• Aucun résultat trouvé

L’utilisation de séquençage de l’exome, appliqué à l’étude des maladies rares, a permis à notre équipe d’identifier 4 gènes responsables d’OAVS : MYT1, précédemment rapporté, et ZYG11B,

ZIC3 et EYA3, tous 3 faisant l’objet de ce travail. Dans chacun des cas, des analyses

complémentaires par séquençage du génome, ou études fonctionnelles sur modèle cellulaire ou animal, ont été nécessaires pour apporter la preuve de leur implication.

Si cette stratégie a été appliquée avec succès, ces limites nous imposent de trouver de nouveaux outils pour décrypter les mécanismes moléculaires impliqués dans l’OAVS. Parmi ceux-ci, l’intégration de technologies OMICs, l’identification de cibles après exposition toxique sur modèle animal, et l’utilisation de méthodes statistiques appliquées aux analyses génomiques semblent les plus pertinents. Néanmoins, une meilleure définition clinique de l’OAVS, basée sur des critères objectifs et faisant intervenir des techniques d’imagerie médicale, est un

177 préalable indispensable à ces investigations biologiques. Notre équipe a été identifiée comme experte pour l’OAVS, au sein du projet européen Solve-RD, auquel nous participons au titre de l’ERN-ITHACA. Ce travail en réseau, permettant de bénéficier de la meilleure expertise dans les domaines cliniques et biologiques à l’échelle européenne, est à même d’offrir les conditions pour aboutir à ces perspectives dans l’OAVS.

178

Références

1. Knecht, A. K. & Bronner-Fraser, M. Induction of the neural crest: a multigene process.

Nat. Rev. Genet. 3, 453–461 (2002).

2. Cours d’embryologie en ligne http://www.embryology.ch/.

3. Sommer. Neural crest-derived stem cells. StemBook (2010) doi:10.3824/stembook.1.51.1.

4. Selleck, M. A. & Bronner-Fraser, M. Origins of the avian neural crest: the role of neural plate-epidermal interactions. Dev. Camb. Engl. 121, 525–538 (1995).

5. Ruffins, S., Bruk Artinger, K. & Bronner-Fraser, M. Early Migrating Neural Crest Cells Can Form Ventral Neural Tube Derivatives When Challenged by Transplantation. Dev.

Biol. 203, 295–304 (1998).

6. Achilleos, A. & Trainor, P. A. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res. 22, 288–304 (2012).

7. Méndez-Maldonado, K., Vega-López, G. A., Aybar, M. J. & Velasco, I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front. Cell Dev. Biol. 8, 635 (2020).

179 9. Dixon, M. J., Marazita, M. L., Beaty, T. H. & Murray, J. C. Cleft lip and palate:

understanding genetic and environmental influences. Nat. Rev. Genet. 12, 167–178 (2011).

10. Development of the Face. in Reference Module in Biomedical Sciences

B9780128012383054000 (Elsevier, 2014). doi:10.1016/B978-0-12-801238-3.05451-9.

11. Goldenhar, M. Associations malformatives de l’oeil et de I’ oreille, en particulier le syndrome dermoide epibulbaire- appendices auriculaires-fistula auris congenita et ses relations avec la dysostose mandibulo-faciale. Journal de Génétique Humaine 243:282 (1952).

12. Gorlin, R. J., Jue, K. L., Jacobsen, U. & Goldschmidt, E. Oculoauriculovertebral dysplasia. J. Pediatr. 63, 991–999 (1963).

13. Barisic, I. et al. Prevalence, prenatal diagnosis and clinical features of oculo-auriculo-vertebral spectrum: a registry-based study in Europe. Eur. J. Hum. Genet. 22, 1026–1033 (2014).

14. Gougoutas, A. J., Singh, D. J., Low, D. W. & Bartlett, S. P. Hemifacial Microsomia: Clinical Features and Pictographic Representations of the OMENS Classification System: Plast. Reconstr. Surg. 120, 112e–120e (2007).

180 15. Tasse, C. et al. Oculo-auriculo-vertebral spectrum (OAVS): clinical evaluation and

severity scoring of 53 patients and proposal for a new classification. Eur. J. Med. Genet.

48, 397–411 (2005).

