• Aucun résultat trouvé

sont les matrices de convection de convection-diffusion du scalaire ` a coupler de taille N 2

. (D.3)

La matriceA(de taille(N

1

+N

2

)

2

) de couplage est diagonale par blocs o`ua

i

(i= 1,2)

sont les matrices de convection de convection-diffusion du scalaire `a coupler de taille N

2

i

dans le domaine D

i

avec N

i

cellules. Dans les blocs extra-diagonaux nuls, on rajoute les

matrices diffusives de couplagec

1

etc

2

. On remarque que le syst`eme g´en´eral `a r´esoudre est

compos´e de deux produits matrice-vecteurs ind´ependants non-coupl´es. La premi`ere ´etape

consiste `a ´echanger h

eq

et Y

e

dans les cellules `a coupler puis afin d’´eviter de changer la

structure de la matrice A, on rajoute ces flux diffusifs d’´echange apr`es le produit

matrice-vecteur i.e. :

b= b

1

b

2 !

= (A+A

c

)x= a

1

0

0 a

2 !

x+ 0 c

1

c

2

0

!

x. (D.4)

Bibliographie

[1] Code Saturne : Theory 4.1. http://code-saturne.org/cms/sites/default/

files/docs/4.0/theory.pdf, 2015. 8, 10, 24, 31, 34, 36, 37, 40, 44, 70, 80, 81,

91, 94, 97, 102, 134, 135, 155, 160, 164, 170, 171, 177, 178

[2] S. A. Al-Mamun, Y. Tanaka, and Y. Uesugi, Two-temperature

two-dimensional non chemical equilibrium modeling of ar–co2–h2 induction thermal

plas-mas at atmospheric pressure, Plasma Chemistry and Plasma Processing, 30 (2010),

pp. 141–172. 146

[3] S. K. Aliabadi and T. E. Tezduyar, Space-time finite element computation of

compressible flows involving moving boundaries and interfaces, Computer Methods

in Applied Mechanics and Engineering, 107 (1993), pp. 209–223. 92

[4] G. Allaire, G. Faccanoni, and S. Kokh,A strictly hyperbolic equilibrium phase

transition model, Comptes Rendus Mathematique, 344 (2007), pp. 135–140.

[5] F. Archambeau, N. M´echitoua, and M. Sakiz,Code saturne : A finite volume

code for the computation of turbulent incompressible flows-industrial applications,

International Journal on Finite Volumes, 1 (2004). 29, 36,155,171

[6] T. Barberon and P. Helluy,Finite volume simulation of cavitating flows,

Com-puters & fluids, 34 (2005), pp. 832–858.

[7] C. Baudry, Contribution `a la mod´elisation instationnaire et tridimensionnelle du

comportement dynamique de l’arc dans une torche de projection plasma, PhD thesis,

Universite de Limoges, 2003. 20

[8] S. Beldame, Contribution `a l’am´elioration des conditions aux limites du potentiel

vecteur pour la simulation d’arcs ´electriques dans Code Saturne : validation dans

la version 1.2.2, EDF’s internal documentation, (2007). 40

[9] P. M. Bellan,Fundamentals of plasma physics, Cambridge University Press, 2006.

145,154

[10] G. Belton, Metall. Trans. B, 7B (1976), pp. 35–42. 21, 22

[11] M. Benilov and A. Marotta, A model of the cathode region of atmospheric

pressure arcs, Journal of Physics D : Applied Physics, 28 (1995), p. 1869. 25,26,139,

149

[12] C. Besse, J. Claudel, P. Degond, F. Deluzet, G. Gallice, and C.

Tes-sieras, A model hierarchy for ionospheric plasma modeling, Mathematical Models

and Methods in Applied Sciences, 14 (2008), pp. 393–415. 138, 150, 151

[13] D. Borel, Etude num´erique et exp´erimentale des transferts thermiques dans un

plasma d’arc, PhD thesis, Universit´e de Rouen, 2013. 16,20,24, 31, 35, 36, 134,160

[14] M. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas : Fundamentals

and Applications, Springer, 1999. 148

[15] J. Brackbill, D. B. Kothe, and C. Zemach,A continuum method for modeling

surface tension, Journal of Computational Physics, 100 (1992), pp. 335–354. 21

[16] M. Brochard, Etude exp´erimentale et num´erique de la mod´elisation du bain de

fusion en soudage d’aciers de teneurs en ´el´ements tensioactifs diff´erentes, PhD thesis,

