• Aucun résultat trouvé

III. Etudes des membranes natives de M smegmatis par RMN du solide

6. Analyses de RMN

i.

Cultures de bactéries marquées

13

C et fractionnement

Les conditions de culture sont les mêmes que celles décrites précédemment, seule la source de carbone diffère. Les essais ont été faits seulement sur M. smegmatis mc² 155 cultivée en présence de 4,7 g / 900 mL de 7H9 Middlebrook broth (Difco) additionné de 0,2 % de glycérol marqué uniformément au 13C.

Gradient 1 – gradient purification PM Gradient 2 – gradient purification MMCW

% Saccharose (p/v) Volume (mL) % Saccharose (p/v) Volume (mL)

10 1 10 1 20 1 30 2 30 2 36 1 33 2 40 1 36 2 42 2 40 1 45 2 50 1 50 1 60 1 60 1

Tableau 9 : Composition des gradients de saccharose permettant le fractionnement des membranes de M. smegmatis marquées 13C.

144 Concernant le fractionnement des bactéries, le protocole est identique à celui décrit précédemment. Le gradient permettant le fractionnement des bactéries a été modifié puisque les bactéries marquées 13C auront une densité modifiée.

ii.

Analyse des fractions membranaires

RMN du solide du

31

P

Les échantillons membranaires de C. glutamicum et M. smegmatis sont repris dans du tampon Tris HCl 20 mM pH8 additionné de 1 mM d’EDTA puis centrifugés à 100 000 g (TLA 100.4 Beckman Coulter). Les échantillons (environ 35mg de culot hydraté de MMCW et environ 25mg de culot hydraté de PM de chaque bactérie) sont ensuite transférés dans un rotor de 4mm de diamètre puis analysés. Les spectres 31P sont enregistrés sur un spectromètre RMN Avance II Bruker Biospin opérant à une fréquence de Larmor du proton à 500 MHz et équipé d’une sonde HR-MAS, 4mm (High resolution – magic angle spinning), en utilisant une séquence d’impulsion « écho de Hahn ». Les deux impulsions (5,3 µs pour l’impulsion /2) sont séparées par un délai de 20 µs. La vitesse de rotation de l’échantillon est contrôlée à 2 000 Hz +/- 1 Hz. Les données sont acquises à 278 K pour les fractions MMCW et à 293 K pour les fractions PM. Les spectres obtenus ont été calibrés en fixant la résonnance des protons des méthylènes des lipides à 1,25 ppm (calibration vs TMS) en tenant compte du rapport des fréquences de résonnance absolues des deux noyaux (1H et 31P).

RMN du solide du

13

C

Les culots de MMCW de M. smegmatis sont lavés deux fois avec du D2O (50 % dans de l’eau non deutérée) puis transféré dans la sonde RMN. L’échantillon est transféré dans un rotor de 1,3 mm de diamètre (4-5 µg de culot hydraté) et dans un rotor de 3,2 mm de diamètre (25 mg de culot hydraté). Les spectres 13C sont enregistrés sur un spectromètre RMN Avance III Bruker Biospin opérant à une fréquence de Larmor du proton à 700 MHz et équipé d’une sonde triple résonance ultra-fast-MAS (rotor 1,3 mm à une vitesse de rotation de 60 kHz) et d’une sonde triple résonance E-free-MAS (rotor 3,2 mm, à une vitesse de rotation de 12 kHz). Ces deux sondes ont des caractéristiques différentes, l’une permettant d’obtenir des spectres de meilleure résolution (vitesse de rotation plus élevée) et donnant la possibilité d’enregistrer des spectres en observant les déplacements chimiques protons. L’autre sonde permet d’enregistrer des spectres 13C avec une meilleure sensibilité (plus grande quantité d’échantillon dans la sonde). Les spectres sont acquis à 293 K et calibrés par rapport aux déplacements chimiques du TMS.

