• Aucun résultat trouvé

Conclusion générale

eau 23 : Effe Sourc

5. Conclusion générale

Les enzymes actives sur l’amidon ont depuis longtemps suscité un intérêt pour leur utilisation potentielle en industrie (amidonnerie) pour l’hydrolyse de l’amidon ou la

production de dérivés de l’amidon. Par ailleurs, dans le domaine médical, l’-amylase,

enzyme recombinante, peut être utilisée comme aide digestive.

Dans ce contexte, cette thèse a pour principaux objectifs : la production et la

quantification de l’-amylase de P. camemberti PL21, sa purification à homogénéité , son

immobilisation et sa caractérisation .

Pour sa production, le plan statistique de Plackett et Burman a permis la sélection des

facteurs l’influençant ainsi que la production de biomasse. L’analyse statistique révèle, pour une production optimale de cette enzyme, le milieu de fermentation, à base de déchets d'oranges à 2 %, doit être supplémenté par : 10 g/l d'amidon, 5 g/l de l'extrait de levure, 20 ml/l de « Corn Seep Liquor », 5 ml/l de glycérol et 0.125g/l de CaCl2 à 20°C. Le pH doit être ajusté à pH 5 par un tampon phosphate à 0.1M et l’agitation fixée à 100 rpm.

La cinétique de production de l’enzyme et de la biomasse de la souche P. camemberti PL21, en fermenteur de 2 litres (conditions contrôlées de pH et de température, pH 5 et T° 20°C) montre un taux de croissance optimal (biomasse) de 28.6 g/l après 156 heures de

fermentation. Pour la même durée de fermentation, l’activité -amylasique maximale affiche

350.2 U

La purification partielle de l'α-amylase de P. camemberti PL21 , réalisée par les

méthodes classiques (Précipitation par le sulfate d’ammonium (NH4)2SO4 ; Dialyse ;

Chromatographie tamisage moléculaire sur Sephadex G -100 et Chromatographie échangeuse d’anions DEAE-Sepharose CL-6B) donne une purification de 23.1 fois avec un rendement de 38.5 .La masse moléculaire déterminée par la mobilité relative en électrophorèse PAGE révèle une masse moléculaire de 60,5 KDa., valeur comparable à l’enzyme fongique de A. oryzae ( 59.0 KDa)

Conclusion

125

Les constantes cinétiques Km et Vmax pour l’hydrolyse de l’amidon soluble

sont respectivement de 30.5 mg/ml et 92 U. La température optimale de l’enzyme

partiellement purifiée est de 30°C et un pH optimal de 5.5. Soumise à un traitement

thermique de 50°C pendant 2 heures, elle garde 60% de son activité ; à 70°C elle perd

complètement son activité au bout de 2 heures Les ions Ca2+ et Mg2+ sont des activateurs

pour cette enzyme, par contre les ions Cu2+, Fe2+, et Hg2+ sont des inhibiteurs.

Dans le but d’augmenter sa thermostabilité, l’α-amylase partiellement purifiée de P.camemberti PL21 est immobilisée par inclusion sur un support naturel de billes d’alginate de calcium (3%) avec un de rendement de 68 %. L’enzyme immobilisée résiste mieux aux traitements thermiques : à 90°C pendant 120 minutes, elle conserve 50% de son activité initiale ; à 80°C, sa demi-vie se prolonge à 180 minutes. Cette stabilité thermique a permis à l’enzyme immobilisée d’être exploitée industriellement. Son immobilisation fait augmenter son temps de réaction à 120 minutes au lieu de 10 à 15 minutes pour l’enzyme libre

L’activité enzymatique diminue lorsque la concentration d'alginate dépasse la concentration de 3% (gène par encombrement stérique). Sa vitesse maximale diminue de 32

% par rapport à celle de l’enzyme libre : 169.8 U vs 94 U. Par contre, l’affinité de

l’enzyme immobilisée pour son substrat, demeure inchangée par rapport à l’enzyme libre : les Km respectifs sont de 0.90 mg/ml et 0.93 mg/ml. L’α-amylase immobilisée conserve son activité plus longtemps et peut être réutilisée jusqu'à 5 fois. La stabilité au stockage à 4°C est de 10 jours, alors qu’à 30°C elle est de 3 jours.

Toutes ces qualifications permettent une éventuelle exploitation industrielle de l’α-amylase de P. camemberti PL21 lorsqu’elle est immobilisée.

