• Aucun résultat trouvé

CHAPITRE V: Reporter Gene Analysis of Human ALOX5 Promoter Polymorphisms

6.5 En conclusion

Cette thèse a mis en évidence l’importance d’élucider les mécanismes qui régulent non seulement l’expression de la 5-LO et la biosynthèse des LT, mais aussi l’activité

des métabolites produites suite à la dégradation du LTB4. D’abord, les résultats

présentés dans cette thèse démontrent que les métabolites du LTB4 réduisent les

les molécules importantes pour la résolution de l’inflammation. Il faudrait aussi voir

si les métabolites du LTB4 participent également à ce processus important du

système immunitaire. L’effet du 20-OH- et du 20-COOH-LTB4 peut expliquer la

susceptibilité aux infections des patients atteints de fibrose kystique et conséquemment l’inhibition de leur synthèse pourrait s’avérer une cible thérapeutique potentielle. Ensuite, nous avons démontré pour la première fois que le promoteur ALOX5 peut être activé par un agoniste physiologique comme le LPS. Ce résultat nous permet de mieux comprendre comment la maturation des monocytes peut induire la 5-LO et la biosynthèse des LT à la suite d’une infection bactérienne. Finalement, dans le cas des maladies cardiovasculaires, nos résultats n’expliquent pas l’association nutrigénétique précédemment observée. D’ailleurs une meilleure compréhension des mécanismes impliqués pourrait aider le dépistage des personnes prédisposées à l’athérosclérose, et en conséquence, fournir les outils nécessaires pour la prévention de la maladie incluant des interventions nutritionnelles ciblées.

BIBLIOGRAPHIE

[1] E. Tvrzicka, L.-S. Kremmyda, B. Stankova, A. Zak, Fatty acids as

biocompounds: their role in human metabolism, health and disease - a review. Part 1: classification, dietary sources and biological functions, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 155 (2011) 117–130.

[2] P. Singer, I. Berger, M. Wirth, W. Gödicke, W. Jaeger, S. Voigt, Slow

desaturation and elongation of linoleic and alpha-linolenic acids as a rationale of eicosapentaenoic acid-rich diet to lower blood pressure and serum lipids in normal, hypertensive and hyperlipemic subjects, Prostaglandins Leukot Med. 24 (1986) 173–193.

[3] D.S. Kelley, G.J. Nelson, J.E. Love, L.B. Branch, P.C. Taylor, P.C. Schmidt,

et al., Dietary alpha-linolenic acid alters tissue fatty acid composition, but not blood lipids, lipoproteins or coagulation status in humans, Lipids. 28 (1993) 533–537.

[4] M.J. James, V.M. Ursin, L.G. Cleland, Metabolism of stearidonic acid in

human subjects: comparison with the metabolism of other n-3 fatty acids, Am J Clin Nutr. 77 (2003) 1140–1145. doi:10.1093/ajcn/77.5.1140.

[5] M.E. Surette, Dietary omega-3 PUFA and health: Stearidonic acid-containing

seed oils as effective and sustainable alternatives to traditional marine oils, Mol Nutr Food Res. (2013) n/a–n/a. doi:10.1002/mnfr.201200706.

[6] A.P. Simopoulos, Evolutionary aspects of diet, the omega-6/omega-3 ratio

and genetic variation: nutritional implications for chronic diseases, Biomed Pharmacother. 60 (2006) 502–507. doi:10.1016/j.biopha.2006.07.080.

[7] A.P. Simopoulos, Omega-3 fatty acids in health and disease and in growth

and development, Am J Clin Nutr. 54 (1991) 438–463.

doi:10.1093/ajcn/54.3.438.

[8] A. Yamashita, Y. Hayashi, Y. Nemoto-Sasaki, M. Ito, S. Oka, T. Tanikawa, et

al., Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms, Prog Lipid Res. 53 (2014) 18–81. doi:10.1016/j.plipres.2013.10.001.

[9] P.P. Robichaud, M.E. Surette, Polyunsaturated fatty acid–phospholipid

remodeling and inflammation, Current Opinion in Endocrinology & Diabetes and Obesity. 22 (2015) 112–118. doi:10.1097/MED.0000000000000138. [10] M. Murakami, Y. Taketomi, Y. Miki, H. Sato, T. Hirabayashi, K. Yamamoto,

Recent progress in phospholipase A₂ research: from cells to animals to

humans, Prog Lipid Res. 50 (2011) 152–192.

doi:10.1016/j.plipres.2010.12.001.

