• Aucun résultat trouvé

Magn Reson Imaging 31(8), 1399-1411 (2013)

Algorithm 1: SCAD-ADMM

IV. C. Future directions

As our results demonstrate, the SCAD regularization allows for more accurate reconstructions from highly undersampled data and hence reduced sampling rate for rapid data acquisitions. However, it is worth to mention the limitations and future outlook of the proposed SCAD-ADMM algorithm. In this study, we evaluated the proposed algorithm for Cartesian approximation of radial and spiral trajectories and compared its performance with l1-based ADMM. This approximation and synthetization of the k-spaces from magnitude images cannot accurately represent the actual data acquisition process in MRI. Nevertheless, our comparative results showed that the proposed regularization can improve the performance of l1-based regularization using adaptive identification and preservation of image features. Future work will focus on the evaluation of the proposed

104 regularization for non-Cartesian datasets and also parallel MR image reconstruction using AL methods [40].

Performance assessment of the SCAD norm in comparison with a family of reweighted l1 norms and l0

homotopic norms within the presented AL framework is also underway.

V. Conclusion

In this study, we proposed a new regularization technique for compressed sensing MRI through the linearization of the non-convex SCAD potential function in the framework of augmented Lagrangian methods. Using variable splitting technique, the CS-MRI problem was formulated as a constrained optimization problem and solved efficiently in the AL framework. We exploited discrete gradients and wavelet transforms as a sparsifying transform and demonstrated that the linearized SCAD regularization is an iteratively weighted l1 regularization with improved edge-preserving and sparsity-promoting properties. The performance of the algorithm was evaluated using phantom simulations and retrospective CS-MRI of clinical studies. It was found that the proposed regularization technique outperforms the conventional l1 regularization and can find applications in CS-MRI image reconstruction.

Acknowledgment

This work was supported by the Swiss National Science Foundation under grant SNSF 31003A-135576 and the Indo-Swiss Joint Research Programme ISJRP 138866.

105

References

[1] S. Plein, T. N. Bloomer, J. P. Ridgway, T. R. Jones, G. J. Bainbridge, and M. U. Sivananthan, “Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging,” J Magn Reson Imaging, vol. 14, pp. 230-236, 2001.

[2] G. McGibney, M. R. Smith, S. T. Nichols, and A. Crawley, “Quantitative evaluation of several partial fourier reconstruction algorithms used in mri,” Magnetic Resonance in Medicine, vol. 30, no. 1, pp. 51-59, 1993.

[3] D. J. Larkman, and R. G. Nunes, “Parallel magnetic resonance imaging,” Phys. Med. Biol., vol. 52, pp.

R15-55, 2007.

[4] M. Blaimer, F. Breuer, M. Mueller, R. M. Heidemann, M. A. Griswold, and P. M. Jakob, “SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method,” Top Magn Reson Imaging, vol. 15, pp.

223-236, 2004.

[5] K. P. Pruessmann, M. Weigher, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magn Reson Med, vol. 42, pp. 952-962, 1999.

[6] W. C. Karl, "Regularization in Image Restoration and Reconstruction," Handbook of Image and Video Processing, A. Bovik, ed., San Diego: Academic Press, 2000.

[7] Z.-P. Liang, R. Bammer, J. Jim, N. J. Pelc, and G. H. Glover, "Improved image reconstruction from sensitivity-encoded data by wavelet denoising and Tikhonov regularization." pp. 493-496.

[8] F. H. Lin, F. N. Wang, S. P. Ahlfors, M. S. Hamalainen, and J. W. Belliveau, “Parallel MRI reconstruction using variance partitioning regularization,” Magn Reson Med, vol. 58, pp. 735-744, 2007.

[9] W. E. Kyriakos, L. P. Panych, D. F. Kacher, C. F. Westin, S. M. Bao, R. V. Mulkern, and F. A. Jolesz,

“Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP),”

Magn Reson Med, vol. 44, pp. 301-308, 2000.

[10] L. Ying, B. Liu, M. C. Steckner, G. Wu, M. Wu, and S.-J. Li, “A statistical approach to SENSE regularization with arbitrary k-space trajectories,” Magn Reson Med, vol. 60, no. 2, pp. 414-421, 2008.

[11] M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging,” Magn Reson Med, vol. 58, pp. 1182-1195, 2007.