Perspectives :

Pour une exploitation industrielle, il est nécessaire de réaliser des cinétiques en « Scall Up » (en fermenteur de 20 L, en fermenteur de 50 L : en fermenteur de 100 L) pour s’assurer de la stabilité de l’enzyme en conditions industrielles. Le gène de l’ α-amylase de P. camemberti PL21 peut être transféré sur un microorganisme qui pousse relativement vite pour une production industrielle d’une α-amylase recombinante utile en médecine (aide digestive), dans les IAA et autres industries.

Conclusion 126 صخلملا ميزنا جاتنإ مت α-amylase رطف نم P. camemberti PL21 اساسأ ةنوكمو ةتبثم هيرمخت ةيئيب يف زيكرتب لاقتربلا بل ةلاضف قوحسم نم 2 % : ةيلاتلا رصانعلاب ةدوزم 10 اشنلا ل/غ , 5 لوريسيلجلا ل/لم , ةريمخلا صلختسم 10 ل/غ , ةرذلا عيقن صلختسم Corn-steep-liquor 20 ل/لم , مويسلاكلا ديرولك 0.125 جذومن تافوفصمل يبيرجت ططخم قفو كلذو. ل/غ Plackett and Burman

.ميزنلإا جاتنإ تيبثت لجأ نم مت .ةيئاوھ طورش تحت رمختلا ميزنلإا جاتنلإ ةيكرحلا ةساردلا جئاتن تلجس دعب 156 يف نيضحتلا نم ةعاس ةعسب رمخم 2 دنع رتل T° 22°C ; pH 5 ; Agitation 100rpm يزلايما طاشن ىصقأ و ةيويح ةلتك ربكا ةميقب 28.6 g/L و 350.2 U .يلاوتلا ىلع يعيبطلا ديملايركلاا لج لامعتسا دنع ايداحأ اطيرش تطعأ ميزنلأل ةيئزجلا ةيقنتلا PAGE نزوو ب ردق يئيزج 60.5 KDa ةرارحو ةضومح يتجرد وذ 5.5 و °C 30 ظفتحي . ميزنا α-amylase رطف نم P.camemberti PL21 ةبسنب 60% دنع 50°C ةدمل 120 ةميقب ةيكرح تارشؤم ميزنلالل .د 0.92 غم / لم و U 30.5 طاشن ةدحو نم لكل Km و Vmax نم لك تانويا لمعت .يلاوتلا ىلع Ca2+ و Mg2+ طيشنت ىلع دوجو يف طبثي امنيب ميزنلإا Cu2+, Fe2+ et Hg2+ . ميزنإ تيبثت مت امك α-amylase رطف هزرفا يذلاو ايئزج ىقنملا P. camemberti PL21 ةقيرطب زيكرتب تانيجللاا لج تابيبح لخاد ءاوتحلاا (3%) ذإ .تبثملا و رحلا ميزنلإا نم لك صاوخ ةسارد مت دقو تيبثتلا ةبسن تغلب 68 % . ميزنلإا نم لكل يئادتبلاا زيكرتلا ريثأت ةسارد للاخ نم لصحتملا جئاتنلا تحضوأ دقو دنع ىلثملا طورشلا يف لعافتلا ةيكرح ىلع ءاشنلا لعافتلا ةدام و 30°C و pH 5.0 ىوتسم ىلع ارييغت لا ارشؤم رحلا ميزنلإاب ةنراقم تبثملا ميزنلأل ةيكرحلا ت ةميق ترھظ ثيح Km تضفخنا نيح يف ةتباث ابيرقت ىوصقلا ةعرسلا ةميق Vmax ةبسنب 32 % ةجردب تبثملا ميزنلأا زيمتي . 5.5 pH ىلثم ةرارح ةجرد و °C 50 ةدمل يرارح تابث عم 120 دنع ةقيقد °C 90 ظفتحي . ةداعإ نكميو لوطأ ةدمل هطاشنب تبثملا ميزنلأا هلامعتسا 5 دنع نيزختلل هتابث ةردق عم تارم 4°C ةدمل 10 للاخ ةيلك هطاشن دقفي امنيب مايأ 3 مايأ دنع °C 30 . :حاتفملا تاملكلا Penicillium Camemberti PL21 ميزنإ , α-amylase ,لاقتربلا روشق , Plackett and Burman , .ةيقنت , رمخت , تانيجللاا لج تابيبح

Conclusion

127 Abstract

Alpha-amylase from Penicillium camemberti PL21 was produced in a 2l fermenter at 22°C, agitation 100 rpm, pH 5 and an aeration of 0.50 l-1 min-1 .The culture medium was prepared to include orange waste peel (2% w/v), and enriched by: yeast extracts (5g/l), the “corn-steep-liquor” (5ml/l), CaCl2 (0.125 mg/l), starch (10gr/l) and glycerol (5ml/l). After 156 h of incubation, 200 ml of the culture medium containing α -amylase were collected and determined their amylolytic activity and protein.

