• Aucun résultat trouvé

Author's personal copy

6. CONCLUSIONS ET PERSPECTIVES

6. CONCLUSIONS ET PERSPECTIVES

Au cours de ce travail, nous avons confirmé que l’efficacité de la chirurgie bariatrique en terme pondéral et métabolique est multifactorielle. Nous avons identifié le rôle majeur de la perte de poids après chirurgie bariatrique dans l’amélioration du métabolisme glucidique et des paramètres métaboliques. Nous avons également déterminé l’impact positif de la masse musculaire initiale sur la perte de poids après chirurgie, facteur également déterminant dans le contrôle du métabolisme glucidique. Les marqueurs du dysfonctionnement cellulaire Beta sont également apparus déterminants pour prédire le succès métabolique et notamment la rémission du diabète de type 2 après chirurgie. Ainsi, l’efficacité de la chirurgie dans le contrôle du syndrome métabolique, au-delà de la technique opératoire, apparaît très dépendante de la perte de poids mais aussi du terrain, confirmant l’importance du phénotypage de l’obésité en préopératoire. Caractériser l’obésité et son retentissement métabolique semble déterminant pour adapter au mieux la technique opératoire au cas par cas afin d’optimiser les résultats.

Le tissu adipeux est apparu comme un élément clé du phénotype d’obésité, avec un rôle direct dans la régulation du métabolisme lipidique et glucidique au niveau hépatique et musculaire. La constitution de la tissuthèque DioMede et l’obtention de milieux conditionnés de tissu adipeux nous ont permis d’étudier l’impact de ce tissu adipeux sur les tissus insulino-sensibles en se rapprochant des conditions physiologiques. Nous avons pu identifier l’impact direct du tissu adipeux sur le métabolisme musculaire par le biais des AG. Nos résultats confirment le rôle régulateur négatif des AGI sur SREBP-1c et ont permis de préciser leur mode d’action qui se situe au niveau transcriptionnel, conduisant à une baisse des cibles transcriptionnelles de SREBP-1c, et à une moindre lipogenèse dans les cellules musculaires.

La proportion et la sécrétion d’AGI et AGS par le tissu adipeux apparaissent donc comme déterminantes dans la régulation de la lipogenèse des tissus insulino-sensibles (foie et muscle), et pourrait être le reflet des obésités avec désordres métaboliques.

La proportion d’AGS contenue et sécrétée par le tissu adipeux pourrait être un marqueur d’insulino-résistance et de stéatose notamment au niveau du foie. L’augmentation de la proportion d’AGPI par supplémentation orale apparaît d’ailleurs déjà comme un objectif thérapeutique notamment pour le traitement de la stéatose hépatique.

La supplémentation en AGPI pourrait, dans un avenir proche, être recommandée à plus large échelle, aux patients obèses, comme un traitement améliorant l’insulino-résistance et protecteur contre les désordres métaboliques et la survenue du DT2.

115 Afin d’étudier l’impact réel du régime alimentaire sur la composition du tissu adipeux et sur ses sécrétions et par conséquent sur le métabolisme musculaire et hépatique, nous testerons l’effet des sérums des patients prélevés avant régime substitué en AGPI (Omacor®) puis leur effet après régime sur la régulation de SREBP-1. Nous avons ainsi l’objectif de développer une sérothèque incluant à la foi des patients opérés d’obésité mais également des patients pris en charge médicalement dans le cadre d’un syndrome métabolique ou d’un diabète. Ce projet devrait être facilité par l’intégration du pôle recherche et des pôles médicaux et chirurgicaux au sein d’une Fédération Hospitalo-Universitaire (FHU DO-IT) destinée à harmoniser et faciliter la collaboration autour de l’obésité et ses conséquences métaboliques.

Une prochaine étape de nos recherches sera également la caractérisation des AGI impliqués dans la régulation du métabolisme des AG au niveau musculaire par une approche lipidomique approfondie au niveau des tissus adipeux (viscéral et sous-cutané), des MC et du sérum des sujets sources.

116

7

7. BIBLIOGRAPHIE

1. Rodriguez-Hernandez H, Simental-Mendia LE, Rodriguez-Ramirez G, Reyes-Romero

MA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol. 2013;2013:678159.

2. Basdevant A. [Management of obesity in adulthood: point of view of the adult's physician]. Arch Pediatr. 2004;11:625-7.

3. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to

obesity. JAMA. 2003;289:187-93.

4. Haslam DW, James WP. Obesity. Lancet. 2005;366:1197-209.

5. Cancello R, Clement K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113:1141-7.

6. Bastard JP, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4-12.

7. Apovian CM, Bigornia S, Mott M, et al. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol. 2008;28:1654-9.

8. Feve B, Bastard JP, Vidal H. [Relationship between obesity, inflammation and insulin resistance: new concepts]. C R Biol. 2006;329:587-97; discussion 653-5.

9. Hauner H. The new concept of adipose tissue function. Physiol Behav. 2004;83:653-8.

10. Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol

Med. 2008;14:741-51.

11. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683-93.

12. Maggard MA, Shugarman LR, Suttorp M, et al. Meta-analysis: surgical treatment of

obesity. Ann Intern Med. 2005;142:547-59.

13. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724-37.

14. Nguyen NT, Root J, Zainabadi K, et al. Accelerated growth of bariatric surgery with the introduction of minimally invasive surgery. Arch Surg. 2005;140:1198-202; discussion 203.

15. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567-76.

117 16. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366:1577-85.

17. American Diabetes A. Executive summary: standards of medical care in diabetes--2011. Diabetes Care. 2011;34 Suppl 1:S4-10.

18. Rubino F, Gagner M, Gentileschi P, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240:236-42.

19. Hickey MS, Pories WJ, MacDonald KG, Jr., et al. A new paradigm for type 2 diabetes

mellitus: could it be a disease of the foregut? Ann Surg. 1998;227:637-43; discussion 43-4.

20. Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A. Changes in neurohormonal gut

peptides following bariatric surgery. Int J Obes (Lond). 2011;35:153-66.

21. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049-57.

22. Peterli R, Wolnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250:234-41.

23. Kehagias I, Karamanakos SN, Argentou M, Kalfarentzos F. Randomized clinical trial

of laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for the management of patients with BMI < 50 kg/m2. Obes Surg. 2011;21:1650-6.

24. Jimenez A, Casamitjana R, Flores L, et al. Long-term effects of sleeve gastrectomy and Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. Ann Surg. 2012;256:1023-9.

25. Fried M, Ribaric G, Buchwald JN, et al. Metabolic surgery for the treatment of type 2 diabetes in patients with BMI <35 kg/m2: an integrative review of early studies. Obes Surg. 2010;20:776-90.

26. Karelis AD, Brochu M, Rabasa-Lhoret R. Can we identify metabolically healthy but

obese individuals (MHO)? Diabetes Metab. 2004;30:569-72.

27. Rasouli N, Molavi B, Elbein SC, Kern PA. Ectopic fat accumulation and metabolic

syndrome. Diabetes Obes Metab. 2007;9:1-10.

28. Nilsson S. [Research contributions of Eskil Kylin]. Sven Med Tidskr. 2001;5:15-28. 29. Vague J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr. 1956;4:20-34.

118 30. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease.

Diabetes. 1988;37:1595-607.

31. Miller GJ, Miller NE. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975;1:16-9.

32. Lucas CP, Estigarribia JA, Darga LL, Reaven GM. Insulin and blood pressure in obesity. Hypertension. 1985;7:702-6.

33. Zavaroni I, Bonora E, Pagliara M, et al. Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucose tolerance. N Engl J Med. 1989;320:702-6.

34. Salazar MR, Carbajal HA, Espeche WG, et al. Relationships among insulin resistance, obesity, diagnosis of the metabolic syndrome and cardio-metabolic risk. Diab Vasc Dis Res. 2011;8:109-16.

35. Parikh RM, Mohan V. Changing definitions of metabolic syndrome. Indian J

Endocrinol Metab. 2012;16:7-12.

36. Oda E, Abe M, Veeraveedu PT, Watanabe K. Considerable disagreement among

definitions of metabolic syndrome for Japanese. Circ J. 2007;71:1239-43.

37. Balkau B, Charles MA. Comment on the provisional report from the WHO

consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 1999;16:442-3.

38. Einhorn D, Reaven GM, Cobin RH, et al. American College of Endocrinology

position statement on the insulin resistance syndrome. Endocr Pract. 2003;9:237-52.

