• Aucun résultat trouvé

Chapitre 1 Synthèse bibliographique

1.3. Liste

Andretta, I., C. Pomar, J. Rivest, J. Pomar, P. A. Lovatto, J. R. Neto, C. De Développement, et G. V Québec. 2014. Effet de l’alimentation de précision sur les performances, l’excrétion de nutriments et le coût d’alimentation du porc charcutier. Journée Rech. Porc. 46:107–112.

Angel, R., N. M. Tamim, T. J. Applegate, A. S. Dhandu, et L. E. Ellestad. 2002. Phytic acid chemistry: Influence on phytin-phosphorus availability and phytase efficacy. J. Appl. Poult. Res. 11:471– 480.

Applegate, T. J., R. Angel, et H. L. Classen. 2003. Effect of dietary calcium, 25-hydroxycholecalciferol, or bird strain on small intestinal phytase activity in broiler chickens. Poult. Sci. 82:1140–1148 Bain, S. D., et B. A. Watkins. 1993. Local Modulation of Skeleton Growth and Bone Modeling in Poultry.

J. Nutr. 123:317–322.

Barlet, J. P., V. Coxam, and M. J. Davicco. 1995. Physiologie de l ’absorption intestinale du phosphore chez l ’ animal. Reprod. Nutr. Dev. 35:475–489.

Barthel, T. K., D. R. Mathern, G. K. Whitfield, C. A. Haussler, H. A. Hopper IV, J. C. Hsieh, S. A. Slater, G. Hsieh, M. Kaczmarska, P. W. Jurutka, O. I. Kolek, F. K. Ghishan, et M. R. Haussler. 2007. 1,25-Dihydroxyvitamin D3/VDR-mediated induction of FGF23 as well as transcriptional control of other bone anabolic and catabolic genes that orchestrate the regulation of phosphate and calcium mineral metabolism. J. Steroid Biochem. Mol. Biol. 103:381–388.

Bergwitz, C., et H. Jüppner. 2010. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu Rev Med 61:91–104.

Bobeck, E. A., K. S. Burgess, T. R. Jarmes, M. L. Piccione, et M. E. Cook. 2012. Maternally-derived antibody to fibroblast growth factor-23 reduced dietary phosphate requirements in growing chicks. Biochem. Biophys. Res. Commun. 420:666–670

Borgström, B., et J. S. Patton. 1991. Luminal events in gastrointestinal lipid digestion.Pages 475–504 dans Handbook of Physiology. Field, M., Frizzell, R.A., eds. American Physiological Society, Bethesda, États-Unis.

29

Brejnholt, S. M., G. Dionisio, V. Glitsoe, L. K. Skov, et H. Brinch-Pedersen. 2011. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. J. Sci. Food Agric. 91:1398–1405.

Buteri, C. ., F. de C. Tavernari, G. . Lelis, H. . Rostagno, et L. F. . Albino. 2009. Effects of Different Nutritional Plans on Broiler. Brazilian J. Poult. Sci. 11:225–234.

Chambers, T. J., et C. J. Magnus. 1982. Calcitonin alters behaviour of isolated osteoclasts. J. Pathol. 136:27–39.

Cordell, D., J. O. Drangert, et S. White. 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19:292–305.

Courbebaisse, M., et J. C. Souberbielle. 2011. Équilibre phosphocalcique: Régulation et explorations. Néphrologie et Thérapeutique 7:118–138.

Cross, H. S., H. Debiec, et M. Peterlik. 1990. Mechanism and regulation of intestinal phosphate absorption. Min. Electrolyte Metab 16:115–124.

Desoutter, J., R. Mentaverri, M. Brazier, et S. Kamel. 2012. Le remodelage osseux normal et pathologique. Rev. Francoph. des Lab. 2012:33–42

De Vries, S., R.P. Kwakkel et J. Dijkstra. 2010. Chapter 9: Dynamics of Calcium and Phosphorus Metabolism in Laying Hens. Pages 133-151 dans Phosphorus and calcium utilization and requirements in farm animals. Vitti D.M.S.S., Kebreab E. Cab International (éd.). Department of Animal Science, Californie, Davis, États-Unis.

Dibner, J. J., et J. D. Richards. 2004. The digestive system: Challenges and opportunities. J. Appl. Poult. Res. 13:86–93.

Dilger, R. N., et O. Adeola. 2006. Estimation of true phosphorus digestibility and endogenous phosphorus loss in growing pigs fed conventional and low-phytate soybean meals. J. Anim. Sci. 84:627–634.

Dittmer, K. E., et K. G. Thompson. 2011. Vitamin d metabolism and rickets in domestic animals: A review. Vet. Pathol. 48:389–407.