16. Rooryck, C. et al. Array-CGH analysis of a cohort of 86 patients with

oculoauriculovertebral spectrum. Am. J. Med. Genet. A. 152A, 1984–1989 (2010).

17. Beleza-Meireles, A. et al. Oculo-auriculo-vertebral spectrum: Clinical and molecular analysis of 51 patients. Eur. J. Med. Genet. 58, 455–465 (2015).

18. Grabb, W. C. THE FIRST AND SECOND BRANCHIAL ARCH SYNDROME: Plast.

Reconstr. Surg. 36, 485–508 (1965).

19. Poswillo, D. The pathogenesis of the first and second branchial arch syndrome. Oral

Surg. Oral Med. Oral Pathol. 35, 302–328 (1973).

20. Chen, Y.-F. et al. Three-dimensional characterization of mandibular asymmetry in craniofacial microsomia. Clin. Oral Investig. (2020) doi:10.1007/s00784-020-03302-8.

21. Caron, C. J. J. M. et al. Craniofacial and extracraniofacial anomalies in craniofacial microsomia: A multicenter study of 755 patients. J. Cranio-Maxillofac. Surg. 45, 1302– 1310 (2017).

181 22. Renkema, R. W. et al. Extracraniofacial anomalies in craniofacial microsomia:

retrospective analysis of 991 patients. Int. J. Oral Maxillofac. Surg. 48, 1169–1176 (2019).

23. Zhong, J. et al. New Grading System for Limbal Dermoid: A Retrospective Analysis of 261 Cases Over a 10-Year Period. Cornea 37, 66–71 (2018).

24. Singh, M. et al. Ophthalmic features and management outcomes of 30 children having Goldenhar syndrome. Int. Ophthalmol. 40, 667–675 (2020).

25. Tanzer, R. C. Microtia. Clin. Plast. Surg. 5, 317–336 (1978).

26. Weerda, H. Classification of Congenital Deformities of the Auricle. Facial Plast. Surg.

5, 385–388 (1988).

27. Hunter, A. et al. Elements of morphology: Standard terminology for the ear. Am. J. Med.

Genet. A. 149A, 40–60 (2009).

28. Luquetti, D. V. et al. Interrater reliability of a phenotypic assessment tool for the ear morphology in microtia. Am. J. Med. Genet. A. 161, 1264–1272 (2013).

29. Sherk, H. H., Whitaker, L. A. & Pasquariello, P. S. Facial Malformations and Spinal Anomalies: A Predictable Relationship. Spine 7, 526–531 (1982).

30. Figueroa, A. A. & Friede, H. Craniovertebral malformations in hemifacial microsomia.

182 31. Vento, A. R., Labrie, R. A. & Mulliken, J. B. The O.M.E.N.S. Classification of

Hemifacial Microsomia. Cleft Palate. Craniofac. J. 28, 68–77 (1991).

32. Gosain, A. K., McCarthy, J. G. & Pinto, R. S. Cervicovertebral anomalies and basilar impression in Goldenhar syndrome. Plast. Reconstr. Surg. 93, 498–506 (1994).

33. Horgan, J. E., Padwa, B. L., Labrie, R. A. & Mulliken, J. B. OMENS-Plus: Analysis of Craniofacial and Extracraniofacial Anomalies in Hemifacial Microsomia. Cleft Palate.

Craniofac. J. 32, 405–412 (1995).

34. Tuin, J., Tahiri, Y., Paliga, J. T., Taylor, J. A. & Bartlett, S. P. Distinguishing Goldenhar Syndrome from Craniofacial Microsomia: J. Craniofac. Surg. 26, 1887–1892 (2015).

35. Renkema, R. W. et al. Vertebral anomalies in craniofacial microsomia: a retrospective analysis of 991 patients. Int. J. Oral Maxillofac. Surg. 47, 1365–1372 (2018).

36. Al Kaissi, A., Ben Chehida, F., Ganger, R., Klaushofer, K. & Grill, F. Distinctive spine abnormalities in patients with Goldenhar syndrome: tomographic assessment. Eur. Spine

J. 24, 594–599 (2015).

37. Saccomanno, S. et al. Role of 3D-CT for orthodontic and ENT evaluation in Goldenhar syndrome. Acta Otorhinolaryngol. Ital. Organo Uff. Della Soc. Ital. Otorinolaringol. E

183 38. Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. & Saxena, S. Prevalence of

intellectual disability: A meta-analysis of population-based studies. Res. Dev. Disabil.