The α-amylase was purified by ammonium sulphate precipitation, dialysis, Sephadex G-100 and DEAE-Sepharose CL-6B column chromatography. A purification factor of 38.5 with a 23.1% yield and final specific activity of 154.2 U proteins were recorded. Purification to homogeneity of α-amylase was confirmed by SDS PAGE. The molecular weight was estimated to be 60.5 KDa. The enzyme shows maximal activity in the soluble starch hydrolysis at pH 5, 5 and is stable in a range of pH from 5.0 to 6.0. Thermal stability was in the range of temperature from 50 to 60 °C, and its optimal temperature was 30 °C. Ions Cu2+, Fe2+, and Hg2+significantly increase the activity of the enzyme, with ion Ca2+ as the highest activator. Km and Vmax were respectively 0.92 mg/mL 30.5 U calculated using the linearization of Lineweaver-Burk.

P. camemberti PL21 α-amylase was immobilized in calcium alginate gel beads. Immobilization resulted in 68 % relative activity. The immobilized α-amylase showed no decrease in activity for 180 min. Optimum conditions were not affected by immobilization, and optimum pH and temperature for free and immobilized enzyme were 5.0-5.5 and 30-50°C, respectively. Immobilized enzyme was more stable at low and high pH and high temperatures 120 min at 90°C. The kinetic parameters for the immobilized α-amylase were also determined: Km = 0.93 mg/ml and Vmax = 94.0 U. The immobilized α-amylase could be used for 5 cycles and retains its activity for 10 days without any decrease at 4°C.

Keywords: α-amylase, Penicillium camemberti PL21, orange wastes peel, Fermentation, Purification; SDS-PAGE, Immobilization, calcium alginate beads.

Références

128

7. REFERENCES

ABIDA A., SHAH A. U., QADER, A.R., SAMINA I. AND ABID A. (2009). Calcium Alginate: A Support Material for Immobilization of Proteases from Newly Isolated of Bacillus subtilis KIBGE-HASWorld Applied Sciences Journal.7 (10):1281-1286.

ABOUZEID A. M. (1997). Production, purification and characterization of an extracellular α-amylase enzyme isolated from Aspergillus flavus. Microbios. 89 (358): 55-66.

AFIFI A.F, E. M.KAMEL, A.A. KHALIL, FOUAAD E.M, FAZXI AND HOUSERY M. (2008).

Purification and characterization of α-amylase from Penicillium olsonii under the effect some Antioxidant Vitamins, Global journal of Biotechnology and Biochemistry.3 (1): 14-21.

AFNOR (1986). Les dossiers de la normalisation ISSN, (2), 8297,4827.

AHYAR A., ANDI SYAIFUL, FIRMAN A.P., PATONG A. R. (2007). Immobilization of glucose

oxidase enzyme from Penicillium sp-3 local strain. Indonesian Journal of Chemistry. (7):133-138.

AKSOY S., TUMTURK H. AND HASIRCI N. (1998). Stability of alpha-amylase immobilized on poly (methyl methacrylate-acrylic acid) microspheres. J Biotechnology. (60): 37-46.

AL-QODAH Z., DAGHSTANI H., GEOPEL P., LAFI W. (2007). Determination of kinetic

parameters of α-amylase producing thermophile Bacillus sphaericus, Center of Environmental Studies, The Hashemite University Zarqa, 13115, P.O. Box 330127 Jordan. African Journal of Biotechnology, (6):699-706.

ALIYA R., ABIDA ANWAR AND SAMINA I. (2009). Immobilization of a Thermostable alpha

amylase on Calcium Alginate Beads from Bacillus Subtilis KIBGE-HAR.Pharmaceutical Research Centre, Australian Journal of Basic and Applied Sciences, 3(3): 2883-2887.

AMIRUL A.A., KHOO S. L., NAZALAN M. N., RAZIP M. S. AND AZIZAN M. N. (1996).

Purification and properties of two forms of glucoamylase from Aspergillus niger. Folia Microbiol. (Praha).41(2):165-174.

