• Aucun résultat trouvé

Implications pour les stratégies vaccinales

. L'élimination de pathogènes extracellulaires dépendante de l'intervention des lymphocytes Th17 serait donc opérationnelle chez le nouveau-né. De part le rôle de l'IL-27 dans l'inhibition des réponses de type Th2, le défaut de production de cette cytokine pourrait également contribuer au développement d'allergie en début de vie.

4.2 Implications pour les stratégies vaccinales

Un des défis actuels de la vaccinologie est de développer des vaccins efficaces dès la naissance et permettant une protection de longue durée par l'administration d'une dose unique. L’immunisation précoce des nourrissons représente une stratégie applicable pour diminuer la mortalité importante due aux maladies infectieuses en bas âge. Dans ce contexte, les stratégies vaccinales doivent tenir compte de l’immaturité du système immunitaire néonatal. Nos recherches contribuent à l'effort indispensable visant à définir les bases moléculaires et cellulaires de l’immaturité immunologique du nouveau-né.

Le concept de base du vaccin est de cibler le système immunitaire de manière à induire une réponse adaptative, incluant la production d'anticorps par les lymphocytes B et les réponses cellulaires médiées par les cellules T spécifiques de l'antigène, permettant d'éviter une infection ou de réduire la pathologie associée à celle-ci. L'adjuvant présent dans les vaccins est indispensable pour activer de manière efficace les cellules du système immunitaire et fournir une immunogénicité optimale de l'antigène. Les DCs sont les principales cibles cellulaires des nouveaux vaccins car elles constituent le lien entre l’immunité innée et le développement des réponses immunes adaptatives. Les nouveaux adjuvants doivent donc être capables d'activer les cellules dendritiques du nouveau-né de manière efficace. Plusieurs ligands des TLRs ont été choisis pour jouer le rôle d'adjuvants

dans les nouveaux vaccins. Ce choix n'est pas anodin étant donné que ces ligands ciblent principalement les DCs et induisent des réponses de type Th1. Ainsi, le MPL (monophosphoryl lipid), ligand TLR4, est déjà utilisé dans les vaccins contre l'hépatite B (FENdrix) et contre le papillomavirus humain de type 16/18 (HPV, Cervarix). Le MPL mais aussi l'imiquimod, ligand de TLR7/8 et la flagélline, ligand TLR5, semblent prometteurs pour améliorer la réponse immune notamment dans le cadre d'un vaccin contre

Plasmodium falciparum 519-521.

Le ligand qui servira d'adjuvant dans les stratégies vaccinales du nouveau-né doit être capable de contourner les déficiences intrinsèques des cellules dendritiques néonatales, notamment le défaut d'activation d'IRF3 et de production des IFNs de type I, afin d’induire la synthèse de cytokines pro-Th1 telles que l'IL-12 et l'IL-27. A côté des ligands de TLR3 et TLR4, la production d'IFNβ est induite par l'engagement des récepteurs cytosoliques RIG-1 et MDA5. Cependant, les différentes études réalisées dans le but d'identifier les facteurs de transcription participant à la voie de signalisation activée par ces récepteurs ont démontré le rôle déterminant d'IRF3. Il est donc concevable que le défaut d'activation d'IRF3 et le défaut de production d'IFNβ subséquent observés suite à l'engagement de TLR3 et TLR4, le sera également lors de l'activation de RIG-1 et MDA5. Il a été montré que suite à une infection par le cytomégalovirus, les DCs myéloïdes du nouveau-né sont capables de produire des IFNαs et de nombreux gènes IFN-dépendants de manière comparable aux DCs myéloïdes isolées à partir de sang d’adulte 522. Ces données suggèrent donc que certaines voies d’activation menant à la production d’IFNs de type I sont fonctionnelles chez le nouveau-né. L’identification des facteurs de transcription impliqués dans ces voies de signalisation serait utile pour induire la production d’IL-27 par les DCs myéloïdes du nouveau-né. En effet, nos résultats indiquent que la production d'IL-27 par les DCs, en réponse au polyI:C, est moins dépendante d'IRF3 qu'en réponse au LPS. C'est principalement la formation du complexe ISGF3 suite à l’action des IFNs de type I qui est essentielle à l'expression de la p28. La synthèse d'IL-12 et d'IL-27 est également amplifiée par la présence d'IFNγ. Une autre possibilité serait donc d'induire la sécrétion d’IFNγ par des cellules du système immunitaire inné tels que les lymphocytes Tγδ, les cellules NK ou les cellules NKT qui sont fonctionnelles pour la production de cette cytokine chez le nouveau-né 519,520,523-525.