145

Bibliographie

147 Abel, L., J. El-Baghdadi, et al. (2014). "Human genetics of tuberculosis: a long and winding road." Philos

Trans R Soc Lond B Biol Sci 369(1645): 20130428.

Abrahams, K. A. and G. S. Besra (2016). "Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target." Parasitology: 1-18.

Adam, A., F. Ellouz, et al. (1975). "Peptidoglycan Adjuvants - Minimal Structure Required for Activity." Zeitschrift Fur Immunitats-Forschung Experimentelle Und Klinische Immunologie 149(2-4): 341-348.

Astarie-Dequeker, C., J. Nigou, et al. (2010). "The role of mycobacterial lipids in host pathogenesis." Drug Discovery Today: Disease Mechanisms 7(1): e33-e41.

Axelrod, S., H. Oschkinat, et al. (2008). "Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide." Cellular Microbiology 10(7): 1530-1545.

Backus, K. M., M. A. Dolan, et al. (2014). "The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions." Journal of Biological Chemistry 289(36): 25041-25053.

Ballou, C. E., E. Vilkas, et al. (1963). "Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG)." Journal of Biological Chemistry 238: 69- 76.

Bansal-Mutalik, R. and H. Nikaido (2011). "Quantitative lipid composition of cell envelopes of Corynebacterium glutamicum elucidated through reverse micelle extraction." Proc Natl Acad Sci U S A 108(37): 15360-15365.

Bansal-Mutalik, R. and H. Nikaido (2014). "Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides." Proc Natl Acad Sci U S A 111(13): 4958-4963.

Barry, C. E., 3rd, R. E. Lee, et al. (1998). "Mycolic acids: structure, biosynthesis and physiological functions." Prog Lipid Res 37(2-3): 143-179.

Behling, C. A., B. Bennett, et al. (1993). "Development of a Trehalose 6,6'-Dimycolate Model Which Explains Cord Formation by Mycobacterium-Tuberculosis." Infection and Immunity 61(6): 2296-2303.

Belisle, J. T. and P. J. Brennan (1989). "Chemical basis of rough and smooth variation in mycobacteria." Journal of Bacteriology 171(6): 3465-3470.

Belisle, J. T., V. D. Vissa, et al. (1997). "Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis." Science 276(5317): 1420-1422.

Bhatt, A., N. Fujiwara, et al. (2007). "Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice." Proc Natl Acad Sci U S A 104(12): 5157-5162.

Bigi, F., A. Alito, et al. (2000). "The gene encoding P27 lipoprotein and a putative antibiotic-resistance gene form an operon in Mycobacterium tuberculosis and Mycobacterium bovis." Microbiology

146 ( Pt 4): 1011-1018.

Bloch, H. (1950). "Studies on the virulence of tubercle bacilli; isolation and biological properties of a constituent of virulent organisms." Journal of Experimental Medicine 91(2): 197-218, pl. Bloch, K. (1977). "Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis." Adv

Enzymol Relat Areas Mol Biol 45: 1-84.

Boritsch, E. C., W. Frigui, et al. (2016). "pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence." Nature Microbiology 1: 15019.

Bosserman, R. E. and P. A. Champion (2017). "ESX systems and the Mycobacterial Cell Envelope: What's the connection?" Journal of Bacteriology.

Braibant, M., P. Lefevre, et al. (1996). "Identification of a second Mycobacterium tuberculosis gene cluster encoding proteins of an ABC phosphate transporter." Febs Letters 394(2): 206-212. Braibant, M., P. Lefevre, et al. (1996). "A Mycobacterium tuberculosis gene cluster encoding proteins

of a phosphate transporter homologous to the Escherichia coli Pst system." Gene 176(1-2): 171-176.

148 Brandt, L., J. F. Cunha, et al. (2002). "Failure of the Mycobacterium bovis BCG vaccine: Some species of environmental mycobacteria block multiplication of BCG and induction of protective immunity to tuberculosis." Infection and Immunity 70(2): 672-678.