AUBERGER, B., G. LAMBERET, AND J. LENOIR. (1985). Les activités enzymatiques de

Penicillium camemberti. Sci. Aliments le lait. (5):239.

ASGHER M., MJAVAI D., ASAD S. U., RAHMAN R.L., LEG G. (2007). A thermostable a-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering. (79): 950-55.

Références

129

BABITHA S., SOCCOL C.R., PANDEY A. (2007). Solid-state fermentation for the production of Monascus pigments from jack fruit seed. Bioresour. Technol. 98 (8): 1554-1560.

BAKRI Y., JACQUES PH. ET THONART PH. (2003). Xylanase production by Penicillium canescens 10-10c in solidstate fermentation. Appl. Biochem. Biotechnol., (108):737-748.

BALDWIN P., VAN E. C., ISTASSE L., BIENFAIT J.M. (1986). Fermentation en silos de laboratoire de pulpes de bettraves sucrières. Belgian Journal of Food Chemistry and Biotechnology. (98):792-797.

BALKAN B., ERTAN F. (2005). Production and properties of alpha-amylase from Penicillium chrysogenum and its application in starch hydrolysis. Biochem. Biotechnol.35(2):169-78.

BANIK R.M., SANTHIAGU A., UPADHYAY S. N. (2007). Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461, in molasses based medium using response surface methodology. Biotechnology. (98):792-797.

BEL´EN O., JULIANA K., ANA M., PEDREGOS A., INMACULADA F. MONISTROL, FERNANDO L., CARMEN S.´E. (2006). Bacterial biofilm removal using fungal enzymes, Enzyme and Microbial Technology, (40):51-56.

BELITZ H.D. ET GROSCH W. (1987). Food chimistry 2eme Edition P.586-700 Spring Verlag . BerlinHeidelburg.

BELLON-MAUREL V., ORLIAC O. AND CHRISTEN P. (2003). Sensors and measurements in

solid-state fermentation: A review.Process Biochem. (38): 881-896.

BEN A.M., MEZGHANI M., BEJAR S. (1999). A thermostable a-amylase producing maltohexaose from a new isolated Bacillus sp. US100: study of activity and molecular cloning of the corresponding gene. Enzyme and Microbial Technology (24):584-589.

BANCERZ T.M., ATTILI-ANGELIS D., CARVALHOA.F.A., DASILVA R. E. (2005). Production

of sacharogenic and dextrinogenic Enzymes by P. camemberti A 13.36, Journal of Microbiology (Korea), (43):561-568.

BENNAMOUN L., MERAIHI Z., DAKHMOUCHE S. (2004) . Utilisation de la planification

expérimentale pour l’optimisation de la production de l’ α-amylase par Aspergillus oryzae Ahlburg (Cohen) 1042.72 cultivé sur milieu à base de déchets d’oranges, Journal of Food Engineering. (64) :257-264.

BENFIELD P. (1955). Amylases, alpha and beta. In: Colowick, S.P. and Kaplan, N. O. Methods in enzymology. New York: Academic Press. (1):149-158.

BERRY D.R. ET PATERSON A. (1990). Enzymes in food industry. P. 306-351. In Suckling C.J. Enzymes chemistry impact and application. Ed. Chapman H. London.

BHELLA R.S., ALTOSAAR I. (1985). Purification and some properties of the extracellular alpha-amylase from Aspergillus awamori. Can J. Microbiol.149-153.

BICKERSTAFF O.H. (1997). Production of isomalto-oligosaccharides using extransucrase immobilized in alginate fibres, Process Biochem.(37):111–115.

Références

130

BILAL BALKAN AND FIGEN ERTAN. (2007). Production and Properties of alpha amylase from Penicillium chrysogenum and its Application in Starch Hydrolysis, Preparative Biochemistry and Biotechnology. (45):112-118.

BILJANA D., NATASA B., VERA N., JELISAVETA I., ZORAN V. (2007). Purification and

properties of midgut α-amylase isolated from Morimus funereus (Coleoptera: Cerambycidae) larvae, Studentski. (3):12-16.

BINOD P., SANDHYA., SUMA P., SZAKACS G., PANDEY A. (2007). Fungal biosynthesis of

endochitinase and chitobiase in solid-state fermentation Bioresour. Techno and their application for the production of N-acetyl-D-glucosamine. 98 (10): 2742-2748.

BOIRON P. (1996). Organisation et Biologie des champignons. Edition Nathan p.149.