30

Dudas, P. L., A. R. Villalobos, G. Gocek-Sutterlin, G. Laverty, et J. L. Renfro. 2002. Regulation of transepithelial phosphate transport by PTH in chicken proximal tubule epithelium. Am J Physiol Regul Integr Comp Physiol 282:R139–R146.

Dusso, A. S., A. J. Brown, et E. Slatopolsky. 2005. Vitamin D. Am J Physiol Ren. Physiol 289:F8–F28. Engelen, A.J., F.C. van der Heeft, P.H.G. Randsdorp et E.L.C Smit. 1994. Simple and rapid determination of phytase activity. J. AOAC Int. 77:760-764.

France, J. et E. Kebreab. 2008. Chapter 1: Introduction. Pages 1 à 11 dans Mathematical modelling in Animal Nutrition. CABI Publishing, Wallingford, Royaume-Uni.

Frizzell, R. A., et S. G. Schultz. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences. J. Gen. Physiol. 59:318–346.

Hauschild, L., C. Ferreira, D. Bueno, A. Remus, J. D. P. Gobi, R. Di, G. Isola, et N. Kazue. 2015. Multiphase feeding program for broilers can replace traditional system. :210–214.

Hildmann, B., C. Storelli, G. Danisi, et H. Murer. 1982. Regulation of Na + -Pi cotransport by 1,25- dihydroxyvitamin D3 in rabbit duodenal brush-border membrane. Am. J. Physiol. 242:G533– G539.

Humer, E., C. Schwarz, et K. Schedle. 2015. Phytate in pig and poultry nutrition. J. Anim. Physiol. Anim. Nutr. (Berl). 99:605–625.

Hurwitz, S., et A. Bar. 1965. Absorption of calcium and phosphorus along the gastrointestinal tract of the laying fowl as influenced by dietary calcium and egg shell formation. J. Nutr. 86:433–438. Hurwitz, S., et A. Bar. 1970. The sites of calcium and phosphate absorption in the chick. Poult. Sci.

49:324–325.

Jones, G., S. A. Strugnell, et H. F. DeLuca. 1998. Current understanding of the molecular actions of vitamin D. Physiol. Rev. 78:1193–1231.

31

Beynen. 1999. Quantification of inositol phosphates using 31P nuclear magnetic resonance spectroscopy in animal nutrition. J. Agric. Food Chem. 47:5116–5121.

Khaksarzareha, V., B. Méda, et A. Narcy. 2017. Updating the available P requirements of broilers.Pages 124–129 dans 21th European symposium on poultry nutrition.

Kousteni, S., et J. P. Bilezikian. 2008. The Cell Biology of Parathyroid Hormone in Osteoblasts. Curr. Osteoporos. Rep. 6:72–76.

Lacey, D. L., et W. E. Huffer. 1982. Studies on the pathogenesis of avian rickets. I. Changes in epiphyseal and metaphyseal vessels in hypocalcemic and hypophosphatemic rickets. Am. J. Pathol. 109:288–301

Langlois, J., C. Pomar, et M.-P. Létourneau-Montminy. 2016. Impact de déséquilibres phosphocalciques sur les performances zootechniques et la minéralisation osseuse chez le porc en finition. Journées Rech. Porc. 48:109–114.

Lei, X. G., J. D. Weaver, E. Mullaney, A. H. Ullah, et M. J. Azain. 2013. Phytase, a New Life for an “Old” Enzyme. Annu. Rev. Anim. Biosci. 1:283–309

Letourneau-Montminy, M. P., P. Lescoat, A. Narcy, D. Sauvant, J. F. Bernier, M. Magnin, C. Pomar, Y. Nys, et C. Jondreville. 2008. Effects of reduced dietary calcium and phytase supplementation on calcium and phosphorus utilisation in broilers with modified mineral status. Br. Poult. Sci. 49:705– 715.

Létourneau-Montminy, M. P., A. Narcy, J. Y. Dourmad, T. D. Crenshaw, et C. Pomar. 2015. Modeling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs. J. Anim. Sci. 93:1200–1217.

Li, W. 2018. Factors Affecting Limestone Solubility and its Impact on Phytase Efficacy. Pages 26-29 dans: Proceedings of 2018 Animal Nutrition Conference of Canada. Edmonton, Alberta, Canada. Li, W., R. Angel, S.-W. Kim, K. Brady, S. Yu, et P. W. Plumstead. 2016. Impacts of dietary calcium,

phytate, and nonphytate phosphorus concentrations in the presence or absence of phytase on inositol hexakisphosphate (IP6) degradation in different segments of broilers digestive tract.

32 Poult. Sci. 95:581–589

Li, W., R. Angel, S. W. Kim, E. Jiménez-Moreno, M. Proszkowiec-Weglarz, et P. W. Plumstead. 2018. Impacts of age and calcium on Phytase efficacy in broiler chickens. Anim. Feed Sci. Technol. 238:9–17.