32, 419–436 (2011).

39. Manara, R. et al. Cranial Nerve Abnormalities in Oculo-Auriculo-Vertebral Spectrum.

Am. J. Neuroradiol. 36, 1375–1380 (2015).

40. Renkema, R. W. et al. Central nervous system anomalies in craniofacial microsomia: a systematic review. Int. J. Oral Maxillofac. Surg. 47, 27–34 (2018).

41. Morrison, J., Mulholland, H. C., Craig, B. G. & Nevin, N. C. Cardiovascular

abnormalities in the oculo-auriculo-vertebral spectrum (Goldenhar syndrome). Am. J.

Med. Genet. 44, 425–428 (1992).

42. Digilio, M. C. et al. Congenital heart defects in patients with oculo-auriculo-vertebral spectrum (Goldenhar syndrome). Am. J. Med. Genet. A. 146A, 1815–1819 (2008).

43. Shokeir, M. H. The Goldenhar syndrome: a natural history. Birth Defects Orig. Artic.

Ser. 13, 67–83 (1977).

44. Feingold, M. Goldenhar’s Syndrome. Arch. Pediatr. Adolesc. Med. 132, 136 (1978).

45. Rollnick, B. R. et al. Oculoauriculovertebral dysplasia and variants: Phenotypic characteristics of 294 patients. Am. J. Med. Genet. 26, 361–375 (1987).

184 46. Avon, S. W. & Shively, J. L. Orthopaedic Manifestations of Goldenhar Syndrome: J.

Pediatr. Orthop. 8, 683–686 (1988).

47. Kaye, C. I. et al. Microtia and associated anomalies: Statistical analysis. Am. J. Med.

Genet. 34, 574–578 (1989).

48. Cohen, M. S. et al. Neurodevelopmental profile of infants and toddlers with oculo-auriculo-vertebral spectrum and the correlation of prognosis with physical findings. Am.

J. Med. Genet. 60, 535–540 (1995).

49. Gibson, J. N. A., Sillence, D. O. & Taylor, T. K. F. Abnormalities of the Spine in Goldenhar’s Syndrome: J. Pediatr. Orthop. 344–349 (1996) doi:10.1097/00004694-199605000-00010.

50. D’antonio, L. L., Rice, R. D. & Fink, S. C. Evaluation of Pharyngeal and Laryngeal Structure and Function in Patients with Oculo-Auriculo-Vertebral Spectrum. Cleft

Palate. Craniofac. J. 35, 333–341 (1998).

51. Ewart-Toland, A. et al. Oculoauriculovertebral abnormalities in children of diabetic mothers. Am. J. Med. Genet. 90, 303–309 (2000).

52. Anderson, P. J. & David, D. J. Spinal Anomalies in Goldenhar Syndrome. Cleft Palate.

185 53. Touliatou, V., Fryssira, H., Mavrou, A., Kanavakis, E. & Kitsiou-Tzeli, S. Clinical

manifestations in 17 Greek patients with Goldenhar syndrome. Genet. Couns. Geneva

Switz. 17, 359–370 (2006).

54. Engiz, O. et al. 31 cases with oculoauriculovertebral dysplasia (Goldenhar syndrome): clinical, neuroradiologic, audiologic and cytogenetic findings. Genet. Couns. Geneva

Switz. 18, 277–288 (2007).

55. Johansson, M. et al. Autism spectrum disorder and underlying brain mechanism in the oculoauriculovertebral spectrum. Dev. Med. Child Neurol. 49, 280–288 (2007).

56. Strömland, K. et al. Oculo-auriculo-vertebral spectrum: Associated anomalies,

functional deficits and possible developmental risk factors. Am. J. Med. Genet. A. 143A, 1317–1325 (2007).

57. Rosa, R. F. M. et al. Central nervous system abnormalities in patients with oculo-auriculo-vertebral spectrum (Goldenhar syndrome). Arq. Neuropsiquiatr. 68, 98–102 (2010).

