• Aucun résultat trouvé

D.4 Paramètres des modèles matériau

D.4.2 Modèle acier : Menegotto Pinto

L’acier des armatures longitudinales est modélisé par le modèle de Menegotto Pinto. Les pa-ramètres matériau utilisés sont tirés de [De Biasio, 2014], et listés dans les tableaux D.3 et D.4.

Es νs fy fu y y

200GPa 0,3 414 MPa 494 MPa 0,002 0,18

Table D.3 – Paramètres matériau utilisés pour le modèle de Menegotto Pinto (1/2).

b R0 a1 a2 a3 a4 cr1 cr2

0,0033 20 18,5 55 0,15 55 0,925 0,15

Bibliographie

Addessi, D. et Di Re, P. (2014). A 3d mixed frame element with multi-axial coupling for thin-walled structures with damage. Fracture and Structural Integrity, (29):178–195.

Bairan, J. M. (2005). A non-linear coupled model for the analysis of reinforced concrete sections under bending, shear, torsion and axial forces. Thèse de doctorat, Universitat Politècnica de Catalunya.

Bairan, J. M. et Mari, A. R. (2006). Coupled model for the non-linear analysis of anisotropic sections subjected to general 3d loading. part 1 : Theoretical formulation. Computers & structures, 84(31):2254–2263.

Bairan, J. M. et Mari, A. R. (2007). Multiaxial-coupled analysis of rc cross-sections subjected to combined forces. Engineering structures, 29(8):1722–1738.

Batoz, J. et Dhatt, G. (1993a). Modélisation des structures par éléments finis : Poutres et plaques, volume 2. Hermes.

Batoz, J. et Dhatt, G. (1993b). Modélisation des structures par éléments finis : Solides élas-tiques, volume 1. Hermes.

Benkemoun, N. (2010). Contribution aux approches multi-échelles séquencées pour la modé-lisation numérique des matériaux à matrice cimentaire. Thèse de doctorat, École normale supérieure de Cachan-ENS Cachan.

Caillerie, D., Kotronis, P. et Cybulski, R. (2015). A timoshenko finite element straight beam with internal degrees of freedom. International Journal for Numerical and Analytical Methods in Geomechanics.

Capdevielle, S., Grange, S., Dufour, F. et Desprez, C. (2016). A multifiber beam model coupling torsional warping and damage for reinforced concrete structures. European Journal of Environmental and Civil Engineering, 20(8):914–935.

Casaux, G. (2003). Modélisation tridimensionnelle du comportement sismique d’ouvrages en béton armé : développement de méthodes simplifiées. Thèse de doctorat, Cachan, Ecole normale supérieure.

CEA (1998). Camus international benchmark. experimental results. synthesis of the participant reports. Rapport technique, CEA Saclay, France.

Chalioris, C. E. et Karayannis, C. G. (2009). Effectiveness of the use of steel fibres on the torsional behaviour of flanged concrete beams. Cement and Concrete Composites, 31(5):331– 341.

Colomb, F., Tobbi, H., Ferrier, E. et Hamelin, P. (2008). Seismic retrofit of reinforced concrete short columns by cfrp materials. Composite Structures, 82(4):475–487.

De Biasio, M. (2014). Ground motion intensity measures for seismic probabilistic risk analysis. Thèse de doctorat, Université de Grenoble.

BIBLIOGRAPHIE

De Biasio, M., Grange, S., Dufour, F., Allain, F. et Petre-Lazar, I. (2015). Inten-sity measures for probabilistic assessment of non-structural components acceleration demand. Earthquake Engineering & Structural Dynamics.

Desprez, C. (2010). Analyse et réduction de la vulnérabilité sismique des structures existantes : renforcement par collage de tissus de fibres de carbone (TFC). Thèse de doctorat, Institut National Polytechnique de Grenoble-INPG.

Desrues, J., Nguyen, T., Combe, G. et Caillerie, D. (2015). Fem× dem multi-scale analysis of boundary value problems involving strain localization. In Bifurcation and Degradation of Geomaterials in the New Millennium, pages 259–265. Springer.

Dubé, J.-F. (1997). Modélisation multicouche des voiles en béton armé. Revue française de génie civil, 1(2):285–307.

Ferreira, D., Marí, A. et Bairán, J. (2014). Assessment of prestressed concrete bridge girders with low shear reinforcement by means of a non-linear filament frame model. Structure and Infrastructure Engineering, 10(12):1531–1546.

Friedman, Z. et Kosmatka, J. B. (1993). An improved two-node timoshenko beam finite element. Computers & structures, 47(3):473–481.

Goldberg, D. E. et al. (1989). Genetic algorithms in search optimization and machine learning, volume 412. Addison-wesley Reading Menlo Park.

Grange, S. (2011). Analyse dynamique de la tour perret. Rapport technique, Laboratoire 3SR. Grange, S. (2015). Modeèles multi-échelles et algorithmes pour les simulations dynamiques : application ‘a la vulnérabilité sismique des structures. Habilitation à diriger des recherches, Université de Grenoble-Alpes.

Grange, S., Kotronis, P. et Mazars, J. (2008). Numerical modelling of the seismic behaviour of a 7-story building : NEES benchmark. Materials and Structures, 42(10):1433–1442.