BIBLIOGRAPHIE

1. Janeway,C.A., Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11-16 (1992).

2. Banchereau,J. & Steinman,R.M. Dendritic cells and the control of immunity. Nature 392, 245-252 (1998).

3. Thompson,C.B. New insights into V(D)J recombination and its role in the evolution of the immune system. Immunity. 3, 531-539 (1995). 4. Fearon,D.T. & Locksley,R.M. The instructive

role of innate immunity in the acquired immune response. Science 272, 50-53 (1996).

5. Steinman,R.M., Hawiger,D. & Nussenzweig,M.C. Tolerogenic dendritic cells.

Annu. Rev. Immunol. 21, 685-711 (2003).

6. Randolph,G.J., Ochando,J. & Partida-Sanchez,S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293-316 (2008).

7. Strunk,D., Egger,C., Leitner,G., Hanau,D. & Stingl,G. A skin homing molecule defines the langerhans cell progenitor in human peripheral blood. J Exp. Med. 185, 1131-1136 (1997). 8. Shortman,K. & Liu,Y.J. Mouse and human

dendritic cell subtypes. Nat. Rev. Immunol. 2, 151-161 (2002).

9. Liu,Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275-306 (2005).

10. Serbina,N.V., Salazar-Mather,T.P., Biron,C.A., Kuziel,W.A. & Pamer,E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 19, 59-70 (2003).

11. Copin,R., De Baetselier,P., Carlier,Y., Letesson,J.J. & Muraille,E. MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection. J.

Immunol. 178, 5182-5191 (2007).

12. De Trez,C. et al. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/6 resistant mice.

PLoS. Pathog. 5, e1000494 (2009).

13. Schakel,K. et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity. 24, 767-777 (2006). 14. Kondo,M. et al. Biology of hematopoietic

stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759-806 (2003).

15. Merad,M. & Manz,M.G. Dendritic cell homeostasis. Blood 113, 3418-3427 (2009). 16. Ardavin,C. Origin, precursors and

differentiation of mouse dendritic cells. Nat. Rev.

Immunol. 3, 582-590 (2003).

17. Shortman,K. & Naik,S.H. Steady-state and inflammatory dendritic-cell development. Nat.

Rev. Immunol. 7, 19-30 (2007).

18. Medzhitov,R. & Janeway,C.A., Jr. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4-9 (1997). 19. Matzinger,P. Tolerance, danger, and the

extended family. Annu. Rev. Immunol. 12, 991-1045 (1994).

20. Kono,H. & Rock,K.L. How dying cells alert the immune system to danger. Nat. Rev.

Immunol. 8, 279-289 (2008).

21. Medzhitov,R. & Janeway,C., Jr. Innate immunity. N. Engl. J. Med. 343, 338-344 (2000). 22. Reis e Sousa. Dendritic cells in a mature age.

Nat. Rev. Immunol. 6, 476-483 (2006).

23. Heath,W.R. & Carbone,F.R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47-64 (2001).

24. Banchereau,J. et al. Immunobiology of dendritic cells. Annu Rev Immunol 18, 767-811 (2000).

25. Vyas,J.M., Van der Veen,A.G. & Ploegh,H.L. The known unknowns of antigen processing and presentation. Nat. Rev. Immunol. 8, 607-618 (2008).

26. Medzhitov,R. & Janeway,C.A., Jr. Innate immunity: impact on the adaptive immune response. Curr. Opin. Immunol. 9, 4-9 (1997). 27. Beier,K.C., Kallinich,T. & Hamelmann,E.

T-cell co-stimulatory molecules: novel targets for the treatment of allergic airway disease. Eur.

Respir. J. 30, 383-390 (2007).