39. Deepa M, Farooq S, Datta M, Deepa R, Mohan V. Prevalence of metabolic syndrome

using WHO, ATPIII and IDF definitions in Asian Indians: the Chennai Urban Rural Epidemiology Study (CURES-34). Diabetes Metab Res Rev. 2007;23:127-34. 40. Oizumi T, Daimon M, Wada K, et al. A proposal for the cutoff point of waist circumference for the diagnosis of metabolic syndrome in the Japanese population. Circ J. 2006;70:1663.

41. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a

joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-5.

119 42. Guize L, Thomas F, Pannier B, et al. [Metabolic syndrome: prevalence, risk factors and mortality in a French population of 62 000 subjects]. Bull Acad Natl Med. 2006;190:685-97; discussion 97-700.

43. Brochu M, Tchernof A, Dionne IJ, et al. What are the physical characteristics

associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 2001;86:1020-5.

44. Karelis AD, St-Pierre DH, Conus F, Rabasa-Lhoret R, Poehlman ET. Metabolic and

body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab. 2004;89:2569-75.

45. Kim CS, Nam JY, Park JS, et al. The correlation between insulin resistance and the visceral fat to skeletal muscle ratio in middle-aged women. Yonsei Med J. 2004;45:469-78. 46. Appachi S, Kashyap SR. 'Adiposopathy' and cardiovascular disease: the benefits of bariatric surgery. Curr Opin Cardiol. 2013;28:540-6.

47. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous

adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39-48.

48. Carr DB, Utzschneider KM, Hull RL, et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes. 2004;53:2087-94.

49. Brochu M, Mathieu ME, Karelis AD, et al. Contribution of the lean body mass to insulin resistance in postmenopausal women with visceral obesity: a Monet study. Obesity (Silver Spring). 2008;16:1085-93.

50. Matsuzawa Y. Pathophysiology and molecular mechanisms of visceral fat syndrome:

the Japanese experience. Diabetes Metab Rev. 1997;13:3-13.

51. Funahashi T, Matsuzawa Y. Metabolic syndrome: clinical concept and molecular

basis. Ann Med. 2007;39:482-94.

52. Brochu M, Poehlman ET, Ades PA. Obesity, body fat distribution, and coronary artery disease. J Cardiopulm Rehabil. 2000;20:96-108.

53. Appachi S, Kelly KR, Schauer PR, et al. Reduced cardiovascular risk following bariatric surgeries is related to a partial recovery from "adiposopathy". Obes Surg. 2011;21:1928-36.

54. Pouliot MC, Despres JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes. 1992;41:826-34.

120

55. Dagenais GR, Yi Q, Mann JF, et al. Prognostic impact of body weight and abdominal

obesity in women and men with cardiovascular disease. Am Heart J. 2005;149:54-60.

56. Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue. Adipose

cell size and number in nonobese and obese patients. J Clin Invest. 1973;52:929-41.

57. Sims EA, Berchtold P. Obesity and hypertension. Mechanisms and implications for

management. JAMA. 1982;247:49-52.

58. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage

accumulation in adipose tissue. J Clin Invest. 2003;112:1796-808.

59. Cancello R, Tordjman J, Poitou C, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55:1554-61.

60. Harman-Boehm I, Bluher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92:2240-7.

61. Arner P. Regional differences in protein production by human adipose tissue. Biochem Soc Trans. 2001;29:72-5.

62. Rajala MW, Scherer PE. Minireview: The adipocyte--at the crossroads of energy

homeostasis, inflammation, and atherosclerosis. Endocrinology. 2003;144:3765-73.

63. Taube A, Lambernd S, van Echten-Deckert G, Eckardt K, Eckel J. Adipokines

promote lipotoxicity in human skeletal muscle cells. Arch Physiol Biochem. 2012;118:92-101.

64. Sell H, Eckardt K, Taube A, et al. Skeletal muscle insulin resistance induced by adipocyte-conditioned medium: underlying mechanisms and reversibility. Am J Physiol Endocrinol Metab. 2008;294:E1070-7.

65. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582:97-105.

66. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245:621-5.

67. Junkin KA, Dyck DJ, Mullen KL, Chabowski A, Thrush AB. Resistin acutely impairs

insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate. Am J Physiol Regul Integr Comp Physiol. 2009;296:R944-51.

68. Nieto-Vazquez I, Fernandez-Veledo S, de Alvaro C, Lorenzo M. Dual role of

interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. Diabetes. 2008;57:3211-21.

