• Aucun résultat trouvé

Champ magnétique

5. Conclusion du chapitre

Dans ce chapitre, nous avons dans un premier temps étudié successivement l’incorporation de l’aluminium et de l’ytterbium au sein des cœurs de préforme élaborés par la méthode SPCVD. Un certain nombre de caractérisations physico-chimiques (profil de concentration, profil d’indice de réfraction) et d’études spectroscopiques (émission des espèces présentes au sein de la colonne plasma) nous ont permis d’étudier les cœurs élaborés en termes d’homogénéités radiale et longitudinale. Ces cœurs, très riches en silice, ont ensuite été caractérisés structuralement à l’aide de techniques spectroscopiques complémentaires. Le réseau vitreux a été étudié en utilisant les spectroscopies Raman (étude globale du réseau) et RMN (étude spécifique des noyaux à spin nucléaire I non nul, 29Si et 27Al). Dans le cas du système ternaire TR2O3-Al2O3-SiO2, ces études structurales ont été complétées en utilisant les propriétés optiques de l’ion ytterbium Yb3+ (absorption, luminescence) et son paramagnétisme (RPE pulsée).

Des caractéristiques similaires ont été mises en évidence au niveau de l’incorporation de l’aluminium et de l’ytterbium au sein des cœurs de préformes : l’incorporation radiale de ces

deux éléments est très homogène ce qui témoigne d’une évaporation constante des précurseurs AlCl3 et YbCl3 dont la maitrise permet l’élaboration de cœurs de gros

diamètres (>3mm).

Afin d’aller plus en avant dans l’étude des différents types de cœurs de préformes (Al2O3-SiO2 et TR2O3-Al2O3-SiO2) que nous avons préparés par le procédé SPCVD, ceux-ci ont été caractérisés au moyen d’une approche multi-spectroscopique. Le réseau vitreux silicaté est

constitué majoritairement d’entités Q4. Au sein du binaire, les polyèdres AlO4 des atomes d’aluminium s’y trouvent très distordus et sont contraints à s’auto-compenser soit sous forme de clusters soit par la formation d’unités AlO5. L’ajout d’un ion terre rare limite partiellement cette distorsion en agissant comme un compensateur de charge. La proximité entre l’aluminium et l’ytterbium est confirmée par les études de RPE pulsée. Lorsque la concentration en aluminium augmente, l’environnement de la terre rare s’enrichit en atomes

d’aluminium. Cet enrichissement améliore sa dispersion au sein du verre car les effets

159 Il aurait été intéressant de comparer la structure de ces cœurs de préforme, obtenus après chauffage à température élevée lors de l’étape de rétreint, à celle de la couche vitreuse déposée par la méthode SPCVD. Cette étude aurait permis de répondre à la question suivante : quel est

l’impact de l’étape de rétreint sur la structure du verre ? Une seconde étude comparative

pourrait être menée avec les cœurs de préforme élaborés par la méthode MCVD, où les dopants Al et Yb sont incorporés en solution à une silice poreuse.

Le chapitre suivant s’intéresse aux cœurs de préforme à grande aire effective

(Large-Mode-Area, LMA). Dans ce cas, l’ajout d’un élément supplémentaire au ternaire Yb2O3- Al2O3-SiO2 est nécessaire afin de contrôler l’indice de réfraction du matériau à un indice proche de celui de la silice pure. Nous étudierons les différentes possibilités dont nous disposons pour l’élaboration de tels cœurs par le procédé SPCVD, en nous focalisant sur l’effet de l’incorporation du fluor.

160

6. Références bibliographiques

[1]: Aramaki S. et al., “Revised Phase Diagram for the System Al2O3-SiO2”. Journal of the

American ceramic society, 45 (5), pp. 229-242, (1962).

[2]: Nassau K. et al., “Preparation and properties of fused silica containing alumina”. Journal

of the American ceramic society, 58 (9-10), p. 461, (1975).