[11] J.V. Bonventre, Z. Huang, M.R. Taheri, E. O'Leary, E. Li, M.A. Moskowitz, et al., Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2, Nature. 390 (1997) 622–625. doi:10.1038/37635. [12] N. Uozumi, K. Kume, T. Nagase, N. Nakatani, S. Ishii, F. Tashiro, et al., Role of cytosolic phospholipase A2 in allergic response and parturition, Nature. 390 (1997) 618–622. doi:10.1038/37622.

[14] J.D. Clark, L.L. Lin, R.W. Kriz, C.S. Ramesha, L.A. Sultzman, A.Y. Lin, et al., A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)- dependent translocation domain with homology to PKC and GAP, Cell. 65 (1991) 1043–1051.

[15] G.Y. Xu, T. McDonagh, H.A. Yu, E.A. Nalefski, J.D. Clark, D.A. Cumming, Solution structure and membrane interactions of the C2 domain of cytosolic

phospholipase A2, J. Mol. Biol. 280 (1998) 485–500.

doi:10.1006/jmbi.1998.1874.

[16] A.R. Schievella, M.K. Regier, W.L. Smith, L.L. Lin, Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum, J Biol Chem. 270 (1995) 30749–30754.

[17] M.A. Gijón, D.M. Spencer, A.L. Kaiser, C.C. Leslie, Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2, J Cell Biol. 145 (1999) 1219–1232. doi:10.1083/jcb.145.6.1219.

[18] D. Wang, R.N. DuBois, Eicosanoids and cancer, Nat. Rev. Cancer. 10 (2010) 181–193. doi:10.1038/nrc2809.

[19] C.D. Funk, Prostaglandins and leukotrienes: advances in eicosanoid biology, Science. 294 (2001) 1871–1875. doi:10.1126/science.294.5548.1871.

[20] E.A. Dennis, P.C. Norris, Eicosanoid storm in infection and inflammation, Nat Rev Immunol. 15 (2015) 511–523. doi:10.1038/nri3859.

[21] M.P. Wymann, R. Schneiter, Lipid signalling in disease, Nat Rev Mol Cell Biol. 9 (2008) 162–176. doi:10.1038/nrm2335.

[22] P. Borgeat, M. Hamberg, B. Samuelsson, Transformation of arachidonic acid and homo-gamma-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases, J Biol Chem. 251 (1976) 7816–7820.

[23] P. Borgeat, B. Samuelsson, Transformation of arachidonic acid by rabbit

polymorphonuclear leukocytes. Formation of a novel

dihydroxyeicosatetraenoic acid, J Biol Chem. 254 (1979) 2643–2646.

[24] P. Borgeat, B. Samuelsson, Arachidonic acid metabolism in polymorphonuclear leukocytes: effects of ionophore A23187, Proc Natl Acad Sci USA. 76 (1979) 2148–2152.

[25] J.Z. Haeggström, C.D. Funk, Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease, Chem Rev. 111 (2011) 5866– 5898. doi:10.1021/cr200246d.

[26] J.A. Maclouf, R.C. Murphy, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4, J Biol Chem. 263 (1988) 174–181.

[27] M. Sjöström, P.J. Jakobsson, M. Heimburger, J. Palmblad, J.Z. Haeggstrom, Human umbilical vein endothelial cells generate leukotriene C4 via microsomal glutathione S-transferase type 2 and express the CysLT(1) receptor, Eur J Biochem. 268 (2001) 2578–2586.

[28] K.A. Scoggan, P.J. Jakobsson, A.W. Ford-Hutchinson, Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes, J Biol Chem. 272 (1997) 10182–10187.

[29] J.E. McGee, F.A. Fitzpatrick, Erythrocyte-neutrophil interactions: formation of leukotriene B4 by transcellular biosynthesis, Proc Natl Acad Sci USA. 83 (1986) 1349–1353.

[30] G. Folco, R.C. Murphy, Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses, Pharmacol Rev. 58 (2006) 375–388. doi:10.1124/pr.58.3.8.

[31] O. Rådmark, O. Werz, D. Steinhilber, B. Samuelsson, 5-Lipoxygenase: regulation of expression and enzyme activity, Trends Biochem Sci. 32 (2007) 332–341. doi:10.1016/j.tibs.2007.06.002.

[32] R.C. Murphy, M.A. Gijón, Biosynthesis and metabolism of leukotrienes, Biochem J. 405 (2007) 379–395. doi:10.1042/BJ20070289.