58. Pegler, J. R. M. et al. Clinical description of 41 Brazilian patients with oculo-auriculo-vertebral dysplasia. Rev. Assoc. Médica Bras. 62, 202–206 (2016).

59. Berenguer, M. et al. A novel de novo mutation in MYT1, the unique OAVS gene identified so far. Eur. J. Hum. Genet. 25, 1083–1086 (2017).

186 60. Bragagnolo, S. et al. Clinical and cytogenomic findings in OAV spectrum. Am. J. Med.

Genet. A. 176, 638–648 (2018).

61. Pruzansky, S. Not all dwarfed mandibles are alike. Birth Defects 120–129 (1969).

62. Kaban, L. B., Moses, M. H. & Mulliken, J. B. Surgical correction of hemifacial microsomia in the growing child. Plast. Reconstr. Surg. 82, 9–19 (1988).

63. Farra, C. et al. Goldenhar syndrome associated with prenatal maternal Fluoxetine ingestion: Cause or coincidence? Birt. Defects Res. A. Clin. Mol. Teratol. 88, 582–585 (2010).

64. Alwan, S., Reefhuis, J., Rasmussen, S. A., Olney, R. S. & Friedman, J. M. Use of Selective Serotonin-Reuptake Inhibitors in Pregnancy and the Risk of Birth Defects. N.

Engl. J. Med. 356, 2684–2692 (2007).

65. Louik, C., Lin, A. E., Werler, M. M., Hernández-Díaz, S. & Mitchell, A. A.

First-Trimester Use of Selective Serotonin-Reuptake Inhibitors and the Risk of Birth Defects.

N. Engl. J. Med. 356, 2675–2683 (2007).

66. Lessick, M., Vasa, R. & Israel, J. Severe manifestations of oculoauriculovertebral spectrum in a cocaine exposed infant. J. Med. Genet. 28, 803–804 (1991).

67. Hoyme, H. E. et al. Prenatal cocaine exposure and fetal vascular disruption. Pediatrics

187 68. Hume, Jr., R. F. et al. Vascular Disruption Birth Defects and History of Prenatal Cocaine

Exposure: A Case Control Study. Fetal Diagn. Ther. 12, 292–295 (1997).

69. David, A. L. et al. A Case-Control Study of Maternal Periconceptual and Pregnancy Recreational Drug Use and Fetal Malformation Using Hair Analysis. PLoS ONE 9, e111038 (2014).

70. Cullins, S. L., Pridjian, G. & Sutherland, C. M. Goldenhar’s syndrome associated with tamoxifen given to the mother during gestation. JAMA 271, 1905–1906 (1994).

71. Berger, J. C. & Clericuzio, C. L. Pierre Robin sequence associated with first trimester fetal tamoxifen exposure. Am. J. Med. Genet. A. 146A, 2141–2144 (2008).

72. Xu, J. et al. Tamoxifen exposure induces cleft palate in mice. Br. J. Oral Maxillofac.

Surg. S0266435620303314 (2020) doi:10.1016/j.bjoms.2020.07.009.

73. Gustavson, E. E. & Chen, H. Goldenhar syndrome, anterior encephalocele, and aqueductal stenosis following fetal primidone exposure. Teratology 32, 13–17 (1985).

74. Mcbride, W. G. THALIDOMIDE AND CONGENITAL ABNORMALITIES. The

Lancet 278, 1358 (1961).

75. Lenz, W. Thalidomide and Congenital Abnormalities. in Problems of Birth Defects (ed. Persaud, T. V. N.) 199–199 (Springer Netherlands, 1962). doi:10.1007/978-94-011-6621-8_28.

188 76. Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms:

Thalidomide-Induced Teratogenesis. Birth Defects Res. Part C Embryo Today Rev. 105, 140–156 (2015).

77. Rosendal, Th. Aplasia-Hypoplasia of the Otic Labyrinth after Thalidomide. Acta Radiol.

Diagn. (Stockh.) 3, 225–236 (1965).

78. Takemori, S., Tanaka, Y. & Suzuki, J.-I. Thalidomide Anomalies of the Ear. Arch.

Otolaryngol. - Head Neck Surg. 102, 425–427 (1976).