[3]: Bubnov M.M. et al., “Fabrication and optical properties of fibers with an Al2O3–P2O5–SiO2 glass core”. Inorganic materials, 45 (4), pp. 444-449, (2009).

[4]: Lindner F. et al., “Optical properties of Yb-doped fibers prepared by gas phase doping”.

Proceedings of SPIE, 8982, pp. 89820R-1–89820R-11, (2014).

[5]: Tool A.Q. et al., “Changes caused in the refractivity and density of glass by annealing”.

Journal of research of the National Bureau of Standards, 38 (5), pp. 519-526, (1947).

[6]: Ritland H.N., “Relation between refractive index and density of a glass at constant temperature”. Journal of the American ceramic society, 38 (2), pp. 86-88, (1955).

[7]: Kreidl N.J. et al., “Annealing of 517:645 borosilicate optical glass: II, Density”. Journal of

the American ceramic society, 35 (8), pp. 198- 203, (1952).

[8]: Spinner S. et al., “Further studies in the annealing of a borosilicate glass”. Journal of

research of the National Bureau of Standards, 70A (2), pp. 147-152, (1966).

[9]: Golant K.M., “Bulk silicas prepared by low pressure plasma CVD: formation of structure and point defects”. Defects in SiO2 and related dielectrics: Science and technology, Nato

science series (2), pp. 427-452, (2000). [10]: Rapport interne du CNET, (1988).

[11]: Pearse R.W.B et al., The identification of molecular spectra, fourth edition. London: Chapman and Hall; New York: Wiley, 1976.

[12]: Singh M. et al., “The spectrum of SiO+ and SiN”. Journal of physics B: Atomic and

molecular physics, 6 (12), pp. 2656, (1973).

[13]: Jacksier T. et al., “Atomic emission of chlorine: spectra from 200 to 900 nm by sealed inductively coupled plasma atomic emission spectroscopy”. Applied spectroscopy, 48 (3), pp. 383-386, (1994).

[14]: Griffiths J.E., “Intermolecular interactions in liquid and gaseous SiCl4”. Spectrochemica

acta, 30A, pp. 169-180, (1973).

[15]: Akdeniz Z. et al., “Molecular clusters in gaseous and liquid AlCl3”. Physics and chemistry

161 [16]: Bell C.F., Syntheses and physical studies of inorganic compounds. Elsevier Science, 2013. [17]: Aarset K. et al., “Molecular structure of the aluminum halides, Al2Cl6, AlCl3, Al2Br6, AlBr3, and AlI3, obtained by gas-phase electron-diffraction and ab Initio molecular orbital calculations”. The journal of physical chemistry A, 103 (11), pp. 1644-1652, (1999).

[18]: Hastie J.W., Characterization of high temperature vapors and gases: proceedings of the 10th materials research symposium. Washington: D.C.U.S. Department of Commerce, 1979. [19]: Singh S.K., Fundamentals of engineering chemistry. New Age International, 2008. [20]: Luo Y.R., Handbook of bond dissociation energies in organic compounds. CRC Press, 2002.

[21]: Petrova T.B. et al., “Self-consistent axial modeling of surface-wave-produced discharges at low and intermediate pressures”. Physical review E: Statistical physics, plasmas, fluids, and

related interdisciplinary topics, 60 (1), pp. 875-886, (1999).

[22]: Unger S. et al., “Optical properties of cerium-codoped high power laser fibers”.

Proceedings of SPIE, 8621, pp. 862116-1–862116-11, (2013).

[23]: Ponsoda J.J. et al., “Ytterbium-doped fibers fabricated with atomic layer deposition method”. Optics express, 20 (22), pp. 25085-25095, (2002).

[24]: Kirchhof J. et al., “Dopant Interactions in high power laser fibers”. Proceedings of SPIE, 5723, pp. 261-272, (2005).

[25]: Vienne G. et al., “Fabrication and characterization of Yb3+: Er3+ phosphosilicate fibers for lasers”. Journal of lightwave technology, 16 (11), pp. 1990-2001, (1998).