[33] T. Hirabayashi, T. Murayama, T. Shimizu, Regulatory mechanism and physiological role of cytosolic phospholipase A2, 27 (2004) 1168–1173. [34] G. Hansson, J.A. Lindgren, S.E. Dahlén, P. Hedqvist, B. Samuelsson,

Identification and biological activity of novel omega-oxidized metabolites of leukotriene B4 from human leukocytes, FEBS Lett. 130 (1981) 107–112. [35] R.J. Soberman, T.W. Harper, R.C. Murphy, K.F. Austen, Identification and

functional characterization of leukotriene B4 20-hydroxylase of human polymorphonuclear leukocytes, Proc Natl Acad Sci USA. 82 (1985) 2292– 2295.

[36] Y. Kikuta, E. Kusunose, K. Endo, S. Yamamoto, K. Sogawa, Y. Fujii- Kuriyama, et al., A novel form of cytochrome P-450 family 4 in human polymorphonuclear leukocytes. cDNA cloning and expression of leukotriene B4 omega-hydroxylase, J Biol Chem. 268 (1993) 9376–9380.

[37] A. Kalsotra, H.W. Strobel, Cytochrome P450 4F subfamily: at the crossroads of eicosanoid and drug metabolism, Pharmacol Ther. 112 (2006) 589–611. doi:10.1016/j.pharmthera.2006.03.008.

[38] P. Christmas, J.P. Jones, C.J. Patten, D.A. Rock, Y. Zheng, S.M. Cheng, et al., Alternative splicing determines the function of CYP4F3 by switching substrate specificity, J Biol Chem. 276 (2001) 38166–38172. doi:10.1074/jbc.M104818200.

[39] M.E. Anderson, R.D. Allison, A. Meister, Interconversion of leukotrienes catalyzed by purified gamma-glutamyl transpeptidase: concomitant formation of leukotriene D4 and gamma-glutamyl amino acids, Proc Natl Acad Sci USA. 79 (1982) 1088–1091.

[40] E. Mayatepek, J.G. Okun, T. Meissner, B. Assmann, J. Hammond, J. Zschocke, et al., Synthesis and metabolism of leukotrienes in gamma- glutamyl transpeptidase deficiency, J Lipid Res. 45 (2004) 900–904. doi:10.1194/jlr.M300462-JLR200.

[41] M. Raulf, M. Stüning, W. König, Metabolism of leukotrienes by L-gamma- glutamyl-transpeptidase and dipeptidase from human polymorphonuclear granulocytes, Immunology. 55 (1985) 135–147.

[42] I. Nagaoka, T. Yamashita, Studies on the leukotriene D4-metabolizing enzyme of rat leukocytes, which catalyzes the conversion of leukotriene D4 to leukotriene E4, Biochim Biophys Acta. 922 (1987) 8–17.

[43] B.K. Lam, W.F. Owen, K.F. Austen, R.J. Soberman, The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils, J Biol Chem. 264 (1989) 12885–12889.

[44] B.K. Lam, L. Gagnon, K.F. Austen, R.J. Soberman, The mechanism of leukotriene B4 export from human polymorphonuclear leukocytes, J Biol Chem. 265 (1990) 13438–13441.

[45] A.M. Tager, A.D. Luster, BLT1 and BLT2: the leukotriene B(4) receptors, Prostaglandins Leukot Essent Fatty Acids. 69 (2003) 123–134.

[46] Y. Kanaoka, J.A. Boyce, Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses, J Immunol. 173 (2004) 1503–1510. doi:10.4049/jimmunol.173.3.1503.

[47] T. Yokomizo, T. Izumi, K. Chang, Y. Takuwa, T. Shimizu, A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis, Nature. 387 (1997) 620–624. doi:10.1038/42506.

[48] T. Yokomizo, K. Kato, K. Terawaki, T. Izumi, T. Shimizu, A Second Leukotriene B 4Receptor, Blt2, J Exp Med. 192 (2000) 421–432. doi:10.1084/jem.192.3.421.

[49] M. Nakamura, T. Shimizu, Leukotriene receptors, Chem Rev. 111 (2011) 6231–6298. doi:10.1021/cr100392s.

[50] S. Wang, E. Gustafson, L. Pang, X. Qiao, J. Behan, M. Maguire, et al., A novel hepatointestinal leukotriene B4 receptor. Cloning and functional

characterization, J Biol Chem. 275 (2000) 40686–40694.

doi:10.1074/jbc.M004512200.

[51] M. Arita, T. Ohira, Y.-P. Sun, S. Elangovan, N. Chiang, C.N. Serhan, Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation, J Immunol. 178 (2007) 3912–3917.

[52] T. Yokomizo, M. Nakamura, T. Shimizu, Leukotriene receptors as potential

therapeutic targets, J Clin Invest. 128 (2018) 2691–2701.

doi:10.1172/JCI97946.