79. Miller, M. T., Ventura, L. & Strömland, K. Thalidomide and misoprostol:

Ophthalmologic manifestations and associations both expected and unexpected. Birt.

Defects Res. A. Clin. Mol. Teratol. 85, 667–676 (2009).

80. Sjögreen, L. & Kiliaridis, S. Facial palsy in individuals with thalidomide embryopathy: frequency and characteristics. J. Laryngol. Otol. 126, 902–906 (2012).

81. Poswillo, D. E., Hamilton, W. J. & Sopher, D. The Marmoset as an Animal Model for Teratological Research. Nature 239, 460–462 (1972).

82. Therapontos, C., Erskine, L., Gardner, E. R., Figg, W. D. & Vargesson, N. Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation.

Proc. Natl. Acad. Sci. 106, 8573–8578 (2009).

189 84. Fernhoff, P. M. & Lammer, E. J. Craniofacial features of isotretinoin embryopathy. J.

Pediatr. 105, 595–597 (1984).

85. Lott, I. T., Pribram, H. W. & Leitner, M. FETAL HYDROCEPHALUS AND EAR ANOMALIES ASSOCIATED WITH THE MATERNAL USE OF ISOTRETINOIN.

Pediatr. Res. 18, 306A-306A (1984).

86. Coberly, S., Lammer, E. & Alashari, M. Retinoic Acid Embryopathy: Case Report and Review of Literature. Pediatr. Pathol. Lab. Med. 16, 823–836 (1996).

87. Mounoud, R. L., Klein, D. & Weber, F. [A case of Goldenhar syndrome: acute vitamin A intoxication in the mother during pregnancy]. J. Genet. Hum. 23, 135–154 (1975).

88. Lopez, E. et al. Mutations in MYT1 , encoding the myelin transcription factor 1, are a rare cause of OAVS. J. Med. Genet. 53, 752–760 (2016).

89. Berenguer, M. et al. Prenatal retinoic acid exposure reveals candidate genes for craniofacial disorders. Sci. Rep. 8, 17492 (2018).

90. Sollinger, H. W. Mycophenolates in transplantation. Clin. Transplant. 18, 485–492 (2004).

91. Staatz, C. E. & Tett, S. E. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients: Clin. Pharmacokinet. 46, 13–58 (2007).

190 92. Perez-Aytes, A. et al. Mycophenolate mofetil embryopathy: A newly recognized

teratogenic syndrome. Eur. J. Med. Genet. 60, 16–21 (2017).

93. Allison, A. Mechanisms of action of mycophenolate mofetil. Lupus 14, 2–8 (2005).

94. Sifontis, N. M. et al. Pregnancy Outcomes in Solid Organ Transplant Recipients With Exposure to Mycophenolate Mofetil or Sirolimus: Transplantation 82, 1698–1702 (2006).

95. Perez-Aytes, A. et al. In utero exposure to mycophenolate mofetil: A characteristic phenotype? Am. J. Med. Genet. A. 146A, 1–7 (2008).

96. Schoner, K., Steinhard, J., Figiel, J. & Rehder, H. Severe Facial Clefts in Acrofacial Dysostosis: A Consequence of Prenatal Exposure to Mycophenolate Mofetil? Obstet.

Gynecol. 111, 483–486 (2008).

97. Carey, J. C. “Where Observation Is Concerned, Chance Favors Only the Prepared Mind”: Obstet. Gynecol. 111, 479–480 (2008).

98. Andrade Vila, J. H., da Silva, J. P., Guilhen, C. J., Baumgratz, J. F. & da Fonseca, L. Even Low Dose of Mycophenolate Mofetil in a Mother Recipient of Heart Transplant Can Seriously Damage the Fetus: Transplantation 86, 369–370 (2008).

191 99. Huang, S.-Y., Chueh, H.-Y., Shaw, S.-W., Shih, J.-C. & Cheng, P.-J. Sonographic

diagnosis of fetal malformations associated with mycophenolate mofetil exposure in utero. Am. J. Obstet. Gynecol. 199, e6–e8 (2008).

100. Anderka, M. T., Lin, A. E., Abuelo, D. N., Mitchell, A. A. & Rasmussen, S. A.

Reviewing the evidence for mycophenolate mofetil as a new teratogen: Case report and review of the literature. Am. J. Med. Genet. A. 149A, 1241–1248 (2009).