[26]: Radziemski L.J. et al., “Vacuum ultraviolet wavelength standards and improved energy levels in the first spectrum of silicon”. Journal of the optical society of America, 57 (3), pp. 336-340, (1967).

[27]: Kelleher D.E. et al., “Atomic transition probabilities of silicon. A critical compilation”.

Journal of physical and chemical reference data, 37 (3), pp. 1286-2008, (2008).

[28]: Lopez-Molinero A. et al., “Determination of ytterbium by AES-ICP. Application to samples of biological origin”. Fresenius’ journal of analytical chemistry, 331, pp. 721-724, (1988).

[29]: Wyart J.F. et al., “Extended analysis of the emission spectrum of neutral ytterbium (YbI)”.

Physica scripta, 20 (1), pp. 43-59, (1979).

[30]: Meggers W.F. et al., “Wavelengths, intensities and Zeeman patterns in ytterbium spectra (Yb I, II, III, IV)”. Journal of research of the National Bureau of Standards - A, 70A (1), pp. 63-106, (1966).

162

[31]: Uttam K.N. et al., “New band systems of the YbCl molecule”. Journal of molecular

spectroscopy, 185, pp. 8-14, (1997).

[32]: Kudin L.S. et al., “Vaporization studies of dysprosium and ytterbium chlorides”. High

temperatures-high pressures, 29, pp. 389-396, (1997).

[33]: Giricheva N.I. et al., “Molecular structure of ErCl3 and YbCl3 according to the data of the simultaneous electron diffraction and mass spectrometric experiment”. Journal of structural

chemistry, 50 (2), pp. 235-245, (2009).

[34]: MacDowell J.F. et al., “Immiscibility and crystallization in Al2O3-SiO2 glasses”. Journal

of the American ceramic society, 52 (1), pp. 17-25, (1969).

[35]: Mysen B.O. et al., “The structure of silicate melts: implication for chemical and physical properties of natural magma”. Reviews of geophysics and space physics, 20 (3), pp. 353-383, (1982).

[36]: Poe B.T et al., “Al and Si coordination in SiO2-Al2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations”. Chemical geology, 96, pp. 333-349, (1992). [37]: Snitzer E., “Rare earth fiber lasers”. Journal of the less-common metals, 148, pp. 45-58, (1989).

[38]: Zervas M.N. et al., “High power fiber lasers: a review”. IEEE journal of selected topics

in quantum electronics, 20 (5), pp. 1-23, (2014).

[39]: Hayward P.J., Radioactive waste forms for the future. W. Lutz, R.C. Ewing (1988). [40]: Caurant D., “Spectroscopic investigations on glasses, glass-ceramics and ceramics developed for nuclear waste immobilization”. Optics and spectroscopy, 116 (5), pp. 667-676, (2014).

[41]: Weber R. et al., “Structure of high alumina content Al2O3-SiO2 composition glasses”. The

journal of physical chemistry B, 112 (51), pp. 16726-16733, (2008).

[42]: Sen S. et al., “High-resolution multinuclear NMR structural study of binary aluminosilicate and other related glasses”. The journal of physical chemistry B, 108, pp. 7557-7564, (2004).

[43]: Ren J. et al., “Medium-range order in sol−gel prepared Al2O3−SiO2 glasses: new results from solid-state NMR”. The journal of physical chemistry C, 118 (9), pp. 4906-4917, (2014). [44]: Rysbud S.H. et al., “Solid-state NMR evidence of 4-, 5-, and 6-fold aluminum sites in roller-quenched SiO2-Al2O3 glasses”. Journal of the American ceramic society, 70 (1), pp. C10-C12, (1987).

[45]: Iuga D. et al., “NMR heteronuclear correlation between quadrupolar nuclei in solids”.

163 [46]: Edèn M., Chapitre “27Al NMR studies of aluminosilicate glasses” in Annual reports on NMR spectroscopy, volume 86, G.A. Webb (2015).

