• Aucun résultat trouvé

Mécanismes opioïdergiques pouvant expliquer l'impact sur le comportement moteur

Chapitre 4 : Discussion

4.10 Mécanismes opioïdergiques pouvant expliquer l'impact sur le comportement moteur

La figure 21 schématise les interactions entre les différents neurotransmetteurs et les peptides opioïdes au niveau synaptique ainsi que les réactions intracellulaires qui découlent de l'activation des récepteurs, culminant à la production du comportement moteur. L'augmentation du niveau de l'adénosine monophosphate cyclique (cAMP) induit l'activation des protéines kinases qui phosphorylent la « dopamine- and cAMP-regulated neuronal phosphoprotein » (DARPP-32) à la position de thréonine 34. Cela active cette dernière qui inhibe ensuite la protéine phosphatase 1 (PP1). PP1 contrôle entre autres l'activité des facteurs de transcription telles la « cAMP response element-binding protein » (CREB) et la famille des fos. Suite à l'activation de ces facteurs, il y a une modification des « immediate early genes » (IEG) et des « late-onset genes » (LOG) (Samadi et al., 2003, 2007). Ces mécanismes pourraient expliquer en partie de quelle manière la plasticité conséquente de la MP et de la DIL s'opère aux niveaux synaptique et de la transcription. Il faudrait voir comment la surexpression de pENK pourrait influencer ces mécanismes.

Figure 21. L'interaction entre les neurotransmetteurs et les peptides opioïdes striataux aux niveaux d'une synapse GABAergique striatopallidale (A) et striatonigrale (B) et la chaîne de modifications menant au comportement moteur.

Conclusion

Ce projet a permis d'obtenir plusieurs résultats afin de répondre à la question de départ. Selon nos observations, la surexpression de pENK aurait effectivement une influence positive sur la prévention ou encore la réduction de la DIL chez le modèle de souris unilatérale 6-OHDA de la maladie de Parkinson. Plusieurs éléments, que ce soit au niveau comportemental ou au niveau post-mortem, montrent que l'injection striatale de vecteur viral surexprimant le pENK ou seulement le GFP est associée à l'augmentation de l'ARNm de pENK au niveau du striatum antérieur chez le groupe pENK et au niveau du striatum postérieur chez le groupe GFP. De façon intéressante chez ces deux groupes (pENK, GFP), une réduction importante de la sévérité de la DIL (-70% à -82%) a été observée comparativement aux autres groupes contrôles ayant reçu l'injection striatale de salin ou sans injection striatale. Ces résultats soulèvent des questions importantes à répondre : comment et pourquoi le niveau d'ARNm de pENK est augmenté chez le groupe GFP ? Est- ce que les mécanismes impliqués dans la réduction de la dyskinésie sont identiques chez ces deux groupes ? En résumé, nos résultats montrent que l'augmentation striatale de l'ARNm de pENK peut retarder ou prévenir le développement de la DIL et réduire la sévérité de la dyskinésie.

Perspectives

En se penchant davantage sur nos résultats, nous avons observé qu'il y aurait en fait un effet de la surexpression de pENK encore plus grand lorsque la surexpression est globale et latérale comparativement à lorsqu'elle n'est que médiale. Bien que nous avions qu'un nombre limité de souris dans chaque sous-groupe formé afin de tirer cette conclusion, il n'en demeure que l'effet semble fort. Il serait intéressant d'étudier ce sujet davantage dans le futur afin de mieux comprendre le rôle des opioïdes dans différentes régions striatales sur la DIL. Un protocole pourrait être inclure des injections du vecteur viral seulement au niveau du striatum latéral et médial afin de bien faire la part de l'apport de chaque région dans le contrôle de la DIL. Également, un autre élément à tester dans le futur afin de rajouter aux résultats que nous avons obtenus serait de sous-exprimer pENK. Il serait fort intéressant de

vérifier si dans ce cas, il y aurait une augmentation du niveau de la dyskinésie. En plus des neuropeptides, tout ce qui entoure les récepteurs est un aspect fort intriguant concernant la grande question du rôle des opioïdes dans la DIL, car bien qu'une sur- ou sous-expression puisse être induite, l'activité en découlant passera par les récepteurs. Il serait pertinent de faire des expériences à ce niveau également. Ce projet est une première étape de plusieurs en perspective visant à mieux comprendre le rôle des neuropeptides opioïdes dans la maladie de Parkinson et à trouver de nouvelles pistes de traitements afin d'améliorer la qualité de vie des patients.