Brennan, M. J. (2017). "The Enigmatic PE/PPE Multigene Family of Mycobacteria and Tuberculosis Vaccination." Infection and Immunity 85(6).

Brodin, P., Y. Poquet, et al. (2010). "High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling." Plos Pathogens 6(9): e1001100.

Camacho, L. R., P. Constant, et al. (2001). "Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis - Evidence that this lipid is involved in the cell wall permeability barrier." Journal of Biological Chemistry 276(23): 19845-19854.

Camacho, L. R., D. Ensergueix, et al. (1999). "Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis." Molecular Microbiology 34(2): 257-267.

Camacho, L. R., D. Ensergueix, et al. (1999). "Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis." Molecular Microbiology 34(2): 257-267.

Carel, C., J. Marcoux, et al. (2017). "Identification of specific posttranslational O-mycoloylations mediating protein targeting to the mycomembrane." Proc Natl Acad Sci U S A 114(16): 4231- 4236.

Carel, C., K. Nukdee, et al. (2014). "Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum." Plos One

9(5): e97148.

Casali, N. and L. W. Riley (2007). "A phylogenomic analysis of the Actinomycetales mce operons." Bmc Genomics 8: 60.

Chalut, C. (2016). "MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria." Tuberculosis (Edinb) 100: 32-45.

Chatterjee, D., K. Lowell, et al. (1992). "Lipoarabinomannan of Mycobacterium-Tuberculosis - Capping with Mannosyl Residues in Some Strains." Journal of Biological Chemistry 267(9): 6234-6239. Chiaradia, L., C. Lefebvre, et al. (2017). "Dissecting the mycobacterial cell envelope and defining the

composition of the native mycomembrane." Sci Rep 7(1): 12807.

Choi, K. H., L. Kremer, et al. (2000). "Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis." Journal of Biological Chemistry 275(36): 28201-28207.

Clifton, L. A., M. W. Skoda, et al. (2013). "Asymmetric phospholipid: lipopolysaccharide bilayers; a Gram-negative bacterial outer membrane mimic." Journal of the Royal Society Interface

10(89): 20130810.

Cole, S. T., K. Eiglmeier, et al. (2001). "Massive gene decay in the leprosy bacillus." Nature 409(6823): 1007-1011.

Constant, P., E. Perez, et al. (2002). "Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex - Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene." Journal of Biological Chemistry 277(41): 38148- 38158.

Converse, S. E., J. D. Mougous, et al. (2003). "MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence." Proceedings of the National Academy of Sciences of the United States of America 100(10): 6121-6126.

Cox, J. S., B. Chen, et al. (1999). "Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice." Nature 402(6757): 79-83.

Crick, D. and P. Brennan (2008). "Biosynthesis of the Arabinogalactan-Peptidoglycan Complex of

149 Crick, D. C., S. Mahapatra, et al. (2001). "Biosynthesis of the arabinogalactan-peptidoglycan complex

of Mycobacterium tuberculosis." Glycobiology 11(9): 107r-118r.

Daffé, M. (2000). "The mycobacterial antigen 85 complex - from structure to function and beyond." Trends Microbiol 8: 438-440.

Daffé, M. (2005). "The cell envelope of Corynebacteria." Handbook of Corynebacterium glutamicum 121-148.

Daffé, M. (2008). "The Global Architecture of the Mycobacterial Cell Envelope." The Mycobacterial Cell Envelope: 3-11.

Daffe, M., P. J. Brennan, et al. (1990). "Predominant Structural Features of the Cell-Wall Arabinogalactan of Mycobacterium-Tuberculosis as Revealed through Characterization of Oligoglycosyl Alditol Fragments by Gas-Chromatography Mass-Spectrometry and by H-1 and C-13 Nmr Analyses." Journal of Biological Chemistry 265(12): 6734-6743.

Daffe, M. and P. Draper (1998). "The envelope layers of mycobacteria with reference to their pathogenicity." Advances in Microbial Physiology, Vol 39 39: 131-203.