[47]: Shelby J.E. et al., “Rare-earth aluminosilicate glasses”. Journal of the American ceramic

society, 73 (1), pp. 39-42, (1990).

[48]: Murakami Y. et al., “Phase equilibria and properties of glasses in the Al2O3-Yb2O3-SiO2 system”. Journal of the ceramic society of Japan, 101 (10), pp. 1101-1106, (1993).

[49]: Iftekhar S. et al., “Composition-property relationships of the La2O3-Al2O3-SiO2 glass system”. Journal of non-crystalline solids, 356 (20-22), pp. 1043-1048, (2010).

[50]: Schaller T. et al., “The structural role of lanthanum and yttrium in aluminosilicate glasses: a 27Al and 17O MAS NMR study”. The journal of physical chemistry B, 102 (52), pp. 10690-10697, (1998).

[51]: Shelby J.E. et al., “Rare earth aluminosilicate glasses”. Journal of the American ceramic

society, 73(1), pp. 39-42, (1991).

[52]: Kohli J.T. et al., “Formation and properties of rare earth aluminosilicate glasses”. Physics

and chemistry of glasses, 32 (2), pp. 67-71, (1991).

[53]: Kohli J.T. et al., “Rare earth aluminogermanate glasses”. Journal of the American ceramic

society, 74 (5), pp. 1031-1035, (1991).

[54]: Erbe E.M. et al., “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications”.

Journal of the American ceramic society, 73 (9), pp. 2708-2713, (1990).

[55]: Shelby J.E., Rare elements in glasses. Key Engineering Materials, 94-95, (1994).

[56]: Iftekhar S. et al., “Glass formation and structure-property-composition relations of the RE2O3-Al2O3-SiO2 (RE = La, Y, Lu, Sc) systems”. Journal of the American ceramic society, 94 (8), pp. 2429-2435, (2011).

[57]: Kohli J.T. et al., “Raman and infrared spectra of rare earth aluminosilicate glasses”.

Physics and chemistry of glasses, 34 (3), pp. 81-87, (1993).

[58]: Condrate R.A. et al., “Infrared and Raman spectra of glasses containing rare earth ions”.

Key engineering materials, 94-95, pp. 209-232, (1994).

[59]: Iftekhar S. et al., “Structural characterization of lanthanum aluminosilicate glasses”.

Journal of non-crystalline solids, 355 (43-44), pp. 2165-2174, (2009).

[60]: Iftekhar S. et al., “Properties and structures of RE2O3-Al2O3-SiO2 (RE = Y, Lu) glass probed by molecular dynamics simulations and solid-state NMR: the roles of aluminum and rare earth ions for dictating the microhardness”. The journal of physical chemistry, 116 (34), pp. 18394-18406, (2012).

164

[61]: Jaworski A., PhD “Structure of rare-earth aluminosilicate glasses probed by solid-state NMR spectroscopy and quantum chemical calculations”. Stockholm University, Stockholm, Sweden, (2016).

[62]: Arai K. et al., “Aluminum or phosphorus codoping effects on the fluorescence and structural properties of neodymium-doped silica glass”. Journal of applied physics, 59 (10), pp. 3430-3436, (1986).

[63]: Arai K. et al., “Electron-spin-echo envelope-modulation study of the distance between Nd3+ ions and Al3+ ions in the co-doped SiO2 glasses”. Journal of non-crystalline solids, 196, pp. 216-220, (1996).

[64]: Sen S., “Atomic environment of high-field strength Nd and Al cations as dopants and major components in silicate glasses: a Nd LIII-edge and Al K-edge X-ray absorption spectroscopic”. Journal of non-crystalline solids, 261 (1-3), pp. 226-236, (2000).

[65]: Sen S. et al., “Spatial distribution of Nd3+ dopant ions in vitreous silica: A pulsed electron paramagnetic resonance spectroscopic study”. Journal of applied physics, 89 (4), pp. 2304-2308, (2001).