28. Dustin,M.L., Tseng,S.Y., Varma,R. & Campi,G. T cell-dendritic cell immunological synapses. Curr. Opin. Immunol. 18, 512-516 (2006).

29. Kapsenberg,M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev.

Immunol. 3, 984-993 (2003).

30. Reiner,S.L. Development in motion: helper T cells at work. Cell 129, 33-36 (2007).

31. Lighvani,A.A. et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U. S. A 98, 15137-15142 (2001).

32. Lucas,S., Ghilardi,N., Li,J. & de Sauvage,F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1dependent and

-independent mechanisms. Proc. Natl. Acad. Sci.

U. S. A 100, 15047-15052 (2003).

33. Afkarian,M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549-557 (2002).

34. Usui,T. et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J. Exp. Med. 203, 755-766 (2006). 35. Ansel,K.M., Djuretic,I., Tanasa,B. & Rao,A.

Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607-656 (2006).

36. Ivanov,I.I., Zhou,L. & Littman,D.R. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19, 409-417 (2007).

37. Zhou,L. et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways.

Nat. Immunol. 8, 967-974 (2007).

38. McGeachy,M.J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10, 314-324 (2009).

39. Acosta-Rodriguez,E.V., Napolitani,G., Lanzavecchia,A. & Sallusto,F. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8, 942-949 (2007).

40. Wilson,N.J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8, 950-957 (2007).

41. Korn,T., Bettelli,E., Oukka,M. & Kuchroo,V.K. IL-17 and Th17 Cells. Annu. Rev.

Immunol. 27, 485-517 (2009).

42. Nurieva,R.I. et al. Bcl6 Mediates the Development of T Follicular Helper Cells.

Science (2009).

43. Eddahri,F. et al. Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113, 2426-2433 (2009).

44. Fazilleau,N., Mark,L., McHeyzer-Williams,L.J. & McHeyzer-Williams,M.G. Follicular helper T cells: lineage and location.

Immunity. 30, 324-335 (2009).

45. Zheng,Y. & Rudensky,A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8, 457-462 (2007).

46. Davidson,T.S., DiPaolo,R.J., Andersson,J. & Shevach,E.M. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178, 4022-4026 (2007).

47. Dardalhon,V. et al. IL-4 inhibits beta-induced Foxp3+ T cells and, together with

TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat. Immunol. 9, 1347-1355 (2008). 48. Veldhoen,M. et al. Transforming growth

factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341-1346 (2008).

49. Elyaman,W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells.

Proc. Natl. Acad. Sci. U. S. A 106, 12885-12890

(2009).

50. Duhen,T., Geiger,R., Jarrossay,D., Lanzavecchia,A. & Sallusto,F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat.

Immunol. 10, 857-863 (2009).

51. Trifari,S., Kaplan,C.D., Tran,E.H., Crellin,N.K. & Spits,H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat. Immunol.

10, 864-871 (2009).

52. Brocker,T., Riedinger,M. & Karjalainen,K. Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo. J. Exp.

Med. 185, 541-550 (1997).

53. Lemaitre,B., Nicolas,E., Michaut,L., Reichhart,J.M. & Hoffmann,J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973-983 (1996).

54. Hoebe,K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523-527 (2005). 55. Akira,S., Takeda,K. & Kaisho,T. Toll-like

receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675-680 (2001).

56. Akira,S. & Takeda,K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511 (2004). 57. Xu,Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111-115 (2000).

58. Hornung,V. et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J.

Immunol. 168, 4531-4537 (2002).

59. Takeda,K. & Akira,S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14 (2005). 60. Janeway,C.A., Jr. & Medzhitov,R. Innate

immune recognition. Annu. Rev. Immunol. 20, 197-216 (2002).

61. Whitmore,M.M. et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity.

62. Napolitani,G., Rinaldi,A., Bertoni,F., Sallusto,F. & Lanzavecchia,A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6, 769-776 (2005). 63. Re,F. & Strominger,J.L. IL-10 released by

concomitant TLR2 stimulation blocks the induction of a subset of Th1 cytokines that are specifically induced by TLR4 or TLR3 in human dendritic cells. J. Immunol. 173, 7548-7555 (2004).