101. dei Malatesta, M. F. et al. A Case of Coloboma in a Newborn to a Woman Taking Mycophenolate Mofetil in Pregnancy After Kidney Transplantation. Transplant. Proc.

41, 1407–1409 (2009).

102. Jackson, P. et al. Intrauterine exposure to mycophenolate mofetil and multiple congenital anomalies in a newborn: Possible teratogenic effect. Am. J. Med. Genet. A. 149A, 1231– 1236 (2009).

103. Anoop K Koshy, Strong, D., Earles, G. & Fasset, R. G. CONGENITAL

MALFORMATIONS WITH LOW-DOSE MYCOPHENOLATE MOFETIL AFTER KIDNEY TRANSPLANTATION. Nephrology 15, 133–135 (2010).

104. Lin, A. E. et al. An additional patient with mycophenolate mofetil embryopathy: Cardiac and facial analyses. Am. J. Med. Genet. A. 155, 748–756 (2011).

105. Martín, M. C. et al. Esophageal atresia and prenatal exposure to mycophenolate. Reprod.

192 106. Gao, X.-P. et al. Toxicity Assessment of 7 Anticancer Compounds in Zebrafish. Int. J.

Toxicol. 33, 98–105 (2014).

107. Jiang, L.-L. et al. Mycophenolic Acid-Induced Developmental Defects in Zebrafish Embryos. Int. J. Toxicol. 35, 712–718 (2016).

108. Keith, A. Concerning the origin and nature of certain malformations of the face, head, and foot. Br. J. Surg. 28, 173–192 (1940).

109. Braithwaite, F. & Watson, J. A report on three unusual cleft lips. Br. J. Plast. Surg. 2, 38–49 (1949).

110. McKenzie, J. The First Arch Syndrome. Arch. Dis. Child. 33, 477–486 (1958).

111. Schinzel, A. Possible vascular disruptive origin of hemifacial microsomia? Am. J.

Obstet. Gynecol. 157, 1319 (1987).

112. Gardiner, D. M. & Holmes, L. B. Hypothesis: Terminal transverse limb defects with “nubbins” represent a regenerative process during limb development in human fetuses.

Birt. Defects Res. A. Clin. Mol. Teratol. 94, 129–133 (2012).

113. Bavinck, J. N. B., Weaver, D. D., Opitz, J. M. & Reynolds, J. F. Subclavian artery supply disruption sequence: Hypothesis of a vascular etiology for Poland, Klippel-Feil, and Möbius anomalies. Am. J. Med. Genet. 23, 903–918 (1986).

193 114. Holmes, L. B., Westgate, M.-N., Nasri, H. & Toufaily, M. H. Malformations attributed

to the process of vascular disruption: HOLMES et al. Birth Defects Res. 110, 98–107 (2018).

115. Vargas, F. R. et al. Prenatal exposure to misoprostol and vascular disruption defects: a case-control study. Am. J. Med. Genet. 95, 302–306 (2000).

116. Gonzalez, C. H. et al. Congenital abnormalities in Brazilian children associated with misoprostol misuse in first trimester of pregnancy. The Lancet 351, 1624–1627 (1998).

117. Sadler, T. W. & Rasmussen, S. A. Examining the evidence for vascular pathogenesis of selected birth defects. Am. J. Med. Genet. A. 152A, 2426–2436 (2010).

118. Ebbesen, F. & Petersen, W. GOLDENHAR’S SYNDROME: DISCORDANCE IN MONOZYGOTIC TWINS AND UNUSUAL ANOMALIES. Acta Paediatr. 71, 685– 687 (1982).

119. Boles, D. J., Bodurtha, J., Nance, W. E. & Reynolds, J. F. Goldenhar complex in discordant monozygotic twins: A case report and review of the literature. Am. J. Med.

Genet. 28, 103–109 (1987).

120. Ryan, C. A., Finer, N. N., Ives, E., Optiz, J. M. & Reynolds, J. F. Discordance of signs in monozygotic twins concordant for the goldenhar anomaly. Am. J. Med. Genet. 29, 755–761 (1988).

