• Aucun résultat trouvé

Cette étude a mené à l’identification de plusieurs variants rares chez des individus de la population canadienne-française souffrant de MOP. Jusqu’à maintenant, aucune autre étude portant sur les variants rares dans la MOP n’a été rapportée dans la littérature. Par ailleurs, la contribution des variants rares dans l’ostéoporose a été investiguée. (Mendes et al., 2011) Li et coll. (2011) ont observés que quatre variants rares du gène LRP5, délétères selon SIFT, sont plus fréquents dans un groupe d’enfants enclins aux fractures, alors que deux variants rares bénins du même gène sont aussi fréquents chez les cas et chez les témoins. De plus, un variant rare du gène WNK4 est potentiellement associé à une faible densité minérale osseuse dans la population portugaise. La MAF de ce variant est deux fois plus élevée chez les individus ayant une faible densité minérale osseuse (2,2 %) que chez les témoins (0,9 %). (Mendes et al., 2011) Dans la population canadienne-française, des variants rares potentiellement impliqués dans d’autres maladies que la MOP ont aussi déjà été identifiés. Plusieurs de ces variants rares ont été identifiés dans des gènes investigués en raison de leur rôle potentiel dans la physiopathologie du cancer de sein ou du cancer de l’ovaire. (Desjardins et al., 2009, 2008; Durocher et al., 2006, 1996; Guénard et al., 2009; Plourde et al., 2009) Peu de ces variants rares étaient effectivement associés au cancer du sein ou de l’ovaire. D’autres variants rares ont été identifiés chez des individus souffrant de la maladie affective bipolaire originaires de la région du Saguenay-Lac-Saint- Jean. Deux associations génotypiques ont d’ailleurs été observées entre cette maladie et des variants rares des gènes KIAA1595 et CCDC92 (FLJ22471). (Shink et al., 2005)

Jusqu’à maintenant, peu d’études ont tenté d’établir une méthode visant à étudier de façon optimale l’effet des variants rares. Contrairement à la présente étude, où les gènes candidats ont été sélectionnés en fonction de leur position au sein d’un locus associé à la MOP et de leur rôle potentiel dans la physiopathologie de la maladie, la plupart des études réalisées jusqu’à maintenant ont recherché des variants rares ou des mutations

ou sur certaines malformations cardiaques. (Cohen et al., 2004; Hershberger et al., 2010, 2008; Iascone et al., 2011) Dans une étude sur le diabète de type 1, le rôle de certains gènes renfermant un variant commun associé à cette maladie a été investigué, mais les autres gènes à proximité ont été laissés de côté. (Nejentsev et al., 2009) Une autre étude portant sur la dyslipidémie a aussi permis d’identifier des variants rares ayant de grandes effets de taille dans 11 gènes pour lesquels des variants communs responsables d’une faible augmentation du risque de développer cette maladie avaient été identifiés. (Lusis et Pajukanta, 2008) Puisque les variants génétiques causaux responsables de l’observation d’une association génétique via une étude pangénomique d’association peuvent être situés à des millions de paires de bases du variant commun associé, il est probable qu’une telle approche échoue à identifier les variants causaux responsables, en partie, du développement d’une maladie. Des façons de prioriser les variants génétiques identifiés au sein d’un gène selon la fréquence du variant et les prédictions d’outils in silico ont déjà été suggérées. Toutefois, la plupart du temps les critères incluent l’absence de la variation identifiée chez tous les individus sains. (Hershberger et al., 2010, 2008; Iascone et al., 2011) Ce critère est approprié pour identifier des mutations, mais il ne l’est pas pour identifier des variants rares. Des stratégies visant à prioriser les variants génétiques identifiés dans le but de découvrir les variants génétiques rares causaux doivent donc être mises au point.