64. Fritz,J.H. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and. Eur. J. Immunol. 35, 2459-2470 (2005).

65. Li,S., Strelow,A., Fontana,E.J. & Wesche,H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc.

Natl. Acad. Sci. U. S. A 99, 5567-5572 (2002).

66. Akira,S., Uematsu,S. & Takeuchi,O. Pathogen recognition and innate immunity. Cell

124, 783-801 (2006).

67. O'Neill,L.A. How Toll-like receptors signal: what we know and what we don't know. Curr.

Opin. Immunol. 18, 3-9 (2006).

68. Uematsu,S. & Akira,S. Toll-like receptors and innate immunity. J. Mol. Med. 84, 712-725 (2006).

69. Adachi,O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity. 9, 143-150 (1998). 70. Kawai,T., Adachi,O., Ogawa,T., Takeda,K. &

Akira,S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 11, 115-122 (1999).

71. Hoebe,K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743-748 (2003).

72. Horng,T., Barton,G.M. & Medzhitov,R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2, 835-841 (2001). 73. Yamamoto,M., Takeda,K. & Akira,S. TIR

domain-containing adaptors define the specificity of TLR signaling. Mol. Immunol. 40, 861-868 (2004).

74. Hoebe,K., Du,X., Goode,J., Mann,N. & Beutler,B. Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening.

J. Endotoxin. Res. 9, 250-255 (2003).

75. Yamamoto,M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-643 (2003). 76. Hoebe,K. et al. Upregulation of costimulatory

molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223-1229 (2003).

77. Chau,T.L. et al. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly

activated? Trends Biochem. Sci. 33, 171-180 (2008).

78. Edwards,M.R., Slater,L. & Johnston,S.L. Signalling pathways mediating type I interferon gene expression. Microbes. Infect. 9, 1245-1251 (2007).

79. Jiang,Z., Mak,T.W., Sen,G. & Li,X. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc. Natl.

Acad. Sci. U. S. A 101, 3533-3538 (2004).

80. Meylan,E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507 (2004). 81. Yamamoto,M. et al. TRAM is specifically

involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat.

Immunol. 4, 1144-1150 (2003).

82. Kobayashi,K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell

110, 191-202 (2002).

83. Burns,K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263-268 (2003).

84. Ryo,A. et al. Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA.

Mol. Cell 12, 1413-1426 (2003).

85. Mansell,A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat.

Immunol. 7, 148-155 (2006).

86. Stack,J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp.

Med. 201, 1007-1018 (2005).

87. Li,K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc.

Natl. Acad. Sci. U. S. A 102, 2992-2997 (2005).

88. Otsuka,M. et al. Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses.

Hepatology 41, 1004-1012 (2005).

89. Garcia,M.A., Meurs,E.F. & Esteban,M. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89, 799-811 (2007).

90. Balachandran,S. et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity. 13, 129-141 (2000).

91. Kato,H. et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity. 23, 19-28 (2005).

92. Kato,H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101-105 (2006).

93. Kawai,T. & Akira,S. Toll-like receptor and RIG-I-like receptor signaling. Ann. N. Y. Acad.

Sci. 1143, 1-20 (2008).

94. Rothenfusser,S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J.

Immunol. 175, 5260-5268 (2005).

95. Yoneyama,M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.

J. Immunol. 175, 2851-2858 (2005).

96. Gitlin,L. et al. Essential role of mda-5 in type

I IFN responses to

polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl.

Acad. Sci. U. S. A 103, 8459-8464 (2006).

97. Hornung,V. et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 (2006). 98. Xu,L.G. et al. VISA is an adapter protein

required for virus-triggered IFN-beta signaling.

Mol. Cell 19, 727-740 (2005).

99. Seth,R.B., Sun,L., Ea,C.K. & Chen,Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669-682 (2005).

100. Sun,Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity. 24, 633-642 (2006). 101. Michallet,M.C. et al. TRADD protein is

an essential component of the RIG-like helicase antiviral pathway. Immunity. 28, 651-661 (2008). 102. Fitzgerald,K.A. et al. IKKepsilon and

TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491-496 (2003).