BOLLAG D.M., ROZYCKI M.D., EDELSTEIN S.J. (1996). Protein Methods,second ed. Willey-Liss, Inc., 605 third Avenue, New York, NY 10158-0012, USA.pp.2789-2797.

BOLLER C., MEIER S., MENZLE R. (2002). Eupergit oxirane acrylic beads: howto make enzymes fit for biocatalysis, Org. Process Res. (6): 509–519.

BONDARCHUC A. A. (1966). Isolation of alpha-amylase from the mycelium of Penicillium chrysogenum strain 194.Mikrobiol. Zh. ;( 28):3-6.

BOUIX M. AND LEVEAU J. Y. (1999). Production des enzymes in Scriban R. Biotechnologies, Ed. Lavoisier, p. 344-400.

BOUSSEBOUA H. (2002). Eléments de Microbiologie Générale. Programmes de graduation. Editions de l’Université Mentouri.Constantine Algerie p.230-231.

BOSE K. AND DAS D. (1996). Thermostable alpha-amylase production using B. licheniformis NRRLB 14368. Indian Journal of Exp. Biology, 34(12):1279-1282.

BOTTON B., BRETON A., FEBRE M., GOUTIER S., GAY PL., LARENT J., REYMONT P., SANGLIER J. J., VAYSSIER Y., VEAU P. (1990). Moisissure utile et nuisibles, importance industrielles 2eme édition. p.419-35.

BOX G.F.P. AND WILSON K.B. (1951). On the experimental attainment of optimum conditions J. Royal Statistical Society .XIII (1):1-49.

BOYAVAL P., LEBRUN A. ET GOULET J. (1985). Etude de l'immobilisation de Lactobacillus helveticus dans des billes d'alginate de calcium. Le Lait. (65): 185-199.

BRAWN S.H., KELLY R.M., (1993). Characterization of amylolytic enzymes having both (alpha)-1,4 and (alpha)-1,6 hydrolytic activity from the thermophilic archea Pyrococcus furiosus and Thermococcus litoralis Applied and Environmental Microbiology; 59; (8), 2614–2621.

BRUMM P.J., HEBEDA R.E., TEAUGUE W.M. (1991). Enzymes in food industry. P. 306-351. In Suckling C.J. Enzymes chemistry impact and application. Ed. Chapman H. London.

BURHAN A., UNALDI N., CORAL G., COLAK O., AYGAN A., GU¨LNAZ O. (2003). Enzymatic

properties of a novel thermostable, thermophilic,alkaline and chelator resistant amylase from an alkaliphilicBacillus sp.Isolate ANT-6. Process Biochemistry. (38): 1397-1403.

Références

131

BURHAN A., COLAK O., AYGAN A., GU¨LNAZ O. (2008). Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15, Bioresource Technology. (99):3071-3076.

CERNING J., GRIPON J.C., LAMBERET G.and LENOIR J. (1987). Les activités biochimiques des Penicillium utilisés en fromagerie. Lait, 67(1): 3-39.

CHAO-HSUN Y., WEN-HSIUNG L. (2004) .Purification and properties of a maltotriose-producing Alpha amylase from Thermobifida fusca, Institute of Microbiology and Biochemistry, National Taiwan University; Enzyme and Microbial Technology. (35):254-59.

CHAPLIN M.F. AND BUCKE C. (1990). Enzyme Technology. Cambridge University Technology. (90):227–238.

CHEETHAMP S.J. (1979). Physical studies on the mechanical stability of columns of calcium alginate gel pellets containing entrapped microbial cells, Enzyme Microb. Technol.(1):183-188.

CHEN J.P., SUN, YI-MING AND CHU, DING H. (1998). Immobilization of alpha -amylase to a composite temperature-sensitive membrane for starch hydrolysis. Biotechnol Prog.(14): 473-478.

CHEN J., LI D.C., ZHANG Y.Q., ZHOU Q.X. (2005). Purification and characterization of a thermostable glucoamylase from Chaetomium thermophilum.J. Gen. Appl.Microbiol. 51(3): 175-81.

CHERRY H.M., TOWHID H.D., ANWAR, M.N. (2004). Extracellular glucoamylase from the isolate Aspergillus fumigatus. - Pak. J. Biol.Sci., 7(11), 88-92.

CHAVEZ Y., DING H (2006). Les caractères du système Iipolytique de l'espèce P. camemberti. Purification et propriétés de la lipase majeure. Lait, (56), 622-644.