6. CONCLUSION

Ce projet a mené à l’identification de 74 variants génétiques rares, soit 57 situés au locus 1p13 et 17 situés au locus 8q22. Des associations génétiques ont été identifiées entre la MOP et deux variants génétiques rares du locus 8q22 dans la population canadienne-française. Une association allélique a été identifiée entre la MOP et un variant (c.1189C>T, p.Leu397Phe) du gène TM7SF4 qui encode la protéine DC-STAMP impliquée dans la multinucléation des ostéoclastes et une association génotypique a été identifiée entre la MOP et un variant intronique (c.372+259A>G) du gène CTHRC1 impliqué dans la régulation du remodelage osseux via son action sur l’ostéoblastogénèse. Le rôle des gènes TM7SF4 et CTHRC1 dans la physiopathologie de la MOP mérite d’être investigué davantage.

Ces découvertes pourraient améliorer les connaissances actuelles sur le remodelage osseux, ainsi que sur la pathogenèse de la MOP ou d’autres maladies osseuses métaboliques telles que l’ostéoporose. Ces connaissances pourraient permettre de développer de nouvelles stratégies de prévention ou d’élaborer de nouveaux tests diagnostiques. Elles pourraient aussi permettre d’identifier de nouvelles cibles thérapeutiques afin de contrôler le remodelage osseux. Aussi, les stratégies utilisées pour prioriser les variants rares à investiguer afin d’optimiser l’utilisation des ressources disponibles pourraient être employées dans d’autres études de reséquençage portant sur des maladies génétiques complexes basée sur une approche gènes candidats dans une population à effet fondateur. Évidemment, les améliorations suggérées plus haut devraient être considérées lors de la planification d’un tel projet.

Bibliographie

Albagha, O.M.E., Visconti, M.R., Alonso, N., Langston, A.L., Cundy, T., Dargie, R., Dunlop, M.G., Fraser, W.D., Hooper, M.J., Isaia, G., Nicholson, G.C., Del Pino Montes, J., Gonzalez-Sarmiento, R., Di Stefano, M., Tenesa, A., Walsh, J.P., Ralston, S.H., 2010. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat. Genet. 42, 520–524.

Albagha, O.M.E., Wani, S.E., Visconti, M.R., Alonso, N., Goodman, K., Brandi, M.L., Cundy, T., Chung, P.Y.J., Dargie, R., Devogelaer, J.-P., Falchetti, A., Fraser, W.D., Gennari, L., Gianfrancesco, F., Hooper, M.J., Van Hul, W., Isaia, G., Nicholson, G.C., Nuti, R., Papapoulos, S., Montes, J. del P., Ratajczak, T., Rea, S.L., Rendina, D., Gonzalez-Sarmiento, R., Di Stefano, M., Ward, L.C., Walsh, J.P., Ralston, S.H., 2011. Genome-wide association identifies three new susceptibility loci for Paget’s disease of bone. Nat. Genet. 43, 685–689.

Altman, R.D., Bloch, D.A., Hochberg, M.C., Murphy, W.A., 2000. Prevalence of pelvic Paget’s disease of bone in the United States. J. Bone Miner. Res. 15, 461–465.

Andrews, C., 2010. The Hardy-Weinberg Principle. Nature Education Knowledge 3, 65.

Bansal, V., Libiger, O., Torkamani, A., Schork, N.J., 2010. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 11, 773–785.

Barker, D.J., 1984. The epidemiology of Paget’s disease of bone. Br. Med. Bull. 40, 396–400.

Bastin, S., Bird, H., Gamble, G., Cundy, T., 2009. Paget’s disease of bone—becoming a rarity? Rheumatology 48, 1232–1235.

Beverdam, A., Brouwer, A., Reijnen, M., Korving, J., Meijlink, F., 2001. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development 128, 3975–3986.

Beyens, G., Daroszewska, A., De Freitas, F., Fransen, E., Vanhoenacker, F., Verbruggen, L., Zmierczak, H.- G., Westhovens, R., Van Offel, J., Ralston, S.H., Devogelaer, J.-P., Van Hul, W., 2007. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget’s disease of bone. J. Bone Miner. Res. 22, 1062–1071.

Bodmer, W., Bonilla, C., 2008. Common and rare variants in multifactorial susceptibility to common diseases. Nature genetics 40, 695–701.

Bodmer, W., Tomlinson, I., 2010. Rare genetic variants and the risk of cancer. Curr. Opin. Genet. Dev. 20, 262–267.