194 121. Satoh, K., Shibata, Y., Tokushige, H. & Onizuka, T. A mirror image of the first and

second branchial arch syndrome associated with cleft lip and palate in monozygotic twins. Br. J. Plast. Surg. 48, 601–605 (1995).

122. Prasad, K. N. V., Rajha, A. & Vegi, P. K. A Case of Monozygotic Twins: The Value of Discordant Monozygotic Twins in Goldenhar Syndrome—OMIM%164210. Case Rep.

Pediatr. 2013, 1–3 (2013).

123. Chen, X. et al. Whole-exome sequencing for monozygotic twins discordant for hemifacial microsomia. J. Cranio-Maxillofac. Surg. 46, 802–807 (2018).

124. Wieczorek, D. et al. Reproduction abnormalities and twin pregnancies in parents of sporadic patients with oculo-auriculo-vertebral spectrum/Goldenhar syndrome. Hum.

Genet. 121, 369–376 (2007).

125. Karatza, A. A. Influence of twin-twin transfusion syndrome on fetal cardiovascular structure and function: prospective case-control study of 136 monochorionic twin pregnancies. Heart 88, 271–277 (2002).

126. Manning, N. The influence of twinning on cardiac development. Early Hum. Dev. 84, 173–179 (2008).

127. AlRais, F., Feldstein, V. A., Srivastava, D., Gosnell, K. & Moon-Grady, A. J. Monochorionic twins discordant for congenital heart disease: a referral center’s

195 experience and possible pathophysiologic mechanisms: MONOCHORIONIC TWINS DISCORDANT FOR CHD. Prenat. Diagn. 31, 978–984 (2011).

128. Siebold, B. et al. Evaluation of prenatal diabetes mellitus and other risk factors for craniofacial microsomia. Birth Defects Res. 111, 649–658 (2019).

129. Garne, E. et al. Spectrum of congenital anomalies in pregnancies with pregestational diabetes. Birt. Defects Res. A. Clin. Mol. Teratol. 94, 134–140 (2012).

130. Salbaum, J. M. & Kappen, C. Diabetic embryopathy: A role for the epigenome? Birt.

Defects Res. A. Clin. Mol. Teratol. 91, 770–780 (2011).

131. Loeken, M. R. Mechanisms of Congenital Malformations in Pregnancies with Pre-existing Diabetes. Curr. Diab. Rep. 20, 54 (2020).

132. Colovati, M. E. S. et al. Atypical 581-kb 22q11.21 Deletion in a Patient with Oculo-Auriculo-Vertebral Spectrum Phenotype. Cytogenet. Genome Res. 147, 130–134 (2016).

133. Dos Santos, P. A. C. et al. Non-overlapping 22q11.2 microdeletions in patients with oculo-auriculo-vertebral spectrum. Am. J. Med. Genet. A. 164A, 551–553 (2014).

134. Torti, E. E., Braddock, S. R., Bernreuter, K. & Batanian, J. R. Oculo-auriculo-vertebral spectrum, cat eye, and distal 22q11 microdeletion syndromes: a unique double

196 135. Quintero-Rivera, F. & Martinez-Agosto, J. A. Hemifacial microsomia in cat-eye

syndrome: 22q11.1-q11.21 as candidate loci for facial symmetry. Am. J. Med. Genet. A.

161A, 1985–1991 (2013).

136. Balcı, S. & Engiz, O. Goldenhar syndrome phenotypes and 22q11 deletion. Am. J. Med.

Genet. A. 155A, 458 (2011).

137. Lafay-Cousin, L. et al. Goldenhar phenotype in a child with distal 22q11.2 deletion and intracranial atypical teratoid rhabdoid tumor. Am. J. Med. Genet. A. 149A, 2855–2859 (2009).

138. Digilio, M. C. et al. Three patients with oculo-auriculo-vertebral spectrum and microdeletion 22q11.2. Am. J. Med. Genet. A. 149A, 2860–2864 (2009).

139. Xu, J., Fan, Y. S. & Siu, V. M. A child with features of Goldenhar syndrome and a novel 1.12 Mb deletion in 22q11.2 by cytogenetics and oligonucleotide array CGH: is this a candidate region for the syndrome? Am. J. Med. Genet. A. 146A, 1886–1889 (2008).