Daffe, M. and M. A. Laneelle (1988). "Distribution of Phthiocerol Diester, Phenolic Mycosides and Related-Compounds in Mycobacteria." Journal of General Microbiology 134: 2049-2055. Daffe, M. and M. A. Laneelle (1988). "Distribution of phthiocerol diester, phenolic mycosides and

related compounds in mycobacteria." Journal of General Microbiology 134(7): 2049-2055. Daffe, M., M. Mcneil, et al. (1993). "Major Structural Features of the Cell-Wall Arabinogalactans of

Mycobacterium, Rhodococcus, and Nocardia Spp." Carbohydrate Research 249(2): 383-398. Daniels, M. and A. B. Hill (1952). "Chemotherapy of pulmonary tuberculosis in young adults; an analysis

of the combined results of three Medical Research Council trials." Br Med J 1(4769): 1162- 1168.

Danilchanka, O., J. Sun, et al. (2014). "An outer membrane channel protein of Mycobacterium tuberculosis with exotoxin activity." Proc Natl Acad Sci U S A 111(18): 6750-6755.

Dautin, N., C. de Sousa-d'Auria, et al. (2017). "Mycoloyltransferases: A large and major family of enzymes shaping the cell envelope of Corynebacteriales." Biochimica Et Biophysica Acta

1861(1 Pt B): 3581-3592.

de Souza, G. A., N. A. Leversen, et al. (2011). "Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway." Journal of Proteomics 75(2): 502-510.

Demangel, C., T. Garnier, et al. (2005). "Differential effects of prior exposure to environmental mycobacteria on vaccination with Mycobacterium bovis BCG or a recombinant BCG strain expressing RD1 antigens." Infection and Immunity 73(4): 2190-2196.

Deshayes, C., D. Kocíncová, et al. (2008). "Glycopeptidolipids: a Complex Pathway for Small Pleiotropic Molecules." Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope: p 345-365. Dhariwal, K. R., A. Chander, et al. (1977). "Environmental Effects on Lipids of Mycobacterium-Phlei

Atcc354." Canadian Journal of Microbiology 23(1): 7-19.

Dhiman, R. K., P. Dinadayala, et al. (2011). "Lipoarabinomannan Localization and Abundance during Growth of Mycobacterium smegmatis." Journal of Bacteriology 193(20): 5802-5809.

Diacovich, L., D. L. Mitchell, et al. (2004). "Crystal structure of the beta-subunit of acyl-CoA carboxylase: structure-based engineering of substrate specificity." Biochemistry 43(44): 14027-14036. Diacovich, L., S. Peiru, et al. (2002). "Kinetic and structural analysis of a new group of Acyl-CoA

carboxylases found in Streptomyces coelicolor A3(2)." Journal of Biological Chemistry 277(34): 31228-31236.

Diaz-Silvestre, H., P. Espinosa-Cueto, et al. (2005). "The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria." Microb Pathog 39(3): 97-107.

Dinadayala, P., F. Laval, et al. (2003). "Tracking the putative biosynthetic precursors of oxygenated mycolates of Mycobacterium tuberculosis - Structural analysis of fatty acids of a mutant strain devoid of methoxy- and ketomycolates." Journal of Biological Chemistry 278(9): 7310-7319. Domenech, P., M. B. Reed, et al. (2005). "Contribution of the Mycobacterium tuberculosis MmpL

150 Domenech, P., M. B. Reed, et al. (2004). "The role of MmpL8 in sulfatide biogenesis and virulence of

Mycobacterium tuberculosis." Journal of Biological Chemistry 279(20): 21257-21265.

Drage, M. G., H. C. Tsai, et al. (2010). "Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2." Nat Struct Mol Biol 17(9): 1088-1095. Dubnau, E., J. Chan, et al. (2000). "Oxygenated mycolic acids are necessary for virulence of

Mycobacterium tuberculosis in mice." Molecular Microbiology 36(3): 630-637.

Dubnau, E., J. Chan, et al. (2000). "Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice." Molecular Microbiology 36(3): 630-637.