Bolland, M.J., Tong, P.C., Naot, D., Callon, K.E., Wattie, D.J., Gamble, G.D., Cundy, T., 2006. Delayed development of Paget’s disease in offspring inheriting SQSTM1 mutations. Journal of Bone and Mineral Research 22, 411–415.

Bonewald, L.F., 2011. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238.

Caetano-Lopes, J., Canhão, H., Fonseca, J.E., 2009. Osteoimmunology--the hidden immune regulation of bone. Autoimmun Rev 8, 250–255.

Chun, S., and Fay, J.C., 2009. Identification of deleterious mutations within three human genomes. Genome Research 19, 1553–1561.

Chung, P.Y.J., Beyens, G., Boonen, S., Papapoulos, S., Geusens, P., Karperien, M., Vanhoenacker, F., Verbruggen, L., Fransen, E., Van Offel, J., Goemaere, S., Zmierczak, H.-G., Westhovens, R., Devogelaer, J.-P., Van Hul, W., 2010a. The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum. Genet. 128, 615–626.

Chung, P.Y.J., Beyens, G., Riches, P.L., Van Wesenbeeck, L., De Freitas, F., Jennes, K., Daroszewska, A., Fransen, E., Boonen, S., Geusens, P., 2010b. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. Journal of Bone and Mineral Research 25, 2592–2605.

Chung, P.Y.J., Van Hul, W., 2012. Paget’s Disease of Bone: Evidence for Complex Pathogenetic Interactions. Seminars in Arthritis and Rheumatism 41, 619–641.

Cirulli, E.T., Goldstein, D.B., 2010. Uncovering the roles of rare variants in common disease through whole- genome sequencing. Nat. Rev. Genet. 11, 415–425.

Clarke, B., 2008. Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology 3, S131–S139.

Cody, J.D., Singer, F.R., Roodman, G.D., Otterund, B., Lewis, T.B., Leppert, M., Leach, R.J., 1997. Genetic linkage of Paget disease of the bone to chromosome 18q. The American Journal of Human Genetics 61, 1117–1122.

Cohen, J.C., Kiss, R.S., Pertsemlidis, A., Marcel, Y.L., McPherson, R., Hobbs, H.H., 2004. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305, 869–872.

Cooper, C., Harvey, N.C., Dennison, E.M., Van Staa, T.P., 2006. Update on the epidemiology of Paget’s disease of bone. J. Bone Miner. Res. 21 Suppl 2, P3–8.

Cooper, C., Schafheutle, K., Dennison, E., Kellingray, S., Guyer, P., Barker, D., 1999. The epidemiology of Paget’s disease in Britain: is the prevalence decreasing? J. Bone Miner. Res. 14, 192–197.

Cooper, G.M., Shendure, J., 2011. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640.

Cundy, T., 2006. Is the prevalence of Paget’s disease of bone decreasing? J. Bone Miner. Res. 21 Suppl 2, P9–13.

Daroszewska, A., Van’t Hof, R.J., Rojas, J.A., Layfield, R., Landao-Basonga, E., Rose, L., Rose, K., Ralston, S.H., 2011. A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Human molecular genetics 20, 2734–2744.

Desjardins, S., Beauparlant, J.C., Labrie, Y., Ouellette, G., BRCA, I., Durocher, F., 2009. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC cancer 9, 181.

Desjardins, S., Belleau, P., Labrie, Y., Ouellette, G., Bessette, P., Chiquette, J., Laframboise, R., Lépine, J., Lespérance, B., Pichette, R., 2008. Genetic variants and haplotype analyses of the ZBRK1/ZNF350 gene in high-risk non BRCA1/2 French Canadian breast and ovarian cancer families. International Journal of Cancer 122, 108–116.

Di, Y.M., Chan, E., Wei, M.Q., Liu, J.-P., and Zhou, S.-F., 2009. Prediction of Deleterious Non-synonymous Single-Nucleotide Polymorphisms of Human Uridine Diphosphate Glucuronosyltransferase Genes. The AAPS Journal 11, 469–480.

Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H., Goldstein, D.B., 2010. Rare variants create synthetic genome-wide associations. PLoS biology 8, e1000294.