CHIBA S. (1988). Amyloglycosidase. In: Handbook of Amylases and related enzymes (The Amylase Research Society of Japan, éd.). Pergamum Press, Oxford, U.K. pp 104-116.

CHODOK P., KANJANA-OPAS A., KAEWSUWAN S. (2010). The Plackett-Burman Design for

Evaluating the Production of Polyunsaturated Fatty Acids by Physcomitrella patens. Journal of the American Oil Chemists' Society.87(5):521-529.

CHOISY C., GUEGUEN M., LENOIR J., SCHMIDT J.L., TOURNEUR C. (1984). L'affinage du

fromage.1. Les phénomènes microbiens. In : Le Fromage, éd. A. Eck, Lavoisier Paris, p.259-290.

CHUNG K., YOU-LIANG P., CHONG-YAO S. (1995). Purification and properties of a thermostable alpha amylase from the thermophilic fungus.- Acta Microbiol. Sin. (37):102-110.

COLLINS S. DIOMI M., ELISAVET K., PAUL C. (2005). Fungal multienzyme production on industrial by-products of the citrus-processing industry, Biotechnology Technology.(3):23–38.

COLIN ERIC H. A., SALWA KARBOUNE A., HUSSON F. B., SELIM K. A. (2008).

Immobilization of an enzymatic extract from Penicillium camemberti containing lipoxygenase;Journal of Molecular Catalysis B: Enzymatic. (2):88–95.

COOLBEAR T., DANIEL R.M., MORGAN H.W. (1992). The enzymes from extreme thermophils: bacterial sources, thermostabilities and industrial relevance. Advanced Biochemistry and Engineering Biotechnology. (45): 57–97.

Références

132

COONEY N.L., LEVINE D.W. (1972). Microbial utilization of methanol. Adv. Appl. microbiol. (15): 337-365.

CREULY R., DONG G., VIEILLE C., SAVCHENKO A., ZEIKUS J.G.(1990). Cloning, sequencing and expression of the gene encoding extracellular alpha amylase from P. and biochemical characterization of the recombinant enzyme. Applied and Environmental Microbiology. (9):69-76.

DAMODARA R., MENDU B.V., RATNAM A., PURNIMA C., AYYANN A. (2005). Affinity

chromatography of α-amylase from Bacillus licheniformis,. Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, p.720.

DAVID J., BARRY A.E., CECILIA C. AND GWILYM A. W. (2009). Morphological quantification of filamentous fungal development using membrane immobilization and automatic image analysis. Journal Indian of Microbial Biotechnology.(36):787–800.

DE MOT R., VERACHTERT H. (1985). Purification and characterization of extracellular amylolytic enzymes from the yeast Filobasidium capsuligenum. - Appl. Environ. Microbiol., 50(6):1474-1482.

DEY G., BANERJEE R. and MAITI B. R. (2000). Thermostable maltooligosaccharide-forming amylase from Bacillus circulans GRS 313, presented in National symposium on basic and applied aspects of plant and microbial biotechnology, 4-5 May, Pune, India. Bioseparation.(7):159-165.

DIOMI M., ELISAVET K., PAUL C. (2008). Fungal multienzyme production on industrial by-products of the citrus-processing industry, Biotechnology Laboratory.Technology. (99):2373–2383.

DJABALI D., BELHANECHE N., NADJEMI B. (2009). Relation ship between potato starch

isolation methods and kinetic parameters of hydrolysis by free and immobilised α-amylase on alginate from Laminaria digitata algae , Journal of food composition and analysis, 22(6):563-570.

DJEKRIF-DAKHMOUCHE S., GHERIBI-AOULMI Z., MERAIHI Z., BENNAMOUN L. (2006).

Application of a statistical design to the optimization of culture medium for a-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J. Food Eng. (73):190-197.

DOYLE S., KELLYand FOGARTY W. M. (1989). Different factors affecting growth and amylase production by fungi inhabiting poultry feeds. Journal of Basic Microbial. 37(6), 586-592.

DUBEY A.K., SURESH C., KAVITHA R., KARANTH N.G., UMESH-KUMAR S. (2000).Evidence

that the glucoamylases and α-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme, Journal of Basic Microbial .471(2):251-255.

DUBOIS M., GILLES K.A., HAMILTON J.K., REBERS P.A., SMITH F. (1956). Colorimetric

method for determination of sugars and related substances. Anal. Chem. (28): 350-356.