[12] H. Jung, K. Sung, K. Nayak, S. , E. Kim, Yeop , and J. C. Ye, “k-t FOCUSS: A General Compressed Sensing Framework for High Resolution Dynamic MRI,” Magn Reson Med, vol. 61, pp. 103-116, 2009.

[13] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in dynamic MRI,” Magn Reson Med, vol.

59, no. 2, pp. 365-373, 2008.

[14] M. Hong, Y. Yu, H. Wang, F. Liu, and S. Crozier, “Compressed sensing MRI with singular value decomposition-based sparsity basis,” Phys. Med. Biol., vol. 56, pp. 6311-6325, 2011.

[15] S. Ravishankar, and Y. Bresler, “MR Image Reconstruction From Highly Undersampled k-Space Data by Dictionary Learning,” IEEE Trans Image Process, vol. 30, no. 5, pp. 1028-1041, 2011.

[16] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans Inf Theory, vol. 52, pp. 489-509, 2006.

[17] D. Donoho, “Compressed sensing,” IEEE Trans Inf Theory, vol. 52, no. 4, pp. 1289-1306, 2006.

[18] E. Candès, and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Problems, vol.

23, no. 3, pp. 969, 2007.

[19] J. Trzasko, and A. Manduca, “Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic L0 Minimization,” IEEE Trans Med Imag, vol. 28, no. 1, pp. 106-121, 2009.

[20] S. J. M. Lustig M, Donoho D L and Pauly J M, “k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity,” in Proc. Intl. Soc. Mag. Reson. Med., Seattle, WA, 2006.

[21] C. Hu, X. Qu, D. Guo, L. Bao, and Z. Chen, “Wavelet-based edge correlation incorporated iterative reconstruction for undersampled MRI,” Magnetic Resonance Imaging, vol. 29, no. 7, pp. 907-915, 2011.

[22] M. Lustig, D. L. Donoho, and J. M. Pauly, “Rapid MR imaging with compressed sensing and randomly under-sampled 3DFT trajectories,” in Proc. Intl. Soc. Mag. Reson. Med., Seattle, WA, 2006.

[23] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint,” Magn Reson Med, vol. 57, no. 6, pp. 1086-1098, 2007.

[24] G. Adluru, C. McGann, P. Speier, E. G. Kholmovski, A. Shaaban, and E. V. R. DiBella, “Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging,” J Magn Reson Imaging, vol. 29, no. 2, pp. 466-473, 2009.

[25] L. Chen, G. Adluru, M. Schabel, C. McGann, and E. Dibella, “Myocardial perfusion MRI with an undersampled 3D stack-of-stars sequence,” Med Phys, vol. 39, no. 8, pp. 5204-5211, 2012.

[26] F. Knoll, C. Clason, K. Bredies, M. Uecker, and R. Stollberger, “Parallel imaging with nonlinear reconstruction using variational penalties,” Magn Reson Med, vol. 67, no. 1, pp. 34-41, 2012.

[27] J. X. Ji, Z. Chen, and L. Tao, “Compressed sensing parallel Magnetic Resonance Imaging,” in Proc. IEEE EMBS, 2008, pp. 1671-1674.

106 [28] B. Liu, K. King, M. Steckner, J. Xie, J. Sheng, and L. Ying, “Regularized sensitivity encoding (SENSE)

reconstruction using bregman iterations,” Magn Reson Med, vol. 61, no. 1, pp. 145-152, 2009.

[29] R. Otazo, D. Kim, L. Axel, and D. K. Sodickson, “Combination of Compressed Sensing and Parallel Imaging for Highly Accelerated First-Pass Cardiac Perfusion MRI,” Magn Reson Med, vol. 64, pp. 767-776, 2010.

[30] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing Sparsity by Reweighted L1 Minimization,” J Fourier Anal Appl, vol. 14, pp. 877-905, 2008.

[31] C.-H. Chang, and J. Ji, "Parallel Compressed Sensing MRI Using Reweighted L1 Minimization." p. 2866.

[32] C. Hu, X. Qu, D. Guo, L. Bao, S. Cai, and Z. Chen, "Undersampled MRI reconstruction using edge-weighted L1 norm minimization." p. 2832.