Li, X., D. Zhang, et W. L. Bryden. 2017. Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Anim. Prod. Sci. 57:2304–2310.

Maenz, D. D., et H. L. Classen. 1998. Phytase Activity in the Small Intestinal Brush Border Membrane of the Chicken. Poult. Sci. 77:557–563.

Maenz, D. D., C. M. Engele-Schaan, R. W. Newkirk, et H. L. Classen. 1999. The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim. Feed Sci. Technol. 81:177–192.

Manangi, M. K., P. Maharjan, et C. N. Coon. 2018. Effect of different concentrations of dietary P and Ca on plasma inorganic P and urinary P excretion using noncolostomized and colostomized broilers. Poult. Sci. 97:522–530.

McCuaig, L. W., M. I. Davies, et I. Motzok. 1972. Intestinal Alkaline Phosphatase and Phytase of Chicks: Effect of Dietary Magnesium, Calcium, Phosphorous and Thryroactive Casein. Poult. Sci. 51:526–530.

McCuaig, L. W., et I. Motzok. 1972. Regulation of intestinal alkaline phosphatase by dietary phosphate. Can. J. Physiol. Pharmacol. 50:1152–1156

MELCC. 2017. Guide pour remplir le formulaire du bilan de phosphore. 2017. 50 pages. http://www.mddelcc.gouv.qc.ca/milieu_agri/agricole/phosphore/guide-form.pdf (page consultée le 23 avril 2019)

Müller, M. J., et D. A. Volmer. 2015. Mass spectrometric profiling of Vitamin D metabolites beyond 25- hydroxyVitamin D. Clin. Chem. 61:1033–1048.

Mutucumarana, R. K., V. Ravindran, G. Ravindran, et A. J. Cowieson. 2014. Measurement of true ileal digestibility of phosphorus in some feed ingredients for broiler chickens. J. Anim. Sci. 92:5520– 5529.

33

NRC. 1984. Nutrient Requirements of Poultry. 8e édition. National Academy Press.

NRC. 1994. Nutrient Requirements of Poultry. 9e édition. National Academy Press, Washington, DC, États-Unis.

Oates, J. A. H. 1998. Chapter 3: Physical and Chemical Properties of Limestone.Pages 18–25 dans Lime and Limestone: Chemistry and Technology, Production and Uses. Wiley-VCH. Weinheim, Allemagne.

Perryman, K. R., H. V. Masey O’Neill, M. R. Bedford, et W. A. Dozier. 2017. Methodology affects measures of phosphorus availability in growing broilers: Effects of calcium feeding strategy and dietary adaptation period length on true ileal phosphorus digestibility and predicted endogenous phosphorus losses. Poult. Sci. 96:611–621.

Pointillart, A. 1994. Phytates , phytases : leur importance dans l ’ alimentation. INRA Prod. Anim. 7:29– 39.

Pomar, C., L. Hauschild, G.-H. Zhang, J. Pomar, et P. A. Lovatto. 2009. Applying precision feeding techniques in growing-finishing pig operations. Rev. Bras. Zootec. 38:226–237

Proszkowiec-Weglarz, M., et R. Angel. 2013. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 22:609- 627.

Rath, N. C., G. R. Huff, W. E. Huff, et J. M. Balog. 2000. Factors regulating bone maturity and strength in poultry. Poult. Sci. 79:1024–1032.

Rodehutscord, M. 2013. Determination of phosphorus availability in poultry. Worlds. Poult. Sci. J. 69:687–698.

Rodehutscord, M., O. Adeola, R. Angel, P. Bikker, E. Delezie, W. A. Dozier, M. U. Faruk, M. Francesch, C. Kwakernaak, A. Narcy, C. M. Nyachoti, O. A. Olukosi, A. Preynat, B. Renouf, A. S. Barrio, K. Schedle, W. Siegert, S. Steenfeldt, M. M. Van Krimpen, S. M. Waititu, et M. Witzig. 2017. Results of an international phosphorus digestibility ring test with broiler chickens. Poult. Sci. 96:1679– 1687.

34

Rosenblueth, A., et N. Wiener. 1945. The Role of Models in Science. Philos. Sci. 12:316–321. Rousseau, X., A.-S. Valable, M.-P. Létourneau-Montminy, N. Même, E. Godet, M. Magnin, Y. Nys, M.

J. Duclos, et A. Narcy. 2016. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 95:2849–2860.

Rutherfurd, S., T. Chung, P. Morel, et PJ Moughan. 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus,. Poult. Sci. 83:61-68.