DUO-CHUAN L., YIJUN Y., YOU-LIANG P., CHONG-YAO S., PEIJIN Z., YICUN H. (1997).

Purification and properties of a thermostable alpha amylase from the thermophilic fungus Thermomyces lanuginosus.- Acta Microbiol. Sin. (37):107-114.

DURAND A. (2003). Bioreactor designs for solid-state fermentation. Biochem. Eng. J., (13) : 113-125.

DONG G., VIEILLE C., SAVCHENKO A., ZEIKUS J.G.(1997). Cloning, sequencing and expression of the gene encoding extracellular alpha amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Applied and Environmental Microbiology. (9):69-76.

Références

133

EGAS M.C.V., DA COSTA M.S., COWAN D.A., PIRES E.M.V. (1998). Extracellular a-amylase from Thermus filiformis OrkA2. Purification and biochemical characterization. Extremophiles Applied and Environmental Microbiology. (2):23-32.

ELLAIAH P., ADINARAYANA K., SUNITHA M., DEVI R.B. (2003). Alpha amylase product by

Penicillium sp. from some soil in India. Lab: pharmaceutical biotech. .Indian journal of microbiology.43 (2):135-137.

EL-SAFEY E. M. AND AMMAR M. S. (2002). Alphaamylase production using Nile Hyacinth under solid-state fermentation (SSF) conditions. Int. Conf. for Develop. And the Environ. In the Arab world march. (28):101-113.

ENAS N., DANIAL M., ELNASHAR M. AND GHADA E.A. (2010). Immobilized Inulinase on

Grafted Alginate Beads Prepared by the One and Two-Steps Methods. Industrial Engineering Chemistry Research. 49. (7): 3120–3125.

ERTAN F., YAGAR H., AND BALKAN B. (2008). Optimization of alpha-amylase immobilization in calcium alginate beads. Prep Biochem Biotechnol. 37(3):195-204.

ERTAN F., YAGAR H., BALKAN BILAL (2006). A comparison of Some Properties of Free and Immobilized α-amylase from Penicillium griseofulvum by Solid State Fermentation ; Preparative and Biochemistry & Biotechnology.(36): 81-91.

ESPINE L., ESPERANZ A., AND LOPEZ ELIZABET H. (2009). Purification and Characterization of a-amylase from Penicillium commune produced by Solid State Fermentation. Rev. Colomb. Quim .(38):191-208.

EVELYN M., DOYLE C., KELLY C.T.AND FOGARTY W. M. (1989). The high maltose-producing α-amylase of Penicillium expansum.Applied Microbiology and Biotechnology.30(5): 492-496.

FAN F., NDJOUENKEU R. (1976). Production and partial characterization of a thermostable amylase from Ascomycetes yeast strain isolated from starchy soils. Afr. J. Biotechnol., 4(1): 14-18.

FAO. (2003).Food and Agriculture organization of the United Nations.Online scientific information on food and agriculture for poorest countries.

FRENCH D. ENAS N., DANIAL M. (1975). Chemistry and biochemistry of starch In p.309-321. MTP International review of science biochemistry of carbohydrates serie 1,5 Butterworth Park Press.

FOGARTY W.M., KELLY C.T. (1980). Amylase, amyloglucosidase and related glucanases. In Rose (A.H.) Ed. Economic microbiology, microbial enzymes and bioconversion. London: Academic Press.5, p. 115-170.268.

FOGARTY W. M. AND KELLY, C. T. (1994). Microbial Enzymes and Biotechnology .Applied

Science, London, New York. (43):71-132.

FONSECA M.J.V., SAID S. (1994). The pectinase produced by Tubercularia vulgarisin submerged culture using pectin or orange-pulp pellets as inducer. Appl. Microbiol. Biotechnol. (42): 32–35.

FOSSI B.T., TAVEA F., NDJOUENKEU R. (2005). Production and partial characterization of a thermostable amylase from Ascomycetes yeast strain isolated from starchy soils. Afr. J. Biotechnol., 4(1): 14-18.

Références

134

GALAZZO JORGE L., BAILEY J. E. (1990). Purification and immobilization of dextranase,. Acta Biotechnol. 18 (1): 63-75.

GALAZZO JORGE L., BAILEY, JAMES E. (1990). Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol, Biotechnology and Bioengineering. 36(4): 417-426.

GARGI D. (2002). New way of production of isomalto-oligosaccharide syrup by using the transglucosylation reaction of neopullulanase, Appl. Environ. Microbiol. (59):532-559.