[66]: Sen S. et al., “A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass”.

Journal of non-crystalline solids, 333 (1), pp. 22-27, (2004).

[67]: Sen S. et al., “Direct spectroscopic observation of the atomic-scale mechanisms of clustering and homogenization of rare-earth dopant ions in vitreous silica”. Physical review B, 74 (10), pp. 100201-1–100201-4, (2006).

[68]: Deschamps T. et al., “Clusters dissolution of Yb3+ in co-doped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening”. The journal of chemical physics, 136 (1), pp. 014503-1 – 014503-4, (2012).

[69]: Schaudel B., PhD “Caractérisation par luminescence coopérative d’agrégats de terres rares dans les verres d’oxyde”. Université Pierre et Marie Curie, Paris, France, (2000).

[70]: Wang X. et al., “Mechanism of cluster dissolution of Yb-doped high-silica lanthanum aluminosilicate glass: Investigation by spectroscopic and structural characterization”. Journal

of alloys and compounds, 695, pp. 2339-2346, (2017).

[71]: Vermillac M. et al., “Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium’s environment in silica-based optical fibres”. Optical materials, 68, pp. 24-28, (2017).

[72] : Chiesa M. et al., “Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation”. Journal of non-crystalline solids, 403, pp. 97-101, (2014).

165 [73]: Le Losq C. et al., “The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts”. Geochimica et cosmochimica acta, 126 (1), pp. 495-517, (2014).

[74]: Neuville D. et al., “Structure and properties of lead silicate glasses and melts”. To be published in Chemical Geology, (2017).

[75]: Neuville D. et al., “Advances in Raman spectroscopy applied to earth and material sciences”. Reviews in mineralogy and geochemistry, 78 (1), pp. 509-541, (2014).

[76]: Galeener F.L. et al., “Vibrational dynamics in 30Si-substituted vitreous SiO2”. Physical

review B, 27 (10), pp. 6199-6204, (1983).

[77]: McMillan P.F. et al., “A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature Raman spectroscopy”. Geochimica et cosmochimica acta, 58 (17), pp. 3653-3664, (1994).

[78]: Shibata N. et al., “Raman spectra of binary high silica glasses and fibers containing GeO2, P2O5 and B2O3”. Journal of non-crystalline solids, 45 (1), pp. 115-126, (1981).

[79]: Kingma K.J. et al., “Raman spectroscopy study of microcrystalline silica”. American

mineralogist, 79 (3), pp. 269-273, (1994).

[80]: Varshneya A.K., Fundamentals of inorganic glasses. Society of glass technology, 2006. [81]: Reisfeld R. et al., “Dependence of spontaneous emission and nonradiative relaxations of Tm3+ and Er3+ on glass host and temperature”. The Journal of Chemical Physics, 63 (9), pp. 4001-4012, (1975).

[82]: Jetschke S. et al., “Efficient Yb laser fibres with low photodarkening by optimization of the core composition”. Optics express, 16 (20), pp. 15540-15545, (2008).

[83]: Unger S. et al., “Influence of aluminum-phosphorus co-doping on optical properties of ytterbium-doped laser fibers”. Proceedings of SPIE, 7212, pp. 72121B-1–72121B-9, (2005). [84]: Ryan T.G. et al., “Cooperative luminescence and absorption in ytterbium doped aluminosilicate glass optical fibres and preforms”. Optics communications, 273 (1), pp. 159-161, (2007).

[85]: Paschotta R. et al., “Lifetime quenching in Yb-doped fibres”. Optics communications, 136 (5–6), pp. 375-378, (1997).

[86]: Toropov N.A. et al., “Silicate of the rare earth elements, communication 6: Phase

diagram of the binary systems Sm2O3-SiO2 and Yb2O3-SiO2 and comparison of these silicates with the other rare earth elements silicates which have been studied”. Russian chemical

167

Chapitre 4

De la matrice AlYb aux cœurs multi-composants pour la