Durocher, F., Labrie, Y., Soucy, P., Sinilnikova, O., Labuda, D., Bessette, P., Chiquette, J., Laframboise, R., Lépine, J., Lespérance, B., 2006. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families. BMC cancer 6,

Durocher, F., Shattuck-Eidens, D., McClure, M., Labrie, F., Skolnick, M.H., Goldgar, D.E., Simard, J., 1996. Comparison of BRCA1 polymorphisms, rare sequence variants and/or missense mutations in unaffected and breast/ovarian cancer populations. Human molecular genetics 5, 835–842.

Falchetti, A., Masi, L., Brandi, M.L., 2010. Paget’s disease of bone: there’s more than the affected skeletal--a clinical review and suggestions for the clinical practice. Curr Opin Rheumatol 22, 410–423.

Fearnhead, N.S., Wilding, J.L., Winney, B., Tonks, S., Bartlett, S., Bicknell, D.C., Tomlinson, I.P.M., Mortensen, N.J.M.C., Bodmer, W.F., 2004. Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proceedings of the National Academy of Sciences of the United States of America 101, 15992–15997.

Flanagan, S.E., Patch, A.-M., and Ellard, S., 2010. Using SIFT and PolyPhen to Predict Loss-of-Function and Gain-of-Function Mutations. Genetic Testing and Molecular Biomarkers 14, 533–537.

Frazer, K.A., Murray, S.S., Schork, N.J., Topol, E.J., 2009. Human genetic variation and its contribution to complex traits. Nature Reviews Genetics 10, 241–251.

Gagnon, A., 2011. Aux origines du génome québécois. Dire 9, p. 42–43.

Gallet, M., Mentaverri, R., Sévenet, N., Brazier, M., Kamel, S., 2006. Ability of breast cancer cell lines to stimulate bone resorbing activity of mature osteoclasts correlates with an anti-apoptotic effect mediated by macrophage colony stimulating factor. Apoptosis 11, 1909–1921.

Gennari, L., Gianfrancesco, F., Di Stefano, M., Rendina, D., Merlotti, D., Esposito, T., Gallone, S., Fusco, P., Rainero, I., Fenoglio, P., 2010. SQSTM1 gene analysis and gene-environment interaction in Paget’s disease of bone. Journal of Bone and Mineral Research 25, 1375–1384.

Gennari, L., Merlotti, D., Martini, G., Nuti, R., 2006. Paget’s disease of bone in Italy. J. Bone Miner. Res. 21 Suppl 2, P14–21.

Gibson, G., 2012. Rare and common variants: twenty arguments. Nature Reviews Genetics 13, 135–145. Good, D.A., Busfield, F., Fletcher, B.H., Duffy, D.L., Kesting, J.B., Andersen, J., Shaw, J.T.E., 2002. Linkage of

Paget disease of bone to a novel region on human chromosome 18q23. The American Journal of Human Genetics 70, 517–525.

Gorlov, I.P., Gorlova, O.Y., Frazier, M.L., Spitz, M.R., Amos, C.I., 2011. Evolutionary evidence of the effect of rare variants on disease etiology. Clinical genetics 79, 199–206.

Gorlov, I.P., Gorlova, O.Y., Sunyaev, S.R., Spitz, M.R., Amos, C.I., 2008. Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. The American Journal of Human Genetics 82, 100–112.

Guénard, F., Labrie, Y., Ouellette, G., Beauparlant, C.J., Durocher, F., 2009. Genetic sequence variations of BRCA1-interacting genes AURKA, BAP1, BARD1 and DHX9 in French Canadian families with high risk of breast cancer. Journal of human genetics 54, 152–161.

Haldane, J.B., 1956. The estimation and significance of the logarithm of a ratio of frequencies. Ann. Hum. Genet. 20, 309–311.

Hartgers, F.C., Vissers, J.L., Looman, M.W., Van Zoelen, C., Huffine, C., Figdor, C.G., Adema, G.J., 2000. DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur. J. Immunol. 30, 3585–3590.

Helfrich, M.H., Hocking, L.J., 2008. Genetics and aetiology of Pagetic disorders of bone. Archives of biochemistry and biophysics 473, 172–182.