[53] M. Peters-Golden, W.R. Henderson, Leukotrienes, N Engl J Med. 357 (2007) 1841–1854. doi:10.1056/NEJMra071371.

[54] B. Haribabu, M.W. Verghese, D.A. Steeber, D.D. Sellars, C.B. Bock, R. Snyderman, Targeted disruption of the leukotriene B(4) receptor in mice reveals its role in inflammation and platelet-activating factor-induced anaphylaxis, J Exp Med. 192 (2000) 433–438. doi:10.1084/jem.192.3.433. [55] A.M. Tager, J.H. Dufour, K. Goodarzi, S.D. Bercury, U.H. von Andrian, A.D.

Luster, BLTR mediates leukotriene B(4)-induced chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis, J Exp Med. 192 (2000) 439–446. doi:10.1084/jem.192.3.439. [56] K. Goodarzi, M. Goodarzi, A.M. Tager, A.D. Luster, U.H. von Andrian,

Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues, Nat. Immunol. 4 (2003) 965–973. doi:10.1038/ni972.

[57] M.A. Bray, F.M. Cunningham, A.W. Ford-Hutchinson, M.J. Smith, Leukotriene B4: a mediator of vascular permeability, Br J Pharmacol. 72 (1981) 483–486. [58] T. Lämmermann, P.V. Afonso, B.R. Angermann, J.M. Wang, W. Kastenmüller, C.A. Parent, et al., Neutrophil swarms require LTB4 and

integrins at sites of cell death in vivo, Nature. 498 (2013) 371–375. doi:10.1038/nature12175.

[59] B. Samuelsson, Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation, Science. 220 (1983) 568–575.

[60] H. Qiu, A.-S. Johansson, M. Sjöström, M. Wan, O. Schröder, J. Palmblad, et al., Differential induction of BLT receptor expression on human endothelial cells by lipopolysaccharide, cytokines, and leukotriene B4, Proc Natl Acad Sci USA. 103 (2006) 6913–6918. doi:10.1073/pnas.0602208103.

[61] T. Yokomizo, K. Kato, H. Hagiya, T. Izumi, T. Shimizu, Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2, J Biol Chem. 276 (2001) 12454–12459. doi:10.1074/jbc.M011361200.

[62] Y. Matsunaga, S. Fukuyama, T. Okuno, F. Sasaki, T. Matsunobu, Y. Asai, et al., Leukotriene B4 receptor BLT2 negatively regulates allergic airway eosinophilia, Faseb J. 27 (2013) 3306–3314. doi:10.1096/fj.12-217000. [63] K.R. Lynch, G.P. O'Neill, Q. Liu, D.S. Im, N. Sawyer, K.M. Metters, et al.,

Characterization of the human cysteinyl leukotriene CysLT1 receptor, Nature. 399 (1999) 789–793. doi:10.1038/21658.

[64] G. Woszczek, R. Pawliczak, H.-Y. Qi, S. Nagineni, S. Alsaaty, C. Logun, et al., Functional characterization of human cysteinyl leukotriene 1 receptor

gene structure, J Immunol. 175 (2005) 5152–5159.

doi:10.4049/jimmunol.175.8.5152.

[65] H.M. Sarau, R.S. Ames, J. Chambers, C. Ellis, N. Elshourbagy, J.J. Foley, et al., Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor, Mol Pharmacol. 56 (1999) 657–663.

[66] J. Takasaki, M. Kamohara, M. Matsumoto, T. Saito, T. Sugimoto, T. Ohishi, et al., The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT(2) receptor, Biochem Biophys Res Commun. 274 (2000) 316–322. doi:10.1006/bbrc.2000.3140.

[67] T.C. Beller, A. Maekawa, D.S. Friend, K.F. Austen, Y. Kanaoka, Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis

in mice, J Biol Chem. 279 (2004) 46129–46134.

doi:10.1074/jbc.M407057200.

[68] Y. Hui, Y. Cheng, I. Smalera, W. Jian, L. Goldhahn, G.A. Fitzgerald, et al., Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure, Circulation. 110 (2004) 3360–3366. doi:10.1161/01.CIR.0000147775.50954.AA.

[69] W. Jiang, S.R. Hall, M.P.W. Moos, R.Y. Cao, S. Ishii, K.O. Ogunyankin, et al., Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury, Am J Pathol. 172 (2008) 592–602. doi:10.2353/ajpath.2008.070834.