GARZO'N S., LARROCHE C., TALL U. B. AND GROS J.B. (1992). Some products of enzymes by spores of Penicillium roqueforrii on a synthetic medium. J. Ind. Microbial. (55): 51-58.

GERHARTZ W. (1990). General Production Methods In: Enzymes in Industry: VCH Publishers, New York (USA). p.67-72.

GERVAIS P. AND MOLIN P. (2003). The role of water in solid-statefermentation. Biochem. Eng. J., (13):85-101.

GIBEL A., JIANLING W., JING X. (1971). Protein an enzyme immobilization on non-porous microspheres of polystyrene. Biotechnol. Appl. Biochem., (20): 245–240.

GIRAUD C R., PANDEY A. (1993). Enzymes and biotechnological applications .A review. Bioresour. Technol., 98 (10):230-235.

GONZÁLEZ C.F., FARIÑA J.I., FIGUEROA L.I.C. (2008). Optimized amylolytic enzymes

production in Saccharomycopis fibuligera DSM-70554. An approach to efficient cassava starch utilization”, Enzyme and Microbiol Technology.4(2):272-277.

GOYAL N., GUPTA J.K., SONI S.K. (2005). A novel raw starch digesting thermostable alpha amylase from Bacillus sp. I-3 and its use in hydrolysis of raw potato starch. Enzyme and Microbial Technology. (37):723-734.

GRABER M. AND COMBES D. (1989). Microbial α-amylases: Enzyme and Microbiol Technology. (2):663-687.

GREENMAN J., SCRAGG A.I.I. (1998). Orange and potato peel extracts. Analysis and use as substrat for the production of extracellular enzymes in continuous culturefrom Bacillus. Enzyme and Microbial Technology.22 (2): 130-37.

GUPTA R., GIGRAS P., MOHAPATRA H., GOSWAMI V.K., CHAUHAN B. (2003). Microbial α

-amylases: a biotechnological perspective, Process Biochemistry. 38(1):599-616.

HAGIHARA H., IGARASHI K., HAYASHI Y., ENDO K., IKAWA-KITAYAMA K.,OZAKI K., KAWAI S., ITO S. (2001). Novel a-amylase that is highly resistant to chelating reagents and chemical oxidants from the Alkaliphilic Bacillus isolates KSM-K38. Applied and Environmental Microbiology. 67, (4):1744-1750.

HAQ I.U., RANI S., ASHRAF H., QADEER M.A. (2002). Biosynthesis of alpha amylase by

chemically treated mutant of Bacillus subtilis. - J.Biol. Sci. 2(2):73-75.

HAMILTON L.M., KELLY C.T., FOGARTY W.M. (1999). Production and properties of the raw starch-digesting alpha-amylase of Bacillus sp. IMD 435. Process Biochemistry. (35):27-31.

Références

135

HART H.E., PARISH M.E., BURNS J.K. , WICKER L. (1991). Orange finisher-pulpe as substrat of polygalacturonase production by Rhyzopus oryzae. J. of food sciences. (55):480-83.

HASKA N. AND OHTA Y. (1994). Purification and properties of the raw starch digesting amylase from Penicillium brunneum 24, Hiroshima univ., fac. applied biological sci., lab. Microbial biochemistry. (46):480-485.

HEMA A., UJJVAL T. AND KAMLESH P. (2006). Alpha- Amylase Production by Bacillus cereus MTCC 1305 Using Solid-State Fermentation .Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar. (3):388 -120.

HENNING J. N., LISBET H., OLSSO N. (2006). Production of cellulases by Penicillium brasilianum IBT 20888 Enzyme and Microbial Technology. (38):381-390.

HERNAIZ D.H., CROUT G. (2000). Immobilization and stabilization on Eupergit C of the galactosidase from B. Circulans and galactosidase from Aspergillus oryzae, Enzyme Microb. Technol. (27):26–32.

HMIDET N., BAYOUDH A., BERRIN J.G., KANOUN S., JUGE N., NASRI M. (2008). Purification and biochemical charac-terization of a novel a-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochemistry. (5):499-510.

HOLS P., FERAIN T., GARMYN D. (1994). Use of expression secretion signals and vector free stable chromosomal integration in engineering of Lactobacillus plantarum for α-amylase and levanase expression. App. Ennviron. Microbial. (60):1401-1407 .

HOTOP S., MOLLER J., NIEHOF J. and SCHURGEL K. (1993). Influence of the preculture

Documents relatifs