Bibliographie

Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375.

Alves G, Forsaa EB, Pedersen KF, Dreetz Gjerstad M, Larsen JP (2008) Epidemiology of Parkinson’s disease. J Neurol 255:18–32.

Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E (2007) Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4- dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry 61:836–844.

Back SA, Gorenstein C (1989) Histochemical visualization of neutral endopeptidase-24.11 (enkephalinase) activity in rat brain: cellular localization and codistribution with enkephalins in the globus pallidus. J Neurosci 9:4439–4455.

Bayulkem K, Lopez G (2011) Clinical approach to nonmotor sensory fluctuations in Parkinson’s disease. J Neurol Sci 310:82–85.

Bédard PJ, Di Paolo T, Falardeau P, Boucher R (1986) Chronic treatment with L-DOPA, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with [3H]spiperone binding. Brain Res 379:294–299.

Beitz JM (2014) Parkinson’s disease: a review. Front Biosci (Schol Ed) 6:65–74. Benabid A-L, Vercucil L, Benazzouz A, Koudsie A, Chabardes S, Minotti L, Kahane P,

Gentil M, Lenartz D, Andressen C, Krack P, Pollak P (2003) Deep brain stimulation: what does it offer? Adv Neurol 91:293–302.

Benatru I, Vaugoyeau M, Azulay JP (2008) Postural disorders in Parkinson’s disease. Neurophysiol Clin 38:459–465.

Benninger DH, Thees S, Kollias SS, Bassetti CL, Waldvogel D (2009) Morphological differences in Parkinson’s disease with and without rest tremor. J Neurol 256:256– 263.

Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146.

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455.

Bezard E, Imbert C, Gross CE (1998) Experimental models of Parkinson’s disease: from the static to the dynamic. Rev Neurosci 9:71–90.

Bezard E, Yue Z, Kirik D, Spillantini MG (2013) Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord 28:61–70.

Bishop C, Krolewski DM, Eskow KL, Barnum CJ, Dupre KB, Deak T, Walker PD (2009) Contribution of the striatum to the effects of 5-HT1A receptor stimulation in L- DOPA-treated hemiparkinsonian rats. J Neurosci Res 87:1645–1658.

Bissonnette S, Muratot S, Vernoux N, Bezeau F, Calon F, Hébert SS, Samadi P (2014) The effect of striatal pre-enkephalin overexpression in the basal ganglia of the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J

Neurosci:1–11.

Blandini F, Armentero M-T (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166.

Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004) Stages in the

development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134. Brooks DJ (2000) Dopamine agonists: their role in the treatment of Parkinson’s disease. J

Neurol Neurosurg Psychiatry 68:685–689.

Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20:919–931.

Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196.

Calon F, Goulet M, Blanchet PJ, Martel JC, Piercey MF, Bédard PJ, Di Paolo T (1995) Levodopa or D2 agonist induced dyskinesia in MPTP monkeys: correlation with changes in dopamine and GABAA receptors in the striatopallidal complex. Brain Res 680:43–52.

Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T, Bédard PJ (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:S70–8.

Carlsson A, LIindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5- hydroxytryptophan as reserpine antagonists. Nature 180:1200.

Cenci MA, Lee CS, Björklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2706.

Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215:413–415.

Chen L, Togasaki DM, Langston JW, Di Monte DA, Quik M (2005) Enhanced striatal opioid receptor-mediated G-protein activation in L-DOPA-treated dyskinetic monkeys. Neuroscience 132:409–420.

Cheng H, Ulane CM, Burke RE (2010) Clinical Progression in Parkinson Disease and the Neurobiology of Axons. :715–725.