[70] S. Paruchuri, H. Tashimo, C. Feng, A. Maekawa, W. Xing, Y. Jiang, et al., Leukotriene E4-induced pulmonary inflammation is mediated by the P2Y12 receptor, J Exp Med. 206 (2009) 2543–2555. doi:10.1084/jem.20091240. [71] M. Fumagalli, S. Daniele, D. Lecca, P.R. Lee, C. Parravicini, R.D. Fields, et

differentiation, J Biol Chem. 286 (2011) 10593–10604. doi:10.1074/jbc.M110.162867.

[72] Y. Kanaoka, A. Maekawa, K.F. Austen, Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene

E4 ligand, J Biol Chem. 288 (2013) 10967–10972.

doi:10.1074/jbc.C113.453704.

[73] S. Paruchuri, Y. Jiang, C. Feng, S.A. Francis, J. Plutzky, J.A. Boyce, Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells, J Biol Chem. 283 (2008) 16477–16487. doi:10.1074/jbc.M705822200.

[74] A. Maekawa, B. Balestrieri, K.F. Austen, Y. Kanaoka, GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4,

Proc Natl Acad Sci USA. 106 (2009) 11685–11690.

doi:10.1073/pnas.0905364106.

[75] E.R. Greene, S. Huang, C.N. Serhan, D. Panigrahy, Regulation of inflammation in cancer by eicosanoids, Prostaglandins Other Lipid Mediat. (2011). doi:10.1016/j.prostaglandins.2011.08.004.

[76] Y. Chen, Y. Hu, H. Zhang, C. Peng, S. Li, Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia, Nat Genet. 41 (2009) 783–792. doi:10.1038/ng.389.

[77] M. Mehrabian, H. Allayee, J. Wong, W. Shi, X.-P. Wang, Z. Shaposhnik, et al., Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice, Circ Res. 91 (2002) 120–126.

[78] J.M. Drazen, E. Israel, P.M. O'Byrne, Treatment of asthma with drugs modifying the leukotriene pathway, N Engl J Med. 340 (1999) 197–206. doi:10.1056/NEJM199901213400306.

[79] J.H. Dwyer, H. Allayee, K.M. Dwyer, J. Fan, H. Wu, R. Mar, et al., Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid,

and atherosclerosis, N Engl J Med. 350 (2004) 29–37.

doi:10.1056/NEJMoa025079.

[80] C. Kroegel, Global Initiative for Asthma (GINA) guidelines: 15 years of

application, Expert Rev Clin Immunol. 5 (2009) 239–249.

doi:10.1586/eci.09.1.

[81] National Asthma Education and Prevention Program, Expert Panel Report 3 (EPR-3): Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007, J Allergy Clin Immunol. 120 (2007) S94–138. doi:10.1016/j.jaci.2007.09.043.

[82] N.A. Lee, E.W. Gelfand, J.J. Lee, Pulmonary T cells and eosinophils: coconspirators or independent triggers of allergic respiratory pathology? J Allergy Clin Immunol. 107 (2001) 945–957. doi:10.1067/mai.2001.116002. [83] W. Feldberg, H.F. Holden, C.H. Kellaway, The formation of lysocithin and of

a muscle-stimulating substance by snake venoms, J. Physiol. (Lond.). 94 (1938) 232–248.

[84] W.E. BROCKLEHURST, The release of histamine and formation of a slow- reacting substance (SRS-A) during anaphylactic shock, J. Physiol. (Lond.). 151 (1960) 416–435.

[85] R.C. Murphy, S. Hammarström, B. Samuelsson, Leukotriene C: a slow- reacting substance from murine mastocytoma cells, Proc Natl Acad Sci USA. 76 (1979) 4275–4279.

[86] P. Hedqvist, S.E. Dahlén, L. Gustafsson, S. Hammarström, B. Samuelsson, Biological profile of leukotrienes C4 and D4, Acta Physiol. Scand. 110 (1980) 331–333. doi:10.1111/j.1748-1716.1980.tb06676.x.

[87] S.E. Dahlén, P. Hedqvist, S. Hammarström, B. Samuelsson, Leukotrienes are potent constrictors of human bronchi, Nature. 288 (1980) 484–486.

[88] K.P. Hui, J. Lötvall, K.F. Chung, P.J. Barnes, Attenuation of inhaled allergen- induced airway microvascular leakage and airflow obstruction in guinea pigs by a 5-lipoxygenase inhibitor (A-63162), Am. Rev. Respir. Dis. 143 (1991) 1015–1019. doi:10.1164/ajrccm/143.5_Pt_1.1015.

[89] L.A. Laitinen, A. Laitinen, T. Haahtela, V. Vilkka, B.W. Spur, T.H. Lee, Leukotriene E4 and granulocytic infiltration into asthmatic airways, Lancet. 341 (1993) 989–990.