Engelhardt, H., C. Heinz, et al. (2002). "A tetrameric porin limits the cell wall permeability of Mycobacterium smegmatis." Journal of Biological Chemistry 277(40): 37567-37572.

Erbs, G., A. Silipo, et al. (2008). "Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity." Chemistry & Biology 15(5): 438-448.

Etienne, G., W. Malaga, et al. (2009). "Identification of the polyketide synthase involved in the biosynthesis of the surface-exposed lipooligosaccharides in mycobacteria." Journal of Bacteriology 191(8): 2613-2621.

Etienne, G., C. Villeneuve, et al. (2002). "The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis." Microbiology 148(Pt 10): 3089-3100.

Faller, M., M. Niederweis, et al. (2004). "The structure of a mycobacterial outer-membrane channel." Science 303(5661): 1189-1192.

Farrow, M. F. and E. J. Rubin (2008). "Function of a mycobacterial major facilitator superfamily pump requires a membrane-associated lipoprotein." Journal of Bacteriology 190(5): 1783-1791. Fedrizzi, T., C. J. Meehan, et al. (2017). "Genomic characterization of Nontuberculous Mycobacteria."

Sci Rep 7: 45258.

Ferguson, J. S., D. R. Voelker, et al. (1999). "Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages." Journal of Immunology 163(1): 312-321. Ferreras, J. A., K. L. Stirrett, et al. (2008). "Mycobacterial phenolic glycolipid virulence factor

biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation." Chemistry & Biology 15(1): 51-61.

Fine, P. E. (1995). "Variation in protection by BCG: implications of and for heterologous immunity." Lancet 346(8986): 1339-1345.

Fishbein, S., N. van Wyk, et al. (2015). "Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity." Molecular Microbiology 96(5): 901-916.

Forrellad, M. A., L. I. Klepp, et al. (2013). "Virulence factors of the Mycobacterium tuberculosis complex." Virulence 4(1): 3-66.

Forrellad, M. A., M. McNeil, et al. (2014). "Role of the Mce1 transporter in the lipid homeostasis of Mycobacterium tuberculosis." Tuberculosis (Edinb) 94(2): 170-177.

Fortune, S. M., A. Jaeger, et al. (2005). "Mutually dependent secretion of proteins required for mycobacterial virulence." Proc Natl Acad Sci U S A 102(30): 10676-10681.

Fossati, G., G. Izzo, et al. (2003). "Mycobacterium tuberculosis chaperonin 10 is secreted in the macrophage phagosome: is secretion due to dissociation and adoption of a partially helical structure at the membrane?" Journal of Bacteriology 185(14): 4256-4267.

Fukuda, T., T. Matsumura, et al. (2013). "Critical Roles for Lipomannan and Lipoarabinomannan in Cell Wall Integrity of Mycobacteria and Pathogenesis of Tuberculosis." Mbio 4(1).

Gao, L. Y., R. Groger, et al. (2003). "Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival." Infection and Immunity 71(2): 922-929. Gao, L. Y., F. Laval, et al. (2003). "Requirement for kasB in Mycobacterium mycolic acid biosynthesis,

cell wall impermeability and intracellular survival: implications for therapy." Molecular Microbiology 49(6): 1547-1563.

151 Garcia-Fernandez, J., K. Papavinasasundaram, et al. (2017). "Molecular and functional analysis of the

mce4 operon in Mycobacterium smegmatis." Environ Microbiol 19(9): 3689-3699.

Gavalda, S., M. Leger, et al. (2009). "The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis." Journal of Biological Chemistry 284(29): 19255-19264. Geijtenbeek, T. B., S. J. Van Vliet, et al. (2003). "Mycobacteria target DC-SIGN to suppress dendritic cell

function." Journal of Experimental Medicine 197(1): 7-17.

Gilleron, M., N. Himoudi, et al. (1997). "Mycobacterium smegmatis phosphoinositols- glyceroarabinomannans - Structure and localization of alkali-labile and alkali-stable phosphoinositides." Journal of Biological Chemistry 272(1): 117-124.