Universit´e Aix-Marseille, 2009. 15,20, 24

[17] J. Callen, Fondamentals of plasma physics. http://homepages.cae.wisc.edu/

~callen/book.html, 2003. 25, 141, 142, 145, 146, 154

[18] P. Carman, Fluid flow through granular beds, Transations-Institution of Chemical

Engineers, 15 (1937), pp. 150–166. 85

[19] F. Cayla,Mod´elisation de l’interaction entre un arc ´electrique et une cathode, PhD

thesis, Universit´e de Toulouse, Universit´e Toulouse III-Paul Sabatier, 2008. 24, 149

[20] L. Chac´on and D. A. Knoll, A 2d high-β hall mhd implicit nonlinear solver,

Journal of Computational Physics, 188 (2003), pp. 573–592. 150

[21] L. Chemartin, Mod´elisation des arcs ´electriques dans le contexte du foudroiement

des a´eronefs, PhD thesis, Universit´e de Rouen, 2008. 20, 24

[22] F. F. Chen and A. Trivelpiece, Introduction to plasma physics, Physics Today,

29 (1976), p. 54.

[23] X. Chen and H.-P. Li, The reactive thermal conductivity for a two-temperature

plasma, International journal of heat and mass transfer, 46 (2003), pp. 1443–1454.

148

[24] M. chien Nguyen, Mod´elisation et simulation multiphysique du bain de fusion en

soudage `a l’arc TIG, PhD thesis, Aix-Marseille Universit´e, 2015. 16,22, 122, 129

[25] A. J. Chorin, Numerical solution of the navier-stokes equations, Mathematics of

computation, 22 (1968), pp. 745–762. 96

[26] T. Chung,Computational plasma dynamics and nuclear fusion. http://webpages.

uah.edu/~chungt, 2009.

[27] L. Cortelezzi and A. Prosperetti, Small-amplitude waves on the surface of a

layer of a viscous liquid, Quarterly of Applied Mathematics, 38 (1981), pp. 375–389.

105,175

[28] A. Dahan-Dalm´edico, M´ecanique et th´eorie des surfaces : les travaux de sophie

germain, Historia mathematica, 14 (1987), pp. 347–365.

[29] M. Dal, P. Le Masson, and M. Carin, A model comparison to predict heat

transfer during spot gta welding, International Journal of Thermal Sciences, 75 (2014),

pp. 54–64.

[30] M. Darwish and F. Moukalled, Convective schemes for capturing interfaces of

free-surface flows on unstructured grids, Numerical heat transfer, part B :

Funda-mentals, 49 (2006), pp. 19–42. 92

[31] J. Davroux, A. Archambeau, and J. H´erard, Tests num´eriques sur quelques

m´ethodes de r´esolution d’une ´equation de diffusion en volumes finis, tech. rep.,

Tech-nical Report HI-83/00/027/A, EDF R&D, 2000.

[32] C. Delalondre, Modelisation a´erothermodynamique d’arcs ´electriques a forte

in-tensit´e avec prise en compte du d´es´equilibre thermodynamique local et du transfert

thermique `a la cathode, PhD thesis, Universit´e de Rouen, 1990. 20, 24, 35,156

Bibliographie 181

[33] H. Dinulescu and E. Pfender, Analysis of the anode boundary layer of high

intensity arcs, Journal of Applied Physics, 51 (1980), p. 3149.

[34] J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran,

Ency-clopedia of computational mechanics vol. 1 : Fundamentals., chapter 14 : Arbitrary

lagrangian-eulerian methods, 2004. 8, 31, 89,91, 92, 134

[35] K. Dorogan, Simulation num´erique de soudage des joints canopy, EDF’s internal

documentation, (2013). 14, 22, 69, 133

[36] A. Douce, Mod´elisation 3D du chauffage d’un bain m´etallique par plasma d’arc

transf´er´e. Application `a un r´eacteur axisym´etrique, PhD thesis, 1999. 20, 24, 35

[37] M. Ferrand, Couplage des composantes de vitesse dans Code Saturne .