Hennies, H.C., Kornak, U., Zhang, H., Egerer, J., Zhang, X., Seifert, W., Kühnisch, J., Budde, B., Nätebus, M., Brancati, F., Wilcox, W.R., Müller, D., Kaplan, P.B., Rajab, A., Zampino, G., Fodale, V., Dallapiccola, B., Newman, W., Metcalfe, K., Clayton-Smith, J., Tassabehji, M., Steinmann, B., Barr, F.A., Nürnberg, P., Wieacker, P., Mundlos, S., 2008. Gerodermia osteodysplastica is caused by mutations in

SCYL1BP1, a Rab-6 interacting golgin. Nat. Genet. 40, 1410–1412.

Hershberger, R.E., Norton, N., Morales, A., Li, D., Siegfried, J.D., Gonzalez-Quintana, J., 2010. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet 3, 155–161.

Hershberger, R.E., Parks, S.B., Kushner, J.D., Li, D., Ludwigsen, S., Jakobs, P., Nauman, D., Burgess, D., Partain, J., Litt, M., 2008. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clinical and translational science 1, 21–26.

Hicks, S., Wheeler, D.A., Plon, S.E., and Kimmel, M., 2011. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Human Mutation 32, 661–668. Hocking, L.J., Herbert, C.A., Nicholls, R.K., Williams, F., Bennett, S.T., Cundy, T., Nicholson, G.C., Wuyts, W.,

evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. The American Journal of Human Genetics 69, 1055–1061.

Iascone, M., Ciccone, R., Galletti, L., Marchetti, D., Seddio, F., Lincesso, A.R., Pezzoli, L., Vetro, A., Barachetti, D., Boni, L., 2011. Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clinical genetics, 81, 542-54.

Introduction, n.d. Alexa Platform.

Iyengar, S.K., Elston, R.C., 2007. The Genetic Basis of Complex Traits. Linkage Disequilibrium and Association Mapping: Analysis and Applications 376, 71.

Javed, A., Guo, B., Hiebert, S., Choi, J.Y., Green, J., Zhao, S.C., Osborne, M.A., Stifani, S., Stein, J.L., Lian, J.B., et al., 2000. Groucho/TLE/R-esp proteins associate with the nuclear matrix and repress RUNX (CBF(alpha)/AML/PEBP2(alpha)) dependent activation of tissue-specific gene transcription. J Cell Sci 113, 2221–2231.

Jensen, E.D., Gopalakrishnan, R., and Westendorf, J.J., 2010. Regulation of gene expression in osteoblasts. Biofactors 36, 25–32.

Johnston, J.A., Ward, C.L., and Kopito, R.R.,1998. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

Karsenty, G., 2008. Transcriptional Control of Skeletogenesis. Annual Review of Genomics and Human Genetics 9, 183–196.

Kimura, H., Kwan, K.M., Zhang, Z., Deng, J.M., Darnay, B.G., Behringer, R.R., Nakamura, T., De

Crombrugghe, B., Akiyama, H., 2008a. Cthrc1 Is a Positive Regulator of Osteoblastic Bone Formation. PLoS ONE 3, e3174.

Kimura, H., Kwan, K.M., Zhang, Z., Deng, J.M., Darnay, B.G., Behringer, R.R., Nakamura, T., De

Crombrugghe, B., Akiyama, H., 2008b. Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS One 3, e3174.

Kopito, R.R. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology 10, 524–530. Ku, C.S., Magnusson, P.K., Chia, K.S., Pawitan, Y., 2010. Research on Rare Variants for Complex Diseases,

Kubota, T., Michigami, T., Ozono, K., 2009. Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27, 265– 271.

Kumar, V., Abbas, A.K., Fausto, N., Aster, J., 2009. Robbins and Cotran Pathologic Basis of Disease, Professional Edition: Expert Consult - Online and Print, 8e, 8th ed. Saunders.

Kurihara, N., Hiruma, Y., Yamana, K., Michou, L., Rousseau, C., Morissette, J., Galson, D.L., Teramachi, J., Zhou, H., Dempster, D.W., Windle, J.J., Brown, J.P., Roodman, G.D., 2011. Contributions of the measles virus nucleocapsid gene and the SQSTM1/p62(P392L) mutation to Paget’s disease. Cell Metab. 13, 23–34.

