2):225-50, 2011.

Caputo M., Zirpoli H., De Rosa M., Rescigno T., Chiadini F., Scaglione A., Stellato C., Giurato G., Weisz A., Tecce M., Bisceglia B.

Effect of low frequency (LF) electric fields on gene expression of a bone human cell line. Electromagn Biol Med. 33(4):289-95, 2014.

Chang K., Chang W., Wu M., Shih C.

Effects of different intensities of extremely low frequency pulsed electromagnetic fields on formation of osteoclast-like cells.

Chang F., Lee J., Navolanic P., Steelman L., Shelton J., Blalock W., Franklin R., McCubrey J.

Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy.

Leukemia. 17(3):590-603, 2003b. Chang C., Loo S., Liu H., Fang H., Lin H.

Can low frequency electromagnetic field help cartilage tissue engineering? J Biomed Mater Res A. 92(3):843-51, 2010.

Chang S., Hsiao Y., Lin H.

Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate. Orthopedics. 34(1):20, 2011.

Chao T., Byron K., Lee K., Villereal M. Rosner M.

Activation of MAP kinases by calcium-dependent and calcium-independent pathways.

Stimulation by thapsigargin and epidermal growth factor. J Biol Chem. 267(28):19876-83, 1992. Chen Y., Park S., Li Y., Missov E., Hou M., Han X., Hall J., Miller L., Bache R.

Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genomics. 14(3):251-60, 2003.

Chen D., Zhao M., Mundy G. Bone morphogenetic proteins. Growth Factors. 22(4):233-41, 2004. Chen Y., Miao Z., Zhao W., Ding J.

The p53 pathway is synergized by p38 MAPK signaling to mediate 11,11'-dideoxyverticillin-induced G2/M arrest. FEBS Lett. 579(17):3683-90, 2005.

Chen H.-J., Lin C.-M., Lin C.-S., Perez-Olle R., Leung C., Liem R.

The role of microtubule actin cross-linking factor 1 (MACF1) in the Wnt signaling pathway. Genes Dev 20:1933-45, 2006.

Chen G., Lu D., Chiang H., Leszczynski D., Xu Z.

Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression.

Bioelectromagnetics. 33(7):550-60, 2012. Cheng C., Tseng H., Yang C.

Bradykinin-mediated cell proliferation depends on transactivation of EGF receptor in corneal fibroblasts. J Cell Physiol. 227(4):1367-81, 2012.

Cho H., Seo Y., Yoon H., Kim S., Kim S., Song K., Park J.

Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields.

Biotechnol Prog. 28(5):1329-35, 2012.

Choi Y., Lee D., Seo Y., Jung H., Park J., Cho H.

Stimulation of neural differentiation in human bone marrow mesenchymal stem cells by extremely low-frequency electromagnetic fields incorporated with MNPs.

Appl Biochem Biotechnol. 174(4):1233-45, 2014.

Chung E., Hwang S., Nguyen P., Lee S., Kim J., Kim J., Henkart P., Bottaro D., Soon L., Bonvini P., Lee S., Karp J., Oh H., Rubin J., Trepel J.

Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin. Blood. 100(3):982-90, 2002.

Chung M., Yu W., Kim Y., Myung S.

Lack of a co-promotion effect of 60 Hz circularly polarized magnetic fields on spontaneous development of lymphoma in AKR mice.

Bioelectromagnetics. 31(2):130-9, 2010.

Cid M., Ubeda A., Hernández-Bule M., Martínez M., Trillo M.

Antagonistic effects of a 50 Hz magnetic field and melatonin in the proliferation and differentiation of hepatocarcinoma cells.

Cell Physiol Biochem. 30(6):1502-16, 2012.

Ciombor D., Lester G., Aaron R., Neame P., Caterson B.

Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res. 20(1):40-50, 2002.

Classic K.

Extremely low frequency radiation/power lines Health Physics Society 13 August 2014

http://hps.org/hpspublications/articles/elfinfosheet.html Dernier accès le 07/09/2015. Cochran G.V.B.

Summary and conclusions.

In: Electromechanical characteristics of moist bone. Columbia University Ed. pp.91-94, 1966.

Colla S., Zhan F., Xiong W., Wu X., Xu H., Stephens O., Yaccoby S., Epstein J., Barlogie B., Shaughnessy J. The oxidative stress response regulates DKK1expression through the JNK signaling cascade in multiple myeloma plasma cells.

Blood. 109(10):4470-4477, 2007.

Collard J.-F., Mertens B., Hinsenkamp M.

In vitro study of the effects of ELF electric fields on gene expression in human epidermal cells. Bioelectromagnetics. 32(1):28-36, 2011.

Collard J.-F., Lazar C., Nowé A., Hinsenkamp M.

Statistical validation of the acceleration of the differentiation at the expense of the proliferation in human epidermal cells exposed to extremely low frequency electric fields.

Prog Biophys Mol Biol. 111(1):37-45, 2013. Collard J.-F., Hinsenkamp M.

Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields. Cell Signal. 27(5):889-98, 2015.

Conseil de l'Union Européenne.

Recommandation du Conseil du 12 juillet 1999 relative à la limitation de l'exposition du public aux champs électromagnétiques (de 0 Hz à 300 GHz).

Journal officiel des Communautés européennes. 1999/519/CE, 1999. Conseil de l'Union Européenne, Parlement Européen.

Directive du Parlement Européen et du Conseil du 26 juin 2013 concernant les prescriptions minimales de sécurité et de santé relatives à l’exposition des travailleurs aux risques dus aux agents physiques (champs

électromagnétiques) (vingtième directive particulière au sens de l’article 16, paragraphe 1, de la directive 89/391/CEE) et abrogeant la directive 2004/40/CE.

Journal officiel des Communautés européennes. 2013/35/EU, 2013.

Corallo C., Battisti E., Albanese A., Vannoni D., Leoncini R., Landi G., Gagliardi A., Landi C., Carta S., Nuti R., Giordano N.

Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF). Electromagn Biol Med. 33(1):3-10, 2014.

Cowin S.C., Weinbaum S., Zeng Y.

A case for bone canaliculi as the anatomical site of strain generated potentials. J. Biomech. 28(11): 1281-97, 1995.

Crickx B.

Comprendre la peau.

Ann Dermatol Venereol Supplément. 132:8S3, 2005.

Crocetti S., Beyer C., Schade G., Egli M., Fröhlich J., Franco-Obregón A.

Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. PLoS One. 8(9):e72944, 2013.

Cuccurazzu B., Leone L., Podda M., Piacentini R., Riccardi E., Ripoli C., Azzena G., Grassi C.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice.

Exp Neurol. 226(1):173-82, 2010.

Cuppen J., Wiegertjes G., Lobee H., Savelkoul H., Elmusharaf M., Beynen A., Grooten H., Smink W. Immune stimulation in fish and chicken through weak low frequency electromagnetic fields.

The Environmentalist. 27(4):577-83, 2007.

Cursons J., Gao J., Hurley D., Print C., Dunbar P., Jacobs M., Crampin E. Regulation of ERK-MAPK signaling in human epidermis.

BMC Syst Biol. 9:41, 2015.

D'Angelo C., Costantini E., Kamal M., Reale M.

Experimental model for ELF-EMF exposure: Concern for human health. Saudi J Biol Sci. 22(1):75-84, 2015.

Dan H., Cooper M., Cogswell P., Duncan J., Ting J., Baldwin A.

Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev. 22(11):1490-500, 2008.

De Dobbeleer G., De Graef C., M'Poudi E., Gourdain J., Heenen M.

Reproduction of the characteristic morphologic changes of familial benign chronic pemphigus in cultures of lesional keratinocytes onto dead deepidermized dermis.

J Am Acad Dermatol. 21(5):961-5, 1989. De Vocht F., Lee B.

Residential proximity to electromagnetic field sources and birth weight: Minimizing residual confounding using multiple imputation and propensity score matching.

Environ Int. 69:51-7, 2014.

Delle Monache S., Alessandro R., Iorio R., Gualtieri G., Colonna R.

Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells.

Bioelectromagnetics. 29(8):640-8, 2008. Elliott P., Toledano M.

Adult cancers near high-voltage power lines. Epidemiology. 24(5):783-4, 2013.

Essers M., Weijzen S., de Vries-Smits A., Saarloos I., de Ruiter N., Bos J., Burgering B.

FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 23(24):4802-12, 2004.

Faes T., van der Meij H., de Munck J., Heethaar R.

Feng Z.

p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harb Perspect Biol. 2(2):a001057, 2010.

Fernando P., Megeney L.

Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J. 21(1):8-17, 2007.

Feychting M., Pedersen N., Svedberg P., Floderus B., Gatz M. Dementia and occupational exposure to magnetic fields. Scand J Work Environ Health. 24(1):46-53, 1998. Feychting M.

Invited commentary: extremely low-frequency magnetic fields and breast cancer--now it is enough! Am J Epidemiol. 178(7):1046-50, 2013.

Feynman R., Leighton R., Sands M. The Feynman Lectures on Physics.

Vol II, Mainly Electromagnetism and Matter.

Ed. Basic Books, A Member of the Perseus Books Group. Sixth printing, ISBN: 978-0-465-02416-2, 1977.

Focke F., Schuermann D., Kuster N., Schär P.

DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 683(1-2):74-83, 2010.

Frei P., Poulsen A., Mezei G., Pedersen C., Cronberg Salem L., Johansen C., Röösli M., Schüz J.

Residential distance to high-voltage power lines and risk of neurodegenerative diseases: a Danish population-based case-control study.

Am J Epidemiol. 177(9):970-8, 2013.

Freiberg R., Spencer D., Choate K., Duh H., Schreiber S., Crabtree G., Khavari P. Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. J Invest Dermatol. 108(2):215-9, 1997.