121 69. Stefanyk LE, Dyck DJ. The interaction between adipokines, diet and exercise on muscle insulin sensitivity. Curr Opin Clin Nutr Metab Care. 2010;13:255-9.

70. Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an Inflammatory Disorder:

Pathogenic, Prognostic and Therapeutic Implications. Gut Liver. 2012;6:149-71.

71. Nov O, Kohl A, Lewis EC, et al. Interleukin-1beta may mediate insulin resistance in liver-derived cells in response to adipocyte inflammation. Endocrinology. 2010;151:4247-56. 72. Monsour HP, Jr., Frenette CT, Wyne K. Fatty liver: a link to cardiovascular disease--its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8:21-5.

73. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988;37:667-87.

74. Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care. 1990;13:610-30.

75. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced

overview. Diabetes Care. 1992;15:318-68.

76. Stefan Y, Orci L, Malaisse-Lagae F, et al. Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes. 1982;31:694-700.

77. Westermark P, Wilander E. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia. 1978;15:417-21.

78. DeFronzo RA. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia. 1992;35:389-97.

79. Jensen J, Rustad PI, Kolnes AJ, Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011;2:112.

80. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its

role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785-9.

81. Finelli C, Tarantino G. Have guidelines addressing physical activity been established in nonalcoholic fatty liver disease? World J Gastroenterol. 2012;18:6790-800.

82. Vincent HK, Taylor AG. Biomarkers and potential mechanisms of obesity-induced

oxidant stress in humans. Int J Obes (Lond). 2006;30:400-18.

83. Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457-61.

84. Saber AA, Elgamal MH, McLeod MK. Bariatric surgery: the past, present, and future. Obes Surg. 2008;18:121-8.

122

85. Payne JH, Dewind LT, Commons RR. Metabolic Observations in Patients with

Jejunocolic Shunts. Am J Surg. 1963;106:273-89.

86. Barron J, Frame B, Bozalis JR. A shunt operation for obesity. Dis Colon Rectum. 1969;12:115-9.

87. Shibata HR, MacKenzie JR, Long RC. Metabolic effects of controlled jejunocolic bypass. Arch Surg. 1967;95:413-28.

88. Payne JH, DeWind LT. Surgical treatment of obesity. Am J Surg. 1969;118:141-7.

89. Scott HW, Jr., Sandstead HH, Brill AB, Burko H, Younger RK. Experience with a

new technic of intestinal bypass in the treatment of morbid obesity. Ann Surg. 1971;174:560-72.

90. Mason EE, Ito C. Gastric bypass. Ann Surg. 1969;170:329-39.

91. Griffen WO, Jr., Young VL, Stevenson CC. A prospective comparison of gastric and

jejunoileal bypass procedures for morbid obesity. Ann Surg. 1977;186:500-9.

92. Scopinaro N, Gianetta E, Civalleri D, Bonalumi U, Bachi V. Bilio-pancreatic bypass for obesity: II. Initial experience in man. Br J Surg. 1979;66:618-20.

93. Mason EE. Vertical banded gastroplasty for obesity. Arch Surg. 1982;117:701-6.

94. Kuzmak LI. A Review of Seven Years' Experience with Silicone Gastric Banding.

Obes Surg. 1991;1:403-8.

95. Belachew M, Jacqet P, Lardinois F, Karler C. Vertical Banded Gastroplasty vs Adjustable Silicone Gastric Banding in the Treatment of Morbid Obesity: a Preliminary Report. Obes Surg. 1993;3:275-8.

96. Wittgrove AC, Clark GW, Tremblay LJ. Laparoscopic Gastric Bypass, Roux-en-Y:

Preliminary Report of Five Cases. Obes Surg. 1994;4:353-7.

97. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122:248-56 e5.

98. Santry HP, Gillen DL, Lauderdale DS. Trends in bariatric surgical procedures. JAMA. 2005;294:1909-17.

99. Marceau P, Hould FS, Simard S, et al. Biliopancreatic diversion with duodenal switch. World J Surg. 1998;22:947-54.

100. Marceau P, Biron S, Bourque RA, et al. Biliopancreatic Diversion with a New Type of Gastrectomy. Obes Surg. 1993;3:29-35.

101. Himpens J, Dapri G, Cadiere GB. A prospective randomized study between

laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: results after 1 and 3 years. Obes Surg. 2006;16:1450-6.