Kurihara, N., Hiruma, Y., Zhou, H., Subler, M.A., Dempster, D.W., Singer, F.R., Reddy, S.V., Gruber, H.E., Windle, J.J., Roodman, G.D., 2007. Mutation of the sequestosome 1 (p62) gene increases

osteoclastogenesis but does not induce Paget disease. J. Clin. Invest. 117, 133–142.

Kurihara, N., Reddy, S.V., Araki, N., Ishizuka, S., Ozono, K., Cornish, J., Cundy, T., Singer, F.R., Roodman, G.D., 2004. Role of TAFII-17, a VDR binding protein, in the increased osteoclast formation in Paget’s Disease. J. Bone Miner. Res. 19, 1154–1164.

Laberge, A.-M., 2007. La prévalence et la distribution des maladies génétiques au québec : L’impact du passé sur le présent. MS. Médecine sciences 23, 997–1001.

Laroche, M., Delmotte, A., 2005. Increased arterial calcification in Paget’s disease of bone. Calcified tissue international 77, 129–133.

Lathrop, G., 1983. Estimating genotype relative risks. Tissue Antigens 22, 160–166.

Laurin, N., Brown, J.P., Lemainque, A., Duchesne, A., Huot, D., Lacourcière, Y., Drapeau, G., Verreault, J., Raymond, V., Morissette, J., 2001. Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am. J. Hum. Genet. 69, 528–543.

Laurin, N., Brown, J.P., Morissette, J., Raymond, V., 2002. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588. LeClair, R.J., Durmus, T., Wang, Q., Pyagay, P., Terzic, A., Lindner, V., 2007. Cthrc1 is a novel inhibitor of

transforming growth factor-ß signaling and neointimal lesion formation. Circulation research 100, 826– 833.

Li, Y., Byrnes, A.E., Li, M., 2010. To identify associations with rare variants, just WHaIT: Weighted haplotype and imputation-based tests. Am. J. Hum. Genet. 87, 728–735.

Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., Loscalzo, J., 2011. Harrison’s Principles of Internal Medicine: Volumes 1 and 2, 18th Edition, 18th ed. McGraw-Hill Professional.

López-Abente, G., Morales-Piga, A., Elena-Ibáñez, A., Rey-Rey, J.S., Corres-González, J., 1997. Cattle, pets, and Paget’s disease of bone. Epidemiology 8, 247–251.

Lorenzo, J., Choi, Y., Horowitz, M., Takayanagi, H., 2010. Osteoimmunology: Interactions of the Immune and Skeletal Systems, Academic Press, 470p.

Lucas, G.J.A., Hocking, L.J., Daroszewska, A., Cundy, T., Nicholson, G.C., Walsh, J.P., Fraser, W.D., Meier, C., Hooper, M.J., Ralston, S.H., 2005. Ubiquitin-associated domain mutations of SQSTM1 in Paget’s disease of bone: evidence for a founder effect in patients of British descent. J. Bone Miner. Res. 20, 227–231.

Lucas, G.J.A., Mehta, S.G., Hocking, L.J., Stewart, T.L., Cundy, T., Nicholson, G.C., Walsh, J.P., Fraser, W.D., Watts, G.D.J., Ralston, S.H., Kimonis, V.E., 2006. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget’s disease of bone. Bone 38, 280–285. Luo, W., Gangwal, K., Sankar, S., Boucher, K.M., Thomas, D., Lessnick, S.L., 2009. GSTM4 is a

microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance. Oncogene 28, 4126–4132.

Lusis, A.J., Pajukanta, P., 2008. A treasure trove for lipoprotein biology. Nature Genetics 40, 129–130. Lyles, K.W., Siris, E.S., Singer, F.R., Meunier, P.J., 2001. A clinical approach to diagnosis and management of

Paget’s disease of bone. J. Bone Miner. Res. 16, 1379–1387.

Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F.C., McCarroll, S.A., Visscher, P.M., 2009. Finding the missing heritability of complex diseases. Nature 461, 747–753.