103. Unterholzner,L. & Bowie,A.G. The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem. Pharmacol. 75, 589-602 (2008).

104. Balachandran,S., Thomas,E. & Barber,G.N. A FADD-dependent innate immune mechanism in mammalian cells. Nature 432, 401-405 (2004).

105. Takaoka,A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501-505 (2007). 106. Schwartz,T., Behlke,J., Lowenhaupt,K.,

Heinemann,U. & Rich,A. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Biol. 8, 761-765 (2001).

107. Yanai,H., Savitsky,D., Tamura,T. & Taniguchi,T. Regulation of the cytosolic DNA-sensing system in innate immunity: a current view. Curr. Opin. Immunol. 21, 17-22 (2009). 108. Kaiser,W.J., Upton,J.W. & Mocarski,E.S.

Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa

B activation via the DNA-dependent activator of IFN regulatory factors. J. Immunol. 181, 6427-6434 (2008).

109. Cheng,G., Zhong,J., Chung,J. & Chisari,F.V. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl.

Acad. Sci. U. S. A 104, 9035-9040 (2007).

110. Ishikawa,H. & Barber,G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674-678 (2008).

111. Zhong,B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 29, 538-550 (2008).

112. Philpott,D.J. & Girardin,S.E. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41, 1099-1108 (2004). 113. Inohara,N. & Nunez,G. NODs:

intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3, 371-382 (2003).

114. Girardin,S.E. et al. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2, 736-742 (2001).

115. Kobayashi,K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731-734 (2005). 116. Tschopp,J., Martinon,F. & Burns,K.

NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95-104 (2003).

117. Martinon,F. & Tschopp,J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561-574 (2004).

118. Mariathasan,S. & Monack,D.M. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat.

Rev. Immunol. 7, 31-40 (2007).

119. Lohoff,M. & Mak,T.W. Roles of interferon-regulatory factors in T-helper-cell differentiation. Nat. Rev. Immunol. 5, 125-135 (2005).

120. Tamura,T., Yanai,H., Savitsky,D. & Taniguchi,T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev.

Immunol. 26, 535-584 (2008).

121. Barber,S.A., Fultz,M.J., Salkowski,C.A. & Vogel,S.N. Differential expression of interferon regulatory factor 1 (IRF-1), IRF-2, and interferon consensus sequence binding protein genes in lipopolysaccharide (LPS)-responsive and LPS-hyporesponsive macrophages. Infect. Immun. 63, 601-608 (1995).

122. Coccia,E.M., Stellacci,E., Perrotti,E., Marziali,G. & Battistini,A. Differential regulation of ferritin expression in Friend

leukemia cells by iron compounds. J. Biol. Regul.

Homeost. Agents 8, 81-87 (1994).

123. Qin,B.Y. et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat. Struct. Biol. 10, 913-921 (2003).

124. Takahasi,K. et al. X-ray crystal structure of IRF-3 and its functional implications. Nat.

Struct. Biol. 10, 922-927 (2003).

125. Sharma,S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148-1151 (2003). 126. Hemmi,H. et al. The roles of two IkappaB

kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641-1650 (2004). 127. Suhara,W., Yoneyama,M., Kitabayashi,I.

& Fujita,T. Direct involvement of CREB-binding protein/p300 in sequence-specific DNA binding of virus-activated interferon regulatory factor-3 holocomplex. J. Biol. Chem. 277, 22304-22313 (2002).

128. Bibeau-Poirier,A. et al. Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation. J.

Immunol. 177, 5059-5067 (2006).

129. Saitoh,T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1.

Nat. Immunol. 7, 598-605 (2006).

130. Lin,R., Heylbroeck,C., Pitha,P.M. & Hiscott,J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell

Biol. 18, 2986-2996 (1998).

131. Hacker,H. & Karin,M. Regulation and function of IKK and IKK-related kinases. Sci.

STKE. 2006, re13 (2006).

132. Honda,K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772-777 (2005).

133. Honda,K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling.

Proc. Natl. Acad. Sci. U. S. A 101, 15416-15421

(2004).

134. Kawai,T. et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6.

Nat. Immunol. 5, 1061-1068 (2004).