Christine CW, Langston JW, Turner RS, Starr PA (2009) The neurophysiology and effect of deep brain stimulation in a patient with 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine-induced parkinsonism. J Neurosurg 110:234–238.

Civelli O, Douglass J, Goldstein A, Herbert E (1985) Sequence and expression of the rat prodynorphin gene. Proc Natl Acad Sci U S A 82:4291–4295.

Cohen G (1984) Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 5:77–82. Corbett AD, Henderson G, McKnight AT, Paterson SJ (2006) 75 years of opioid research:

the exciting but vain quest for the Holy Grail. Br J Pharmacol 147 Suppl :S153–62. Corti O, Lesage S, Brice A (2011) What Genetics Tells us About the Causes and

Mechanisms of Parkinson’s Disease. Physiol Rev 91:1161–1218.

Crawford P, Zimmerman EE (2011) Differentiation and diagnosis of tremor. Am Fam Physician 83:697–702.

Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122 ( Pt 8:1437–1448.

Damier P, Tremblay L, Feger J, Hirsch E (2000) Développement des dyskinésies provoquées par le traitement de la maladie de Parkinson : rôle de la première

exposition à la L-DOPA (ou phénomène du « priming »). Rev Neurol (Paris):224–235. Dauer W, Przedborski S (2003) Parkinson’s Disease: Mechanisms and Models. Neuron

39:889–909.

DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285.

Delwaide PJ, Pepin JL, Maertens de Noordhout A (1990) Parkinsonian rigidity: clinical and physiopathologic aspects. Rev Neurol (Paris) 146:548–554.

Doherty KM, van de Warrenburg BP, Peralta MC, Silveira-Moriyama L, Azulay JP, Gershanik OS, Bloem BR (2011) Postural deformities in Parkinson’s disease. Lancet Neurol 10:538–549.

Encarnacion E V, Hauser RA (2008) Levodopa-induced dyskinesias in Parkinson’s disease: etiology, impact on quality of life, and treatments. Eur Neurol 60:57–66.

Evans JR, Mason SL, Williams-Gray CH, Foltynie T, Brayne C, Robbins TW, Barker RA (2011) The natural history of treated Parkinson’s disease in an incident, community based cohort. J Neurol Neurosurg Psychiatry 82:1112–1118.

Fahn S (1998) Medical treatment of Parkinson’s disease. J Neurol 245:P15–24. Fahn S (2000) The spectrum of levodopa-induced dyskinesias. Ann Neurol 47:S2–9;

discussion S9–11.

Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord 23.

Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11:429–442. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional

selectivity. Brain 114 ( Pt 5:2283–2301.

Follett KA, Torres-Russotto D (2012) Deep brain stimulation of globus pallidus interna, subthalamic nucleus, and pedunculopontine nucleus for Parkinson’s disease: which target? Parkinsonism Relat Disord 18 Suppl 1:S165–7.

Fornai F, Schlüter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC (2005) Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 102:3413–3418.

Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272.

Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455. Fox, Andrade AN, Lu Qui IJ, Rafols JA (1974) The primate globus pallidus: a Golgi and

electron microscopic study. J Hirnforsch 15:75–93.

Fox SH, Brotchie JM (2010) The MPTP-lesioned non-human primate models of Parkinson’s disease. Past, present, and future. Prog Brain Res 184:133–157.

Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA (2011) Impact of the lesion procedure on the profiles of motor impairment and molecular

responsiveness to L-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 42:327–340.

Franklin KBJ, Paxinos G (2008) The Mouse Brain in Stereotaxic Coordinates. Amsterdam, Boston: Elsevier/Academic Press.

Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and

striatopallidal neurons. Science 250:1429–1432.

Gerfen CR, McGinty JF, Young WS (1991) Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J Neurosci 11:1016–1031.

Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752.

Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry 54:388–396.

Glinka YY, Youdim MB (1995) Inhibition of mitochondrial complexes I and IV by 6- hydroxydopamine. Eur J Pharmacol 292:329–332.

Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord 20:523–539.