adapta-tion du module ale et applicaadapta-tion aux ´ecoulements `a surface libre, EDF’s internal

documentation, (2012). 93, 95, 98, 99,102,134

[38] E. Franck, A. Lessig, M. H¨olzl, A. Ratnani, E. Sonnendr¨ucker, and

T. Day, Hierarchy of fluid models and numerical methods for the jorek code, in

ITER Seminar, 2014. 152, 153

[39] P. Freton, J. Gonzalez, Z. Ranarijaona, and J. Mougenot, Energy

equa-tion formulaequa-tions for two-temperature modelling of thermal plasmas, Journal of

Phy-sics D : Applied PhyPhy-sics, 45 (2012), p. 465206. 24, 138, 146

[40] J.-J. Gonzalez, A. Gleizes, P. Proulx, and M. Boulos,Mathematical

mode-ling of a free-burning arc in the presence of metal vapor, Journal of Applied Physics,

74 (1993), pp. 3065–3070.

[41] M. Gonzalez,Simulation tridimensionnelle instationnaire de l’interaction entre un

arc ´electrique et un ´ecoulement environnant, PhD thesis, Universit´e Paul Sabatier de

Toulouse, 1999. 37

[42] D. A. Gurnett and A. Bhattacharjee, Introduction to plasma physics : with

space and laboratory applications, Cambridge university press, 2005. 145, 154

[43] J. Haidar,A theoretical model for gas metal arc welding and gas tungsten arc

wel-ding. i., Journal of applied physics, Vol. 84 (1998), pp. 3518–3529. 28

[44] J. Haidar, Non-equilibrium modelling of transferred arcs, Journal of Applied

Phy-sics, 32 (1999), p. 263. 24

[45] M. Hamide,Mod´elisation num´erique du soudage `a l’arc des aciers, PhD thesis, ´Ecole

Nationale Sup´erieure des Mines de Paris, 2008. 15, 20, 22

[46] D. S. Harned and Z. Mikic,Accurate semi-implicit treatment of the hall effect in

magnetohydrodynamic computations, Journal of Computational Physics, 83 (1989),

pp. 1–15. 150

[47] C. Heiple and J. Roper,Mechanisms for minor element effect on gta fusion zone

geometry, Supplement of the Welding Journal, (1982), pp. 97–102. 21,22

[48] P. Helluy, Mod`eles fluides pour les plasmas. http://www-irma.u-strasbg.fr/

~helluy/mhd/mhd.pdf, 2008.

[49] P. Helluy and N. Seguin, Relaxation models of phase transition flows, ESAIM :

Mathematical Modelling and Numerical Analysis, 40 (2006), pp. 331–352.

[50] M. Hesse, J. Birn, and M. Kuznetsova, Collisionless magnetic reconnection :

Electron processes and transport modeling, Journal of Geophysical Research : Space

Physics, 106 (2001), pp. 3721–3735. 150,152

[51] H. Hingana,Contribution `a l’´etude des propri´et´es des plasmas `a deux temp´eratures

– Application `a l’Argon et `a l’Air, PhD thesis, Universit´e de Toulouse, 2010.

[52] K. Hsu and E. Pfender, Analysis of the cathode region of a free-burning high

intensity argon arc, Journal of Applied Physics, 54 (1983), pp. 3818–3824. 26, 139

[53] J. Hu and H.-L. Tsai, Heat and mass transfer in gas metal arc welding. part i :

The arc, International Journal of Heat and Mass Transfer, 50 (2007), pp. 833–846.

[54] , Heat and mass transfer in gas metal arc welding. part ii : The metal,

Interna-tional Journal of Heat and Mass Transfer, 50 (2007), pp. 808–820.

[55] J. Huba, Hall magnetohydrodynamics in space and laboratory plasmas, Physics of

Plasmas, 2 (1995), pp. 2504–2513. 150, 151, 152, 154

[56] J. Huba,Numerical methods : Ideal and hall mhd, Journal of Plasma Physics, (2005).

138,150,152,154

[57] O. Hurisse, Application of an homogeneous model to simulate the heating of

two-phase flows, International Journal on Finite Volmues, (submitted in 2015).