Rutherfurd, S. M., T. K. Chung, et P. J. Moughan. 2002. The effect of microbial phytase on ileal phosphorus and amino acid digestibility in the broiler chicken. Br. Poult. Sci. 43:598–606. Sauvant, D. 1992. La modélisation systémique en nutrition. Reprod. Nutr. Dev. 32:217–230.

Sauvant, D., J.-M. Perez, et G. Tran. 2004. Tables of Composition and Nutritional Value of Feed Materials: Pig, Poultry, Sheep, Goats, Rabbits, Horses, Fish. INRA Editi. Wageningen Academic Publishers, Paris.

Sauvant, D., P. Schmidely, et J. J. Daudin. 2005. Les méta-analyses des données expérimentales: Applications en nutrition animale. Prod. Anim. 18:63–73.

Sauvant, D., P. Schmidely, J. J. Daudin, et N. R. St-Pierre. 2008. Meta-analyses of experimental data in animal nutrition. Animal 2:1203–1214.

Selle, P. H., et V. Ravindran. 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1–41.

Shastak, Y., M. Witzig, K. Hartung, et M. Rodehutscord. 2012. Comparison of retention and prececal digestibility measurements in evaluating mineral phosphorus sources in broilers. Poult. Sci. 91:2201–2209.

Soares, J.H.J. 1995. Phosphorus bioavailability. Pages 257-294 dans: Bioavailability of Nutrients for Animals: Amino Acids, Minerals, and Vitamins. Ammerman, C.B., Baker, D.H. and Lewis, A.J., eds. Academic Press, San Diego, États-Unis.

35 74:1919–1934.

Suttle, N. F. 2010. Phosphorus.Pages 122–167 dans Mineral Nutrition of Livestock. 4e édition. CAB International, Oxfordshire, UK.

Tamim, N. M., R. Angel, et M. Christman. 2004. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poult. Sci. 83:1358–1367.

Thornley, J. et J. France. 2007. Chapter 1: Role of Mathematical Models. Pages 1 à 18 dans Mathematical models in agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. 2e édition. CABI Publishing, Wallingford, Royaume-Uni.

Thorp, B. H., et D. Waddington. 1997. Relationships between the bone pathologies, ash and mineral content of long bones in 35-day-old broiler chickens. Res. Vet. Sci. 62:67–73.

Tomassone, R., E. Lesquoy, et C. Millier. 1983. La régression : nouveau regard sur une ancienne méthode statistique. Masson, Paris (éd.) Actualités scientifiques et agronomiques de l’INRA, 180 p. Tran, G., et F. Skiba. 2005. Variabilité inter et intra matière première de la teneur en phosphore total

et phytique et de l’activité phytasique. Prod. Anim. 18:159–168.

Valable, A. S., A. Narcy, M. J. Duclos, C. Pomar, G. Page, Z. Nasir, M. Magnin, et M. P. Létourneau- Montminy. 2018. Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal 12:1555–1563

Veum, T. L. 2010. Phosphorus and Calcium Nutrition and Metabolism.Pages 94–111 dans Phosphorus and Calcium Utiliization and Requirements in Farms Animals. Vitti, D.M.S.S., Kebreab, E., eds. CAB Intern. Oxfordshire, UK.

Viveros, A., C. Centeno, A. Brenes, R. Canales, et A. Lozano. 2000. Phytase and acid phosphatase activities in plant feedstuffs. J. Agric. Food Chem. 48:4009–4013.

Wideman, R. F. 1987. Renal Regulation of Avian Calcium and Phosphorus Metabolism. J. Nutr. 117:808–815

36

turnover, and Ca and P metabolism in chickens. Res. Vet. Sci. 69:81–87.

World Bank. 2019. Annual Prices – January 2019. http://www.worldbank.org/en/research/commodity- markets#1 (page consultée le 8 janvier 2019)

Yamazaki, Y., T. Tamada, N. Kasai, I. Urakawa, Y. Aono, H. Hasegawa, T. Fujita, R. Kuroki, T. Yamashita, S. Fukumoto, et T. Shimada. 2008. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J. Bone Miner. Res. 23:1509–1518.

Yan, F., R. Angel, et C. M. Ashwell. 2007. METABOLISM AND NUTRITION Characterization of the Chicken Small Intestine Type IIb Sodium Phosphate Cotransporter 1. Poult. Sci. 86:67–76. Yan, F., R. Angel, C. Ashwell, A. Mitchell, et M. Christman. 2005. Evaluation of the broiler’s ability to

adapt to an early moderate deficiency of phosphorus and calcium. Poult. Sci. 84:1232–1241. Zhong, Y., H. J. Armbrecht, et S. Christakos. 2009. Calcitonin, a regulator of the 25-hydroxyvitamin

37

Documents relatifs