Gilleron, M., M. Jackson, et al. (2008). 6 Structure, Biosynthesis, and Activities of the Phosphatidyl- myo-Inositol-Based Lipoglycans. The Mycobacterial Cell Envelope, American Society of Microbiology.

Ginsberg, A. M., M. Ruhwald, et al. (2016). "TB vaccines in clinical development." Tuberculosis (Edinb)

99 Suppl 1: S16-20.

Glickman, M. S., S. M. Cahill, et al. (2001). "The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase." Journal of Biological Chemistry 276(3): 2228- 2233.

Glickman, M. S., J. S. Cox, et al. (2000). "A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis." Molecular Cell 5(4): 717- 727.

Goren, M. B., O. Brokl, et al. (1974). "Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid." Infection and Immunity 9(1): 150-158.

Green, E. R. and J. Mecsas (2016). "Bacterial Secretion Systems: An Overview." Microbiol Spectr 4(1). Groschel, M. I., F. Sayes, et al. (2016). "ESX secretion systems: mycobacterial evolution to counter host

immunity." Nat Rev Microbiol 14(11): 677-691.

Grzegorzewicz, A. E., C. de Sousa-d'Auria, et al. (2016). "Assembling of the Mycobacterium tuberculosis Cell Wall Core." Journal of Biological Chemistry 291(36): 18867-18879.

Gutierrez, M. C., P. Supply, et al. (2009). "Pathogenomics of mycobacteria." Genome Dyn 6: 198-210. Haites, R. E., Y. S. Morita, et al. (2005). "Function of phosphatidylinositol in mycobacteria." Journal of

Biological Chemistry 280(12): 10981-10987.

Hanekom, W. A., B. Abel, et al. (2007). "Immunological protection against tuberculosis." Samj South African Medical Journal 97(10): 973-977.

Hanks, J. H. (1961). "Capsules in electron micrographs of Mycobacterium leprae." Int J Lepr 29: 84-87. Hanks, J. H. (1961). "Significance of capsular components of Mycobacterium leprae and other

mycobacteria." Int J Lepr 29: 74-83.

Herrmann, J. L., P. O'Gaora, et al. (1996). "Bacterial glycoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis." Embo Journal

15(14): 3547-3554.

Hett, E. C., M. C. Chao, et al. (2007). "A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis." Molecular Microbiology 66(3): 658-668.

Hickey, T. B., L. M. Thorson, et al. (2009). "Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages." Infection and Immunity 77(8): 3389-3401.

Hoffmann, C., A. Leis, et al. (2008). "Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure." Proceedings of the National Academy of Sciences of the United States of America 105(10): 3963-3967.

Hoppe, H. C., B. J. de Wet, et al. (1997). "Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells." Infection and Immunity 65(9): 3896-3905.

152 Huc, E., X. Meniche, et al. (2010). "O-mycoloylated proteins from Corynebacterium: an unprecedented post-translational modification in bacteria." Journal of Biological Chemistry 285(29): 21908- 21912.

Hutchings, M. I., T. Palmer, et al. (2009). "Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em." Trends in Microbiology 17(1): 13-21.

Huygen, K. (2014). "The Immunodominant T-Cell Epitopes of the Mycolyl-Transferases of the Antigen 85 Complex of M. tuberculosis." Frontiers in Immunology 5: 321.

Indrigo, J., R. L. Hunter, et al. (2003). "Cord factor trehalose 6,6 '-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages." Microbiology-Sgm 149: 2049- 2059.

Indrigo, J., R. L. Hunter, Jr., et al. (2002). "Influence of trehalose 6,6'-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages." Microbiology 148(Pt 7): 1991-1998. Issa, H., E. Huc-Claustre, et al. (2017). "Click-chemistry approach to study mycoloylated proteins:

Evidence for PorB and PorC porins mycoloylation in Corynebacterium glutamicum." Plos One

12(2): e0171955.