Guedes, J., Pégon, P. et Pinto, A. (1994). A fibre timoshenko beam element in castem 2000. Rapport technique, special publication Nr. I. 94.31, JRC, I-21020, Ispra, Italy.

Hughes, T. J. (1987). The finite element method : linear static and dynamic finite element analysis. Prentiss-Hall, Englewood Cliffs, NJ.

Kotronis, P. (2008). Stratégies de modélisation de structures en béton soumises à des char-gements sévères. Habilitation à diriger des recherches, Université Joseph-Fourier-Grenoble I.

Kotronis, P. et Grange, S. (2010). Simplified modelling strategies for reinforced concrete structures. European Journal of Environmental and Civil Engineering, 14(6-7):823–838. Kotronis, P. et Mazars, J. (2005). Simplified modelling strategies to simulate the dynamic

behaviour of r/c walls. Journal of Earthquake Engineering, 9(2):285–306.

Kotronis, P., Mazars, J., Grange, S. et Giry, C. (2008). Simplified modeling strategies for non linear dynamic calculations of rc structural walls including soil-structure interaction. In 6th International Conference on Computation of Shell and Spatial Structures, IASS-IACM 2008 :" Spanning Nano to Mega".

Le Corvec, V. (2012). Nonlinear 3d frame element with multi-axial coupling under consideration of local effects. Thèse de doctorat, University of California, Berkeley.

BIBLIOGRAPHIE

Le Corvec, V. et Filippou, F. (2011). Enhanced 3d fiber beam-column element with warping displacements. In Proceedings of the 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering.

Légeron, F., Paultre, P. et Mazars, J. (2005). Damage mechanics modeling of nonlinear seismic behavior of concrete structures. Journal of Structural Engineering, 131(6):946–955. Levasseur, S., Malécot, Y., Boulon, M. et Flavigny, E. (2008). Soil parameter

identifi-cation using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 32(2):189–213.

Levasseur, S., Malecot, Y., Boulon, M. et Flavigny, E. (2009). Statistical inverse analysis based on genetic algorithm and principal component analysis : method and developments using synthetic data. International journal for numerical and analytical methods in geomechanics, 33(12):1485–1511.

Mazars, J. (1986). A description of micro-and macroscale damage of concrete structures. En-gineering Fracture Mechanics, 25(5):729–737.

Mazars, J. et Grange, S. (2015). Modeling of reinforced concrete structural members for engineering purposes. Computers and Concrete (accepted for publication).

Mazars, J., Hamon, F. et Grange, S. (2014). A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings. Materials and Structures, pages 1–15.

Mazars, J., Kotronis, P. et Davenne, L. (2002). A new modelling strategy for the behaviour of shear walls under dynamic loading. Earthquake engineering & structural dynamics, 31(4):937– 954.

Mazars, J., Kotronis, P., Ragueneau, F. et Casaux, G. (2006). Using multifiber beams to account for shear and torsion : Applications to concrete structural elements. Computer Methods in Applied Mechanics and Engineering, 195(52):7264–7281.

Menegotto, M. et Pinto, P. (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending. In IABSE Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon. Millard, A. (1993). Castem 2000 user manual. Rapport technique Rapport CEA-LAMBS No

93/007, Commissariat Francais Energie Atomique, Saclay, France.

Mohr, S. (2011). Nonlinear static and dynamic model for the analysis of reinforced concrete frames under high shear forces. Thèse de doctorat, Universitat Politècnica de Catalunya. Mohr, S., Bairán, J. M. et Marí, A. R. (2010). A frame element model for the analysis of

reinforced concrete structures under shear and bending. Engineering Structures, 32(12):3936– 3954.

Omar, A. (2011). Seismic behavior of an old concrete structure. Mémoire de D.E.A., Université Joseph Fourier, Grenoble INP.

Pal, S., Wathugala, G. W. et Kundu, S. (1996). Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics, 19(4):325–348.

Papon, A. (2010). Modélisation numérique du comportement des sols sous très grands nombres de cycles : homogénéisation temporelle et identification des paramètres. Thèse de doctorat, Université de Nantes ; Ecole Centrale de Nantes (ECN)(ECN)(ECN)(ECN).

BIBLIOGRAPHIE

Papon, A., Riou, Y., Dano, C. et Hicher, P.-Y. (2012). Single-and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics, 36(5):597–618.

Pegon, P. (1994). A timoshenko simple beam element in castem 2000. Rapport technique, JRC, I-21020, Ispra, Italy. special publication Nr. I, 94.

Renders, J.-M. (1995). Algorithmes génétiques et réseaux de neurones : applications à la com-mande de processus. Hermès.

Richard, B., Fontan, M. et Mazars, J. (2014). Smart 2013 : overview, synthesis and lessons learnt from the international benchmark. Rapport technique, CEA.

Spacone, E. et El-Tawil, S. (2004). Nonlinear analysis of steel-concrete composite structures : State of the art. Journal of Structural Engineering, 130(2):159–168.

Subramaniam, K. V., Popovics, J. S. et Shah, S. P. (1998). Testing concrete in torsion : Instability analysis and experiments. Journal of engineering mechanics, 124(11):1258–1268. Tonti, E. (1976). The reason for analogies between physical theories. Applied Mathematical

Modelling, 1(1):37–50.

Vecchio, F. J. et Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J., 83(2):219–231.