[90] N.M. Muñoz, A.R. Leff, Blockade of eosinophil migration by 5-lipoxygenase and cyclooxygenase inhibition in explanted guinea pig trachealis, Am J Physiol. 268 (1995) L446–54. doi:10.1152/ajplung.1995.268.3.L446.

[91] S.J. Coles, K.H. Neill, L.M. Reid, K.F. Austen, Y. Nii, E.J. Corey, et al., Effects of leukotrienes C4 and D4 on glycoprotein and lysozyme secretion by human bronchial mucosa, Prostaglandins. 25 (1983) 155–170.

[92] G.L. Piacentini, M.A. Kaliner, The potential roles of leukotrienes in bronchial

asthma, Am. Rev. Respir. Dis. 143 (1991) S96–9.

doi:10.1164/ajrccm/143.5_Pt_2.S96.

[93] P. Cohen, J.P. Noveral, A. Bhala, S.E. Nunn, D.J. Herrick, M.M. Grunstein, Leukotriene D4 facilitates airway smooth muscle cell proliferation via modulation of the IGF axis, Am J Physiol. 269 (1995) L151–7. doi:10.1152/ajplung.1995.269.2.L151.

[94] E. Porreca, C. Di Febbo, A. Di Sciullo, D. Angelucci, M. Nasuti, P. Vitullo, et al., Cysteinyl leukotriene D4 induced vascular smooth muscle cell proliferation: a possible role in myointimal hyperplasia, Thromb Haemost. 76 (1996) 99–104.

[95] A.J. Wardlaw, H. Hay, O. Cromwell, J.V. Collins, A.B. Kay, Leukotrienes, LTC4 and LTB4, in bronchoalveolar lavage in bronchial asthma and other respiratory diseases, J Allergy Clin Immunol. 84 (1989) 19–26.

[96] C.J. Kim, G.C. Kane, J.G. Zangrilli, S.K. Cho, Y.Y. Koh, S.P. Peters, Eosinophils recruited to the lung by segmental antigen challenge show a reduced chemotactic response to leukotriene B4, Prostaglandins. 47 (1994) 393–403.

[97] E.W. Gelfand, A. Dakhama, CD8+ T lymphocytes and leukotriene B4: novel interactions in the persistence and progression of asthma, J Allergy Clin Immunol. 117 (2006) 577–582. doi:10.1016/j.jaci.2005.12.1340.

[98] D.J. Evans, P.J. Barnes, S.M. Spaethe, E.L. van Alstyne, M.I. Mitchell, B.J. O'Connor, Effect of a leukotriene B4 receptor antagonist, LY293111, on allergen induced responses in asthma, Thorax. 51 (1996) 1178–1184.

[99] W.W. Busse, The role of leukotrienes in asthma and allergic rhinitis, Clin Exp Allergy. 26 (1996) 868–879.

[100] A.R. Leff, Regulation of leukotrienes in the management of asthma: biology

and clinical therapy, Annu. Rev. Med. 52 (2001) 1–14.

doi:10.1146/annurev.med.52.1.1.

[101] Public Health Agency of Canada, Heart Disease in Canada, Httpswww.Canada.Caenpublic-Healthservicespublicationsdiseases-

Conditionsheart-Disease-Canada.Html. (2017).

[102] M. Tibaut, M. Caprnda, P. Kubatka, A. Sinkovič, V. Valentova, S. Filipova, et al., Markers of Atherosclerosis: Part 1 - Serological Markers, Heart Lung Circ. (2018). doi:10.1016/j.hlc.2018.06.1057.

[103] G.K. Hansson, A.-K.L. Robertson, C. Söderberg-Nauclér, Inflammation and

atherosclerosis, Annu Rev Pathol. 1 (2006) 297–329.

doi:10.1146/annurev.pathol.1.110304.100100.

[104] R.J. Aiello, P.-A. Bourassa, S. Lindsey, W. Weng, A. Freeman, H.J. Showell, Leukotriene B4 receptor antagonism reduces monocytic foam cells in mice, Arterioscler Thromb Vasc Biol. 22 (2002) 443–449.

[105] D. Poeckel, C.D. Funk, The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease, Cardiovasc Res. 86 (2010) 243–253. doi:10.1093/cvr/cvq016.

[106] M. Bäck, G.K. Hansson, Leukotriene receptors in atherosclerosis, Ann. Med. 38 (2006) 493–502. doi:10.1080/07853890600982737.