Marks, S.C., Jr, Popoff, S.N., 1988. Bone cell biology: the regulation of development, structure, and function in the skeleton. Am. J. Anat. 183, 1–44.

Marie, P.J., 2008. Transcription factors controlling osteoblastogenesis. Archives of Biochemistry and Biophysics 473, 98–105.

McNaught, K.S., Olanow, C.W., Halliwell, B., Isacson, O., Jenner, P., 2001. Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat. Rev. Neurosci. 2, 589–594.

Mellis, D.J., Itzstein, C., Helfrich, M.H., and Crockett, J.C., 2011. The skeleton: a multi-functional complex organ. The role of key signalling pathways in osteoclast differentiation and in bone resorption. Journal of Endocrinology 211, 131–143.

Mendes, A.I., Mascarenhas, M.R., Matos, S., Sousa, I., Ferreira, J., Barbosa, A.P., Bicho, M., Jordan, P., 2011. A WNK4 gene variant relates to osteoporosis and not to hypertension in the Portuguese population. Molecular Genetics and Metabolism 102, 465–469.

Mensah, K.A., Ritchlin, C.T., Schwarz, E.M., 2010. RANKL induces heterogeneous DC-STAMPlo and DC-

STAMPhi osteoclast precursors of which the DC-STAMPlo precursors are the master fusogens. Journal

of cellular physiology 223, 76–83.

Merchant, A., Smielewska, M., Patel, N., Akunowicz, J.D., Saria, E.A., Delaney, J.D., Leach, R.J., Seton, M., Hansen, M.F., 2009. Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget’s disease of bone. J. Bone Miner. Res. 24, 484–494.

Michou, L., Brown, J.P., 2011a. Emerging strategies and therapies for treatment of Paget’s disease of bone. Drug Des Devel Ther 5, 225–239.

Michou, L., Brown, J.P., 2011b. Genetics of bone diseases: Paget’s disease, fibrous dysplasia, osteopetrosis, and osteogenesis imperfecta. Joint Bone Spine 78, 252–258.

Michou, L., Collet, C., Laplanche, J.-L., Orcel, P., Cornélis, F., 2006. Genetics of Paget’s disease of bone. Joint Bone Spine 73, 243–248.

Michou, L., Collet, C., Morissette, J., Audran, M., Thomas, T., Gagnon, E., Launay, J.-M., Laplanche, J.-L., Brown, J.P., Orcel, P., 2012. Epidemiogenetic study of French families with Paget’s disease of bone. Joint Bone Spine 79, 393–398.

Michou, L., Morissette, J., Gagnon, E.R., Marquis, A., Dellabadia, M., Brown, J.P., Siris, E.S., 2011. Novel SQSTM1 mutations in patients with Paget’s disease of bone in an unrelated multiethnic American population. Bone 48, 456–460.

Mills, B.G., Singer, F.R., 1976. Nuclear inclusions in Paget’s disease of bone. Science 194, 201–202. Mirasierra, M., Fernández-Pérez, A., Díaz-Prieto, N., Vallejo, M., 2011. Alx3-deficient mice exhibit decreased

insulin in beta cells, altered glucose homeostasis and increased apoptosis in pancreatic islets. Diabetologia 54, 403–414.

Miyamoto, T., 2011. Regulators of Osteoclast Differentiation and Cell-Cell Fusion. The Keio Journal of Medicine 60, 101–105.

Monroe, D.G., McGee-Lawrence, M.E., Oursler, M.J., Westendorf, J.J., 2011. Update on Wnt signaling in bone cell biology and bone disease. Gene.

Morales-Piga, A.A., Rey-Rey, J.S., Corres-González, J., García-Sagredo, J.M., López-Abente, G., 1995. Frequency and characteristics of familial aggregation of Paget’s disease of bone. J. Bone Miner. Res. 10, 663–670.

Morissette, J., Laurin, N., and Brown, J.P., 2006. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget’s disease of bone. J. Bone Miner. Res. 21 Suppl 2, P38–44.

Nakken, S., Alseth, I., and Rognes, T., 2007. Computational prediction of the effects of non-synonymous single nucleotide polymorphisms in human DNA repair genes. Neuroscience 145, 1273–1279.