123

102. DeMaria EJ, Pate V, Warthen M, Winegar DA. Baseline data from American Society

for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg Obes Relat Dis. 2010;6:347-55.

103. Rutledge R. The mini-gastric bypass: experience with the first 1,274 cases. Obes Surg. 2001;11:276-80.

104. Lee WJ, Yu PJ, Wang W, et al. Laparoscopic Roux-en-Y versus mini-gastric bypass

for the treatment of morbid obesity: a prospective randomized controlled clinical trial. Ann Surg. 2005;242:20-8.

105. De Paula AL, Stival AR, Halpern A, et al. Improvement in insulin sensitivity and beta-cell function following ileal interposition with sleeve gastrectomy in type 2 diabetic patients: potential mechanisms. J Gastrointest Surg. 2011;15:1344-53.

106. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56-65.

107. Gouillat C, Denis A, Badol-Van Straaten P, et al. Prospective, multicenter, 3-year trial of laparoscopic adjustable gastric banding with the MIDBAND. Obes Surg. 2012;22:572-81. 108. Tice JA, Karliner L, Walsh J, Petersen AJ, Feldman MD. Gastric banding or bypass? A systematic review comparing the two most popular bariatric procedures. Am J Med. 2008;121:885-93.

109. Himpens J, Cadiere GB, Bazi M, et al. Long-term outcomes of laparoscopic adjustable gastric banding. Arch Surg. 2011;146:802-7.

110. Suter M, Calmes JM, Paroz A, Giusti V. A 10-year experience with laparoscopic gastric banding for morbid obesity: high long-term complication and failure rates. Obes Surg. 2006;16:829-35.

111. Weiss HG, Kirchmayr W, Klaus A, et al. Surgical revision after failure of laparoscopic adjustable gastric banding. Br J Surg. 2004;91:235-41.

112. Carlin AM, Zeni TM, English WJ, et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg. 2013;257:791-7.

113. Eid GM, Brethauer S, Mattar SG, et al. Laparoscopic sleeve gastrectomy for super obese patients: forty-eight percent excess weight loss after 6 to 8 years with 93% follow-up. Ann Surg. 2012;256:262-5.

114. Lim DM, Taller J, Bertucci W, et al. Comparison of laparoscopic sleeve gastrectomy to laparoscopic Roux-en-Y gastric bypass for morbid obesity in a military institution. Surg Obes Relat Dis. 2012.

124

115. Li P, Fu P, Chen J, Wang LH, Wang DR. Laparoscopic Roux-en-Y gastric bypass vs.

laparoscopic sleeve gastrectomy for morbid obesity and diabetes mellitus: a meta-analysis of sixteen recent studies. Hepatogastroenterology. 2013;60:132-7.

116. Vidal P, Ramon JM, Goday A, et al. Laparoscopic gastric bypass versus laparoscopic sleeve gastrectomy as a definitive surgical procedure for morbid obesity. Mid-term results. Obes Surg. 2013;23:292-9.

117. Yaghoubian A, Tolan A, Stabile BE, et al. Laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy achieve comparable weight loss at 1 year. Am Surg. 2012;78:1325-8. 118. Obeid A, Long J, Kakade M, et al. Laparoscopic Roux-en-Y gastric bypass: long term clinical outcomes. Surg Endosc. 2012;26:3515-20.

119. Lee WJ, Ser KH, Lee YC, et al. Laparoscopic Roux-en-Y vs. mini-gastric bypass for the treatment of morbid obesity: a 10-year experience. Obes Surg. 2012;22:1827-34.

120. Noun R, Skaff J, Riachi E, et al. One thousand consecutive mini-gastric bypass: short- and long-term outcome. Obes Surg. 2012;22:697-703.

121. Disse E, Pasquer A, Espalieu P, et al. Greater Weight Loss with the Omega Loop Bypass Compared to the Roux-en-Y Gastric Bypass: a Comparative Study. Obes Surg. 2014. 122. Rizzello M, De Angelis F, Campanile FC, Silecchia G. Effect of gastrointestinal surgical manipulation on metabolic syndrome: a focus on metabolic surgery. Gastroenterol Res Pract. 2012;2012:670418.

123. Dixon JB, Zimmet P, Alberti KG, et al. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet Med. 2011;28:628-42.

124. Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175-82.

125. Hinojosa MW, Varela JE, Smith BR, Che F, Nguyen NT. Resolution of systemic