[107] D. Leppert, S.L. Hauser, J.L. Kishiyama, S. An, L. Zeng, E.J. Goetzl, Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids, The FASEB Journal. 9 (1995) 1473–1481.

[108] M. Bäck, D.-X. Bu, R. Bränström, Y. Sheikine, Z.-Q. Yan, G.K. Hansson, Leukotriene B4 signaling through NF-kappaB-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia, Proc

Natl Acad Sci USA. 102 (2005) 17501–17506.

doi:10.1073/pnas.0505845102.

[109] S. Allen, M. Dashwood, K. Morrison, M. Yacoub, Differential leukotriene constrictor responses in human atherosclerotic coronary arteries, Circulation. 97 (1998) 2406–2413.

[110] M. Mehrabian, J. Wong, X. Wang, Z. Jiang, W. Shi, A.M. Fogelman, et al., Genetic locus in mice that blocks development of atherosclerosis despite extreme hyperlipidemia, Circ Res. 89 (2001) 125–130.

[111] C.N. Serhan, B.D. Levy, Resolvins in inflammation: emergence of the pro- resolving superfamily of mediators, J Clin Invest. 128 (2018) 2657–2669. doi:10.1172/JCI97943.

[112] B. Rius, C. López-Vicario, A. González-Périz, E. Morán-Salvador, V. García- Alonso, J. Clària, et al., Resolution of inflammation in obesity-induced liver disease, Front Immunol. 3 (2012) 257. doi:10.3389/fimmu.2012.00257. [113] G. Bannenberg, R.-L. Moussignac, K. Gronert, P.R. Devchand, B.A. Schmidt,

W.J. Guilford, et al., Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration, Br J Pharmacol. 143 (2004) 43–52. doi:10.1038/sj.bjp.0705912.

[114] J.F. Maddox, S.P. Colgan, C.B. Clish, N.A. Petasis, V.V. Fokin, C.N. Serhan, Lipoxin B4 regulates human monocyte/neutrophil adherence and motility: design of stable lipoxin B4 analogs with increased biologic activity, The FASEB Journal. 12 (1998) 487–494.

[115] C.N. Serhan, C.B. Clish, J. Brannon, S.P. Colgan, N. Chiang, K. Gronert, Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing, J Exp Med. 192 (2000) 1197–1204.

[116] C.N. Serhan, J.F. Maddox, N.A. Petasis, I. Akritopoulou-Zanze, A. Papayianni, H.R. Brady, et al., Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils, Biochemistry. 34 (1995) 14609–14615. doi:10.1021/bi00044a041.

[117] M. Spite, J. Clària, C.N. Serhan, Resolvins, Specialized Proresolving Lipid Mediators, and Their Potential Roles in Metabolic Diseases, Cell Metabolism. (2013) 1–16. doi:10.1016/j.cmet.2013.10.006.

[118] C.N. Serhan, Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins. 53 (1997) 107–137.

[119] C.N. Serhan, N. Chiang, Novel endogenous small molecules as the checkpoint controllers in inflammation and resolution: entrée for resoleomics, Rheum. Dis. Clin. North Am. 30 (2004) 69–95. doi:10.1016/S0889- 857X(03)00117-0.

[120] M.O. Freire, T.E. Van Dyke, Natural resolution of inflammation, Periodontol. 2000. 63 (2013) 149–164. doi:10.1111/prd.12034.

[121] M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, et al., Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1, J Exp Med. 201 (2005) 713–722. doi:10.1084/jem.20042031.

[122] S.F. Oh, M. Dona, G. Fredman, S. Krishnamoorthy, D. Irimia, C.N. Serhan, Resolvin E2 formation and impact in inflammation resolution, The Journal of Immunology. 188 (2012) 4527–4534. doi:10.4049/jimmunol.1103652.

[123] G. Fredman, C.N. Serhan, Specialized proresolving mediator targets for RvE1 and RvD1 in peripheral blood and mechanisms of resolution, Biochem J. 437 (2011) 185–197. doi:10.1042/BJ20110327.

[124] M. Dona, G. Fredman, J.M. Schwab, N. Chiang, M. Arita, A. Goodarzi, et al., Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets, Blood. 112 (2008) 848–855. doi:10.1182/blood-2007-11-122598.

[125] D. El Kebir, P. Gjorstrup, J.G. Filep, Resolvin E1 promotes phagocytosis- induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation, Proc Natl Acad Sci USA. 109 (2012) 14983–14988. doi:10.1073/pnas.1206641109.

[126] M. Arita, T. Ohira, Y.-P. Sun, S. Elangovan, N. Chiang, C.N. Serhan, Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to

[127] C.D. Buckley, D.W. Gilroy, C.N. Serhan, Proresolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation, Immunity. 40 (2014) 315–327. doi:10.1016/j.immuni.2014.02.009.