Jackson, M. (2014). "The mycobacterial cell envelope-lipids." Cold Spring Harb Perspect Med 4(10). Jackson, M., D. C. Crick, et al. (2000). "Phosphatidylinositol is an essential phospholipid of

mycobacteria." Journal of Biological Chemistry 275(39): 30092-30099.

Jackson, M., C. Raynaud, et al. (1999). "Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope." Molecular Microbiology 31(5): 1573-1587.

Jamet, S., N. Slama, et al. (2015). "The Non-Essential Mycolic Acid Biosynthesis Genes hadA and hadC Contribute to the Physiology and Fitness of Mycobacterium smegmatis." Plos One 10(12): e0145883.

Jankute, M., J. A. Cox, et al. (2015). "Assembly of the Mycobacterial Cell Wall." Annu Rev Microbiol 69: 405-423.

Jarlier, V. and H. Nikaido (1990). "Permeability Barrier to Hydrophilic Solutes in Mycobacterium- Chelonei." Journal of Bacteriology 172(3): 1418-1423.

Kalscheuer, R., K. Syson, et al. (2010). "Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway." Nat Chem Biol 6(5): 376-384.

Katona, P. and J. Katona-Apte (2008). "The interaction between nutrition and infection." Clinical Infectious Diseases 46(10): 1582-1588.

Katti, M. K., G. Dai, et al. (2008). "The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells." Cellular Microbiology 10(6): 1286-1303.

Klepp, L. I., M. A. Forrellad, et al. (2012). "Impact of the deletion of the six mce operons in Mycobacterium smegmatis." Microbes and Infection 14(7-8): 590-599.

Koliwer-Brandl, H., K. Syson, et al. (2016). "Metabolic Network for the Biosynthesis of Intra- and Extracellular alpha-Glucans Required for Virulence of Mycobacterium tuberculosis." Plos Pathogens 12(8): e1005768.

Kordulakova, J., M. Gilleron, et al. (2002). "Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis - PimA is essential for growth of mycobacteria." Journal of Biological Chemistry 277(35): 31335-31344.

Kremer, L., L. G. Dover, et al. (2002). "Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis." Biochemical Journal 364(Pt 2): 423-430.

Kremer, L., K. M. Nampoothiri, et al. (2001). "Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II." Journal of Biological Chemistry 276(30): 27967-27974.

153 Kruh, N. A., J. Troudt, et al. (2010). "Portrait of a pathogen: the Mycobacterium tuberculosis proteome

in vivo." Plos One 5(11): e13938.

Kulchavenya, E. (2014). "Extrapulmonary tuberculosis: are statistical reports accurate?" Ther Adv Infect Dis 2(2): 61-70.

Laneelle, M. A., A. Launay, et al. (2012). "A novel mycolic acid species defines two novel genera of the Actinobacteria, Hoyosella and Amycolicicoccus." Microbiology-Sgm 158: 843-855.

Lathigra, R., Y. Zhang, et al. (1996). "Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis." Research in Microbiology 147(4): 237-249.

Lederer, E., A. Adam, et al. (1975). "Cell-Walls of Mycobacteria and Related Organisms - Chemistry and Immunostimulant Properties." Molecular and Cellular Biochemistry 7(2): 87-104.

Lee, K. S., V. S. Dubey, et al. (2007). "Diacyltrehalose of Mycobacterium tuberculosis inhibits lipopolysaccharide- and mycobacteria-induced proinflammatory cytokine production in human monocytic cells." Fems Microbiology Letters 267(1): 121-128.

Lee, R. E., W. Li, et al. (2005). "Rapid structural characterization of the arabinogalactan and lipoarabinomannan in live mycobacterial cells using 2D and 3D HR-MAS NMR: structural changes in the arabinan due to ethambutol treatment and gene mutation are observed." Glycobiology 15(2): 139-151.

Lee, Y. C. and C. E. Ballou (1964). "Structural Studies on the Myo-Inositol Mannodides from the