Fu Y., Lin C., Chang J., Chen C., Tai I., Wang G., Ho M.

A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair.

PLoS One. 9(3):e91581, 2014. Gabriel C., Peyman A., Grant E.

Electrical conductivity of tissue at frequencies below 1 MHz. Phys Med Biol. 54(16):4863-78, 2009.

Gaetani R., Ledda M., Barile L., Chimenti I., De Carlo F., Forte E., Ionta V., Giuliani L., D'Emilia E., Frati G., Miraldi F., Pozzi D., Messina E., Grimaldi S., Giacomello A., Lisi A.

Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res. 82(3):411-20, 2009.

Gallo R., Provenzano C., Carbone R., Di Fiore P., Castellani L., Falcone G., Alemà S.

Regulation of the tyrosine kinase substrate Eps8 expression by growth factors, v-Src and terminal differentiation. Oncogene. 15(16):1929-36, 1997.

García A., Sisternas A., Hoyos S.

Occupational exposure to extremely low frequency electric and magnetic fields and Alzheimer disease: a meta-analysis.

George I., Geddis M., Lill Z., Lin H., Gomez T., Blank M., Oz M., Goodman R.

Myocardial function improved by electromagnetic field induction of stress protein hsp70. J Cell Physiol. 216(3):816-23, 2008.

Ghoreschi K., Laurence A., O'Shea J. Janus kinases in immune cell signaling. Immunol Rev. 228(1):273-87, 2009.

Gibbs S., Fijneman R., Wiegant J., van Kessel A., van De Putte P., Backendorf C.

Molecular characterization and evolution of the SPRR family of keratinocyte differentiation markers encoding small proline-rich proteins.

Genomics. 16(3):630-7, 1993. Gilbert S.

Reverse-Transcriptase Tolymerase Chain Reaction (RT-PCR). In: Developmental Biology, tenth Edition.

Sinauer Associates, Sunderland, MA, 2013.

Compagnion website : http://10e.devbio.com/index.php Dernier accés le 07/09/2015.

Girolamo L., Stanco D., Galliera E., Viganò M., Colombini A., Setti S., Vianello E., Corsi Romanelli M., Sansone V.

Low frequency pulsed electromagnetic field affects proliferation, tissue-specific gene expression, and cytokines release of human tendon cells.

Cell Biochem Biophys. 66(3):697-708, 2013.

Gomez Sandoval Y., Lévesque L., Li Y., Anand-Srivastava M.

Role of epidermal growth factor receptor transactivation in endothelin-1-induced enhanced expression of Gi protein and proliferation in A10 vascular smooth muscle cells.

Can J Physiol Pharmacol. 91(3):221-7, 2013. González-Mariscal L., Tapia R., Chamorro D.

Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta. 1778(3):729-56, 2008.

Goudarzi I., Hajizadeh S., Salmani M., Abrari K.

Pulsed electromagnetic fields accelerate wound healing in the skin of diabetic rats. Bioelectromagnetics. 31(4):318-23, 2010.

Greenland S., Sheppard A., Kaune W., Poole C., Kelsh M.

A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood Leukemia-EMF Study Group. Epidemiology. 11(6):624-34, 2000.

Greer E., Brunet A.

FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24(50):7410-25, 2005.

Guxens M., Slottje P., Kromhout H., Huss A., Ivar Martinsen J., Kauppinen T., Uuksulainen S., Weiderspass E., Sparén P., Tryggvadóttir L., Kjærheim K., Vermeulen R., Pukkala E.

Occupational exposure to extremely low frequency magnetic fields or electric shocks and cancer incidence in four Nordic countries.

Occup Environ Med. 71 Suppl 1:A50, 2014.

Hadjihannas M., Bernkopf D, Brückner M., Behrens J.

Cell cycle control of Wnt/β-catenin signalling by conductin/axin2 through CDC20. EMBO Rep. 13(4):347-54, 2012.

Håkansson N., Gustavsson P., Johansen C., Floderus B.

Hameedaldeen A., Liu J., Batres A., Graves G., Graves D. FOXO1, TGF-β regulation and wound healing.

Int J Mol Sci. 15(9):16257-69, 2014. Hannun Y., Obeid L.

The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem. 277(29):25847-50, 2002.

Hao J., Daleo M., Hong C.

Crosstalk between mitogen-activated protein kinase and phosphoinositide-3 kinase signaling pathways in development and disease.

In: Choi S (ed.), Systems Biology 1, Systems Biology for Signaling Networks, Springer Science+Business Media, pp.505-29, 2010.

Harrison D.

The JAK/STAT pathway.

Cold Spring Harb Perspect Biol. 4(3):pii:a011205, 2012. Hartsock A., Nelson W.

Adherens and tight junctions: structure, function and connections to the actin cytoskeleton.

Dans le document Faculté de Médecine (Page 184-200)