[128] C.N. Serhan, N. Chiang, Resolution phase lipid mediators of inflammation: agonists of resolution, Curr Opin Pharmacol. 13 (2013) 632–640. doi:10.1016/j.coph.2013.05.012.

[129] C.N. Serhan, J. Dalli, R.A. Colas, J.W. Winkler, N. Chiang, Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome, Biochim Biophys Acta. 1851 (2015) 397– 413. doi:10.1016/j.bbalip.2014.08.006.

[130] N.G. Bazan, J.M. Calandria, C.N. Serhan, Rescue and repair during photoreceptor cell renewal mediated by docosahexaenoic acid-derived

neuroprotectin D1, J Lipid Res. 51 (2010) 2018–2031.

doi:10.1194/jlr.R001131.

[131] A. Asatryan, N.G. Bazan, Molecular mechanisms of signaling via the docosanoid neuroprotectin D1 for cellular homeostasis and neuroprotection, J Biol Chem. 292 (2017) 12390–12397. doi:10.1074/jbc.R117.783076.

[132] V.L. Marcheselli, P.K. Mukherjee, M. Arita, S. Hong, R. Antony, K. Sheets, et al., Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils, Prostaglandins Leukot Essent Fatty Acids. 82 (2010) 27–34. doi:10.1016/j.plefa.2009.10.010.

[133] M. Shinohara, V. Mirakaj, C.N. Serhan, Functional Metabolomics Reveals Novel Active Products in the DHA Metabolome, Front Immunol. 3 (2012) 81. doi:10.3389/fimmu.2012.00081.

[134] J. Dalli, M. Zhu, N.A. Vlasenko, B. Deng, J.Z. Haeggström, N.A. Petasis, et al., The novel 13S,14S-epoxy-maresin is converted by human macrophages to maresin 1 (MaR1), inhibits leukotriene A4 hydrolase (LTA4H), and shifts macrophage phenotype, Faseb J. 27 (2013) 2573–2583. doi:10.1096/fj.13- 227728.

[135] C.N. Serhan, R. Yang, K. Martinod, K. Kasuga, P.S. Pillai, T.F. Porter, et al., Maresins: novel macrophage mediators with potent antiinflammatory and

proresolving actions, J Exp Med. 206 (2009) 15–23.

doi:10.1084/jem.20081880.

[136] C.D. Funk, S. Hoshiko, T. Matsumoto, O. Rdmark, B. Samuelsson, Characterization of the human 5-lipoxygenase gene, Proc Natl Acad Sci USA. 86 (1989) 2587–2591.

[137] S. Hoshiko, O. Rådmark, B. Samuelsson, Characterization of the human 5- lipoxygenase gene promoter, Proc Natl Acad Sci USA. 87 (1990) 9073–9077. [138] N.C. Gilbert, S.G. Bartlett, M.T. Waight, D.B. Neau, W.E. Boeglin, A.R. Brash, et al., The structure of human 5-lipoxygenase, Science. 331 (2011) 217–219. doi:10.1126/science.1197203.

[139] S.A. Gillmor, A. Villaseñor, R. Fletterick, E. Sigal, M.F. Browner, The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity, Nat. Struct. Biol. 4 (1997) 1003–1009. [140] T. Matsumoto, C.D. Funk, O. Rådmark, J.O. Höög, H. Jörnvall, B.

Samuelsson, Molecular cloning and amino acid sequence of human 5- lipoxygenase, Proc Natl Acad Sci USA. 85 (1988) 26–30.

[141] A.-K. Häfner, M. Cernescu, B. Hofmann, M. Ermisch, M. Hörnig, J. Metzner, et al., Dimerization of human 5-lipoxygenase, 392 (2011) 1097–1111. doi:10.1515/BC.2011.200.

[142] T. Hammarberg, P. Provost, B. Persson, O. Rådmark, The N-terminal domain of 5-lipoxygenase binds calcium and mediates calcium stimulation of enzyme

activity, J Biol Chem. 275 (2000) 38787–38793.

doi:10.1074/jbc.M006136200.

[143] R. Singal, G.D. Ginder, DNA methylation, Blood. 93 (1999) 4059–4070. [144] J. Uhl, N. Klan, M. Rose, K.-D. Entian, O. Werz, D. Steinhilber, The 5-

lipoxygenase promoter is regulated by DNA methylation, J Biol Chem. 277 (2002) 4374–4379. doi:10.1074/jbc.M107665200.

Documents relatifs