140. Derbent, M. et al. Chromosome 22q11.2 deletion and phenotypic features in 30 patients with conotruncal heart defects. Am. J. Med. Genet. A. 116A, 129–135 (2003).

141. Spineli-Silva, S., Bispo, L. M., Gil-da-Silva-Lopes, V. L. & Vieira, T. P. Distal deletion at 22q11.2 as differential diagnosis in Craniofacial Microsomia: Case report and

197 142. Tan, T. Y. et al. Phenotypic variability of distal 22q11.2 copy number abnormalities.

Am. J. Med. Genet. A. 155, 1623–1633 (2011).

143. McDonald-McGinn, D. M. et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Primer 1, (2015).

144. Du, Q., de la Morena, M. T. & van Oers, N. S. C. The Genetics and Epigenetics of 22q11.2 Deletion Syndrome. Front. Genet. 10, 1365 (2020).

145. Zemble, R. et al. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin. Immunol.

136, 409–418 (2010).

146. Meechan, D. W. et al. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog. Neurobiol. 130, 1–28 (2015).

147. Morrow, B. E., McDonald-McGinn, D. M., Emanuel, B. S., Vermeesch, J. R. &

Scambler, P. J. Molecular genetics of 22q11.2 deletion syndrome. Am. J. Med. Genet. A.

176, 2070–2081 (2018).

148. Sullivan, K. E. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome.

Immunol. Rev. 287, 186–201 (2019).

149. Zinkstok, J. R. et al. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet

198 150. Lindsay, E. A. et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes

aortic arch defects in mice. Nature 410, 97–101 (2001).

151. de la Morena, M. T. et al. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome. Clin. Immunol. 147, 11–22 (2013).

152. Glaeser, A. B. et al. Candidate genes of oculo-auriculo-vertebral spectrum in 22q region: A systematic review. Am. J. Med. Genet. A. ajmg.a.61841 (2020)

doi:10.1002/ajmg.a.61841.

153. Kent, W. J. et al. The Human Genome Browser at UCSC. Genome Res. 12, 996–1006 (2002).

154. Ou, Z. et al. Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of SIX1, SIX6, and OTX2 resulting from a complex chromosomal rearrangement. Am. J. Med. Genet. A. 146A, 2480–2489 (2008).

155. Ballesta-Martínez, M. J. et al. Autosomal dominant oculoauriculovertebral spectrum and 14q23.1 microduplication. Am. J. Med. Genet. A. 161A, 2030–2035 (2013).

156. Zielinski, D. et al. OTX2 duplication is implicated in hemifacial microsomia. PloS One

9, e96788 (2014).

157. Ragge, N. K. et al. Heterozygous Mutations of OTX2 Cause Severe Ocular Malformations. Am. J. Hum. Genet. 76, 1008–1022 (2005).

199 158. Ghinia Tegla, M. G. et al. OTX2 represses sister cell fate choices in the developing

retina to promote photoreceptor specification. eLife 9, e54279 (2020).

159. Fossat, N., Chatelain, G., Brun, G. & Lamonerie, T. Temporal and spatial delineation of mouse Otx2 functions by conditional self-knockout. EMBO Rep. 7, 824–830 (2006).

160. Acampora, D. et al. Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Dev. Camb.

Engl. 121, 3279–3290 (1995).

161. Ang, S. L. et al. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Dev. Camb. Engl. 122, 243–252 (1996).

162. Chassaing, N. et al. OTX2 mutations contribute to the otocephaly-dysgnathia complex. J.

Med. Genet. 49, 373–379 (2012).

163. Dubucs, C. et al. Re-focusing on Agnathia-Otocephaly complex. Clin. Oral Investig. (2020) doi:10.1007/s00784-020-03443-w.

164. Si, N. et al. Duplications involving the long range HMX1 enhancer are associated with human isolated bilateral concha-type microtia. J. Transl. Med. 18, 244 (2020).

165. Li, X. et al. Genome-Wide Linkage Study Suggests a Susceptibility Locus for Isolated Bilateral Microtia on 4p15.32–4p16.2. PLoS ONE 9, e101152 (2014).

Documents relatifs