[58] A. Javidi Shirvan,Modelling of Electric Arc Welding : arc-electrode coupling, PhD

thesis, 2013. 9,20, 138

[59] A. Kaddani, Mod´elisations 2 D et 3 D des arcs ´electriques dans l’argon `a la

pres-sion atmosph´erique avec la prise en compte du couplage thermique et ´electrique

arc-´

electrodes et de l’influence des vapeurs m´etalliques, PhD thesis, 1995. 24,30

[60] U. Khristenko, Rˆole des ´el´ements tensio-actifs dans la mod´elisation de la force de

tension de surface d’un bain m´etallique, EDF’s internal documentation, (2015). 22

[61] W. Kim and S. Na,Heat and fluid flow in pulsed current gta weld pool, International

Journal of Heat and Mass Transfer, 41 (1998), pp. 3213–3227. 69

[62] Y. L. Klimontovich, The Statistical Theory of Non-Equilibrium Processes in a

Plasma : International Series of Monographs in Natural Philosophy, vol. 9, 2013. 141

[63] K. Koudadje,Etude exp´erimentale et mod´elisation num´erique du bain de fusion en

soudage TIG d’aciers, PhD thesis, Aix-Marseille, 2013. 15, 20, 22, 31,133

[64] P. Kozakevitch and G. Urbain, Tension superficielle du fer liquide et de ses

alliages, Mem. Sci. Rev. Metall., LVIII-7, (1961), pp. 517–534. 21

[65] N. A. Krall, A. W. Trivelpiece, and R. A. Gross, Principles of plasma

physics, American Journal of Physics, 41 (1973), pp. 1380–1381.

[66] F. Lago, Mod´elisation de l’interaction entre un arc ´electrique et une surface :

ap-plication au foudroiement d’un a´eronef, PhD thesis, Toulouse 3, 2004.

[67] H. Li, E. Pfender, and X. Chen, Application of steenbeck’s minimum principle

for three-dimensional modelling of dc arc plasma torches, Journal of Applied Physics,

36 (2003), p. 1084.

[68] G. Lin and G. Karniadakis,A discontinuous galerkin method for two-temperature

plasmas, Computer methods in applied mechanics and engineering, 195 (2005),

p. 3504–3527. 146,151

[69] J. Loverich and J. Cambier,A numerical approach to solving the hall mhd

equa-tions including diamagnetic drift, Computer Physics Communicaequa-tions, (2008). 138,

151,152

[70] J. Loverich and U. Shumlak,A discontinuous galerkin method for the full

two-fluid plasma model, omputer Physics Communications, 169 (2005), pp. 251–255. 145

Bibliographie 183

[71] J. Lowke, P. Kovitya, and H. Schmidt, Theory of free-burning arc columns

including the influence of the cathode, Journal of Physics D : Applied Physics, 25

(1992), p. 1600. 25, 146

[72] J. Maton, Technologie du soudage. https://www.rocdacier.com/

tout-le-soudage/, 2014. 16

[73] K. C. Mills, Y. Su, Z. Li, and R. F. Brooks,Equations for the calculation of the

thermo-physical properties of stainless steel, ISIJ international, 44 (2004), pp. 1661–

1668. 21,69

[74] J. Mougenot,Mod´elisation de l’interaction entre un arc ´electrique et un mat´eriau :

application au soudage TIG, PhD thesis, Universit´e de Toulouse, 2013. 20,22,24,29

[75] A. B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, J. J. Lowke, and

K. Ostrikov,Modelling of arc welding : The importance of including the arc plasma

in the computational domain, Vacuum, 85 (2010), pp. 579–584. 24, 28

[76] A. B. Murphy, M. Tanaka, K. Yamamoto, S. Tashiro, T. Sato, and

J. Lowke, Modelling of thermal plasmas for arc welding : the role of the

shiel-ding gas properties and of metal vapour, Journal of Physics D : Applied Physics, 42

(2009), p. 194006. 22, 28

[77] F. Omnes, Couplage mono-instance r´ealis´e via une paroi mince, EDF’s internal

documentation, (2015). 27, 31, 134, 177

[78] S. Osher and R. P. Fedkiw, Level set methods : an overview and some recent

results, Journal of Computational physics, 169 (2001), pp. 463–502. 91

[79] C. Palenzuela, L. Lehner, O. Reula, and L. Rezzolla, Beyond ideal mhd :

towards a more realistic modelling of relativistic astrophysical plasmas, Monthly