Gorell JM, Peterson EL, Rybicki BA, Johnson CC (2004) Multiple risk factors for Parkinson’s disease. J Neurol Sci 217:169–174.

Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587.

Graybiel AM (1986) Neuropeptides in the basal ganglia. Res Publ Assoc Res Nerv Ment Dis 64:135–161.

Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254.

Hagell P, Cenci MA (2005) Dyskinesias and dopamine cell replacement in Parkinson’s disease: a clinical perspective. Brain Res Bull 68:4–15.

Hallett PJ, Brotchie JM (2007) Striatal delta opioid receptor binding in experimental models of Parkinson’s disease and dyskinesia. Mov Disord 22:28–40.

Hely MA, Morris JGL, Reid WGJ, Trafficante R (2005) Sydney Multicenter Study of Parkinson’s disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 20:190–199.

Henry B, Duty S, Fox SH, Crossman AR, Brotchie JM (2003) Increased striatal pre- proenkephalin B expression is associated with dyskinesia in Parkinson’s disease. Exp Neurol 183:458–468.

Henry B, Fox SH, Crossman AR, Brotchie JM (2001) Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Exp Neurol 171:139–146.

Herkenham M, Little MD, Bankiewicz K, Yang SC, Markey SP, Johannessen JN (1991) Selective retention of MPP+ within the monoaminergic systems of the primate brain following MPTP administration: an in vivo autoradiographic study. Neuroscience 40:133–158.

Hobson DE (2003) Clinical manifestations of Parkinson’s disease and parkinsonism. Can J Neurol Sci 30 Suppl 1:S2–S9.

Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306:611–614.

Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34.

Hughes AJ, Daniel SE, Blankson S, Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 50:140–148.

Huot P, Johnston T, Koprich J (2013) The Pharmacology of L-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol … 65:171–222.

Isacson O, Kordower JH (2008) Future of cell and gene therapies for Parkinson’s disease. Ann Neurol 64 Suppl 2:S122–38.

Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376.

Johansson PA, Andersson M, Andersson KE, Cenci MA (2001) Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 8:220–239.

Jourdain VA, Schechtmann G (2014) Health economics and surgical treatment for Parkinson’s disease in a world perspective: results from an international survey. Stereotact Funct Neurosurg 92:71–79.

Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ (2004) Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study.

Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ (2008) Fourteen- year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 71:474–480.

Katzenschlager R, Lees AJ (2002) Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol 249 Suppl :II19–24.

Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27:1–8.

Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535. Korecka JA, Eggers R, Swaab DF, Bossers K, Verhaagen J (2013) Modeling early

Parkinson’s disease pathology with chronic low dose MPTP treatment. 31:155–167. Krack P, Poepping M, Weinert D, Schrader B, Deuschl G (2000) Thalamic, pallidal, or

subthalamic surgery for Parkinson’s disease? J Neurol 247 Suppl :II122–34.

Kumar N, Van Gerpen JA, Bower JH, Ahlskog JE (2005) Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Mov Disord 20:342–344.

Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.

Lanska DJ (2010) Chapter 33: the history of movement disorders. Handb Clin Neurol 95:501–546.

Lazzarini AM, Myers RH, Jr TRZ, Mark MH, Golbe LI, Sage JI, Johnson WG, Duvoisin RC (1994) A clinical genetic study of Parkinson’s disease: evidence for dominant transmission. Neurology 44:499–506.

Lees AJ (2007) Unresolved issues relating to the Shaking Palsy on the celebration of James Parkinson’s 250th birthday. Mov Disord 22.

Lees AJ, Shaw KM, Stern GM (1977) “Off period” dystonia and “on period”

Linazasoro G, Van Blercom N, Bergaretxe A, Iñaki FM, Laborda E, Ruiz Ortega JA (2009) Levodopa-induced dyskinesias in Parkinson disease are independent of the extent of striatal dopaminergic denervation: a pharmacological and SPECT study. Clin

Neuropharmacol 32:326–329.

Lundblad M, Picconi B, Lindgren H, Cenci MA (2004) A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 16:110–123.

Luthman J, Fredriksson A, Sundström E, Jonsson G, Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33:267–277.

Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325.

Mayeux R, Stern Y, Mulvey K, Cote L (1985) Reappraisal of temporary levodopa withdrawal (“drug holiday”) in Parkinson’s disease. N Engl J Med 313:724–728. McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism

indicates active neuropathological process. Ann Neurol 24:574–576.

McNaught KSP, Carrupt PA, Altomare C, Cellamare S, Carotti A, Testa B, Jenner P, Marsden CD (1998) Isoquinoline derivatives as endogenous neurotoxins in the aetiology of Parkinson’s disease. Biochem Pharmacol 56:921–933.

Meissner W, Dovero S, Bioulac B, Gross CE, Bezard E (2003) Compensatory regulation of striatal neuropeptide gene expression occurs before changes in metabolic activity of basal ganglia nuclei. Neurobiol Dis 13:46–54.

Meissner W, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393.

Mela F, Marti M, Bido S, Cenci MA, Morari M (2012) In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to L-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiol Dis 45:573–582. Migliore L, Coppede F (2009) Environmental-induced oxidative stress in

neurodegenerative disorders and aging. Mutat Res - Genet Toxicol Environ Mutagen 674:73–84.

Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J

Morissette M, Grondin R, Goulet M, Bédard PJ, Di Paolo T (1999) Differential regulation of striatal preproenkephalin and preprotachykinin mRNA levels in MPTP-lesioned monkeys chronically treated with dopamine D1 or D2 receptor agonists. J Neurochem 72:682–692.

Muenter MD, Sharpless NS, Tyce GM, Darley FL (1977) Patterns of dystonia (“I-D-I” and “D-I-D-”) in response to l-dopa therapy for Parkinson’s disease. Mayo Clin Proc 52:163–174.

Nadjar A, Gerfen CR, Bezard E (2009) Priming for l-dopa-induced dyskinesia in

Parkinson’s disease: a feature inherent to the treatment or the disease? Prog Neurobiol 87:1–9.

Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29:99–111.

Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2010) Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson’s disease. Neurobiol Dis 38:136–143.

Noda M, Teranishi Y, Takahashi H, Toyosato M, Notake M, Nakanishi S, Numa S (1982) Isolation and structural organization of the human preproenkephalin gene. Nature 297:431–434.

Nutt JG (1990) Levodopa-induced dyskinesia: review, observations, and speculations. Neurology 40:340–345.

Nutt JG, Fellman JH (1984) Pharmacokinetics of levodopa. Clin Neuropharmacol 7:35–49. Obeso JA, Olanow CW, Nutt JG (2000a) Levodopa motor complications in Parkinson’s

disease. Trends Neurosci 23:S2–S7.

Obeso JA, Rodriguez MC, Gorospe A, Guridi J, Alvarez L, Macias R (1997) Surgical treatment of Parkinson’s disease. Baillieres Clin Neurol 6:125–145.

Obeso JA, Rodriguez-Oroz MC, Rodriguez M, DeLong MR, Olanow CW (2000b) Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann Neurol 47:S22–32; discussion S32–4.

Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Lanciego JL, Artieda J, Gonzalo N, Olanow CW (2000c) Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci 23.

Olanow CW, Gauger LL, Cedarbaum JM (1991) Temporal relationships between plasma and cerebrospinal fluid pharmacokinetics of levodopa and clinical effect in

Olanow CW, Obeso JA (2000) Preventing levodopa-induced dyskinesias. Ann Neurol 47:S167–76; discussion S176–8.

Olanow CW, Stern MB, Sethi K (2009) The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology 72:S1–136.

Olanow CW, Watts RL, Koller WC (2001) An algorithm (decision tree) for the

management of Parkinson’s disease (2001): treatment guidelines. Neurology 56:S1– S88.

Palma J-A, Kaufmann H (2014) Autonomic disorders predicting Parkinson’s disease. Parkinsonism Relat Disord 20 Suppl 1:S94–8.

Parent A, Hazrati LN (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Res Rev 20:91–127.

Parent A, Hazrati LN (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154.

Documents relatifs