[33] M. Lustig, J. Velikina, A. Samsonov, C. Mistretta, J. M. Pauly, and M. Elad, "Coarse-to-fine Iterative Reweighted l1-norm Compressed Sensing for Dynamic Imaging." p. 4892.

[34] D. S. Weller, J. R. Polimeni, L. Grady, L. L. Wald, E. Adalsteinsson, and V. K. Goyal, "Evaluating sparsity penalty functions for combined compressed sensing and parallel MRI." pp. 1589-1592.

[35] R. Chartrand, “Exact Reconstruction of Sparse Signals via Nonconvex Minimization,” Signal Processing Letters, IEEE, vol. 14, no. 10, pp. 707-710, 2007.

[36] W. Yong, L. Dong, C. Yuchou, and L. Ying, "A hybrid total-variation minimization approach to compressed sensing." pp. 74-77.

[37] J. Fan, and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties,” J.

Amer. Statistical Assoc., vol. 96, no. 456, pp. 1348-1360, 2001.

[38] F. C. A. Teixeira, S. W. A. Bergen, and A. Antoniou, "Signal recovery method for compressive sensing using relaxation and second-order cone programming." pp. 2125-2128.

[39] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo, “Fast image recovery using variable splitting and constrained optimization,” IEEE Trans Image Process, vol. 19, no. 9, pp. 2345-56, Sep, 2010.

[40] S. Ramani, and J. A. Fessler, “Parallel MR Image Reconstruction Using Augmented Lagrangian Methods,” IEEE Trans Med Imag, vol. 30, no. 3, pp. 694-706, 2011.

[41] J. Nocedal, and S. J. Wright, Numerical Optimization, 2th ed.: Springer, 2006.

[42] M. Powell, "A method for nonlinear constraints in minimization problems," Optimization, R. Fletcher, ed., pp. 283-298, New York: Academic Press 1969.

[43] J. Eckstein, and D. Bertsekas, “On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators,” Mathematical Programming, vol. 5, pp. 293-318, 1992.

[44] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A New Alternating Minimization Algorithm for Total Variation Image Reconstruction,” SIAM J. Imaging Sciences, vol. 3, pp. 248-272, 2008.

[45] M. Akcakaya, S. Nam, T. Basha, V. Tarokh, W. J. Manning, and R. Nezafat, "Iterative Compressed Sensing Reconstruction for 3D Non-Cartesian Trajectories without Gridding & Regridding at Every Iteration." p. 2550.

[46] D. Hunter, and R. Li, “Variable selection using mm algorithms,” Ann. Statist. , vol. 33, pp. 1617-1642, 2005.

[47] H. Zou, and R. Li, “One-step sparse estimates in nonconcave penalized likelihood models,” Ann. Stat., vol. 36, pp. 1509-1533, 2008.

[48] A. Antoniadis, and J. Fan, “Regularization of wavelets approximations,” J. Am. Stat. Assoc., vol. 96, pp.

939-967, 2001.

[49] MRI UNBOUND, http://www.ismrm.org/mri_unbound/simulated.htm.

[50] BRAINWEB, http://www.bic.mni.mcgill.ca/brainweb/.

[51] W. Zhou, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans Image Process, vol. 13, no. 4, pp. 600-612, 2004.

[52] D. S. Lalush, and B. M. W. Tsui, “A fast and stable maximum a posteriori conjugate gradient reconstruction algorithm,” Med Phys, vol. 22, no. 8, pp. 1273-1284, 1995.

[53] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed Sensing MRI,” IEEE Signal Process Mag, vol. 25, no. 2, pp. 72-82, 2008.

[54] T. Blumensath, M. Yaghoobi, and M. E. Davies, "Iterative Hard Thresholding and L0 Regularisation."

pp. III-877-III-880.

[55] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse Reconstruction by Separable Approximation,” IEEE Trans Signal Process, vol. 57, no. 7, pp. 2479-2493, 2009.

[56] R. Chartrand, "Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data." pp. 262-265.

[57] S. Foucart, and M. Lai, “Sparsest solutions of undertermined linear systems via Lq-minimization for 0 <

q< 1,” Appl. Comput. Harmon. Anal., vol. 26, pp. 395-407, 2009.

[58] F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second order total generalized variation (TGV) for MRI,” Magn Reson Med, vol. 65, no. 2, pp. 480-491, 2011.

107

Chapter 7

Magnetic resonance imaging-guided attenuation