No-tices of the Royal Astronomical Society, 394 (2009), pp. 1727–1740. 154

[80] E. Pfender, Electric arcs and arc gas heaters, Gaseous electronics, 1 (1978),

pp. 291–298. 20, 24, 139

[81] S. Rabier and M. Medale, Computation of free surface flows with a projection

fem in a moving mesh framework, Computer methods in applied mechanics and

engineering, 192 (2003), pp. 4703–4721. 31,91, 98, 102, 134

[82] B. Ramaswamy,Numerical simulation of unsteady viscous free surface flow, Journal

of Computational Physics, 90 (1990), pp. 396–430. 105, 175

[83] M. N. Rosenbluth, W. M. MacDonald, and D. L. Judd,Fokker-planck

equa-tion for an inverse-square force, Physical Review, 107 (1957), p. 1. 142

[84] P. Sahoo, T. DebRoy, and M. McNallan, Surface tension of binary

me-tal—surface active solute systems under conditions relevant to welding metallurgy,

Metallurgical Transactions, 19 (1988), pp. 483–491. 21, 69

[85] R. Sampath and N. Zabaras, Numerical study of convection in the directional

solidification of a binary alloy driven by the combined action of buoyancy, surface

tension, and electromagnetic forces, Journal of Computational Physics, 168 (2001),

pp. 384—411.

[86] R. Saurel, F. Petitpas, and R. Abgrall,Modelling phase transition in

metas-table liquids : application to cavitating and flashing flows, Journal of Fluid Mechanics,

607 (2008), pp. 313–350.

[87] B. K. Shivamoggi, Ideal and resistive magnetohydrodynamic modes, International

journal of theoretical physics, 31 (1992), pp. 2121–2141. 154

[88] U. Shumlak and J. Loverich, Approximate riemann solver for the two-fluid

plasma model, Journal of Computational Physics, 187 (2003), p. 620–638. 145, 146,

150

[89] B. Srinivasan, A. Hakim, and U. Shumlak,Numerical methods for two-fluid

dis-persive fast mhd phenomena, Journal of Computational Physics, 10 (2011), pp. 183–

215.

[90] B. Srinivasan and U. Shumlak,A comparison between the two-fluid plasma

mo-del and hall-mhd for captured physics and computational effort, in APS Division of

Plasma Physics Conference, Dallas, 2008.

[91] M. Tanaka, H. Terasaki, M. Ushio, and J. J. Lowke, A unified numerical

modeling of stationary tungsten-inert-gas welding process, Metallurgical and

Mate-rials Transactions A, 33 (2002), pp. 2043–2052. 22, 24,28, 36, 156

[92] S. Tashiro and M. Tanaka,Two-temperature plasma modeling of argon gas

tungs-ten arcs, Joining and Welding Research Institute (Revue), 37 (2008), pp. 7–11. 138,

144,146,147

[93] A. Traidia, Multiphysics modelling and numerical simulation of GTA weld pools,

PhD thesis, Ecole Polytechnique, 2011. 15, 20,22, 24, 29

[94] J. Trelles, C. Chazelas, A. Vardelle, and J. Heberlein,Arc plasma torch

modeling, Journal of thermal spray technology, 18 (2009), pp. 728–752. 146, 149

[95] J. Trelles, J. Heberlein, and E. Pfender, Non-equilibrium modelling of arc

plasma torches, Journal of Applied Physics, 40 (2007), p. 5937–5952. 27, 138, 144,

146,149,151,154

[96] J. P. Trelles, Computational study of flow dynamics from a dc arc plasma jet,

Journal of Physics D : Applied Physics, 46 (2013), p. 255201. 146, 149

[97] J. P. Trelles and S. M. Modirkhazeni,Variational multiscale method for

none-quilibrium plasma flows, Computer Methods in Applied Mechanics and Engineering,

282 (2014), pp. 87–131. 146,147,148,149

[98] J. P. Trelles, E. Pfender, and J. Heberlein,Multiscale finite element

mode-ling of arc dynamics in a dc plasma torch, Plasma chemistry and plasma processing,

26 (2006), pp. 557–575. 27, 146

[99] X. Zhou and J. Heberlein,Analysis of the arc-cathode interaction of free-burning

arcs, Plasma Sources Science and Technology, 3 (1994), p. 564. 25, 139