• Aucun résultat trouvé

NARROW-BAND ULTRA-LOW CURRENT MEASUREMENTS WITH A RF SQUID

N/A
N/A
Protected

Academic year: 2021

Partager "NARROW-BAND ULTRA-LOW CURRENT MEASUREMENTS WITH A RF SQUID"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00218023

https://hal.archives-ouvertes.fr/jpa-00218023

Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

NARROW-BAND ULTRA-LOW CURRENT MEASUREMENTS WITH A RF SQUID

F. Bordoni, P. Carelli, I. Modena, G. Romani

To cite this version:

F. Bordoni, P. Carelli, I. Modena, G. Romani. NARROW-BAND ULTRA-LOW CURRENT MEA-

SUREMENTS WITH A RF SQUID. Journal de Physique Colloques, 1978, 39 (C6), pp.C6-1213-C6-

1214. �10.1051/jphyscol:19786536�. �jpa-00218023�

(2)

NARROW-BAND ULTRA-LOW CURRENT MEASUREMENTS WITH A RF SQUID

F. Bordoni, P. Carelli , I. Modena and G.L. Roman!

Laboratovio Plasma Spasio - C.N.R. - C.P. 27-Fraseati . Italy

*Labovatovio Elettvonioa Stato Solido - C.N.R. Via Cineto Romano 42 - Rome - Italy

Abstract.- The use of a ferromagnetic transformer coupled to a SQUID, as previously described, per- mits to measure very low currents. A low loss ceramic core for the transformer has yielded to further

increase in the sensitivity of about two orders of magnitude in a narrow-band around a fixed frequen- cy. At present the achieved sensitivity of about 8 x 10-1* pA in 1 Hz bandwidth at 150 Hz.

The use of a superconducting magnetometer as a high sensitivity current detector has been propo- sed by some authors a few years ago /1,2,3/. More recently, by coupling a transformer with a ferroma- gnetic core to a rf SQUID / 4 / , we have enhanced the overall current*sensitivity up to very interesting figures /5/. Due to the particular ferromagnetic material employed /6/ the useful bandwidth of the device was constrained between dc and a corner fre- quency dictated by the strong frequency dependence of the relative permeability of the used core. In order to enhance the current sensitivity at a fixed frequency we inserted a tuning capacitor in the input circuit. However, due to the high value of the electrical conductivity of the core a large amount of eddy-current losses was present, limiting the Q of the urned circuit to not interesting va- lues. This drawback has been overcome by means of a suitable choice of a ceramic core for. the trans- former. We have tested a few commercially available ferrites in order to select those which preserve an acceptable value of the relative permeability at li- quid helium temperature. The chosen material has been used to make up a superconducting transformer coupled to the SUID as shown in figure 1. The cur- rent I (v) is supplied by a current generator I to the input circuit which consists of a capacitance C paralleled to the primary L (N turns) of the

transformer. The secondary winding L (N turns) is connected with the inductance L to obtain as usual a flux transformer. All winding are made of super- conducting wire. M ™ = K_p/L L is the mutual in- ductance between L and L , while M = K/L L is the

mutual inductance between L and the inductance of the SQUID, L.

A straightforward analysis /5/ of the circuit of figure 1 shows that, once the matching condition for the flux transformer is satisfied, i.e. L„ y L„

"in situ", the current sensitivity of the device is enhanced by a factor % - ^ — - — below the resonance frequency. At resonance a further gain is obtained, given by the factor of merit Q of the input circuit.

A typical experimental result obtained with this technique is shown in figure 2, where the in- put current i"(v), which causes the SQUID to slip one flux quantum, is reported versus frequency. Da- ta are taken with the following set of experimental parameters : C : 0.312 yF, NT = 8360, N = 6, KT p = 0.95, Lg = 10.5 liH.

All superconducting coils have been wound using a 50 ym formwar insulated Nb wire. One Fig. 1 : Schematic of the experimental arrangement used for narrow-band ultra-low current measurements.

The room temperature current generator I feeds the

"tuned" input circuit C,LT : Lj and Lp are wound over the ferromagnetic core. All inductances L^,. Lp

and Lg are made up with superconducting wire. For other symbols meaning see text.

JOURNAL DE PHYSIQUE

Colloque C6, supplément au n° 8, Tome 39, août 1978, page C6-1213

Résumé.- L'utilisation d'un transformateur à noyau ferromagnétique couplé à un SQUID permet de mesu- rer de très faibles courants, comme nous l'avons précédemment montré. L'utilisation d'un noyau céra- mique à faible pertes pour le transformateur a permis d'augmenter ultérieurement la sensibilité de presque deux ordres de grandeur dans une bande étroite autour d'une fréquence donnée. Actuellement on obtient une sensibilité de presque 8 x ÎO-1* pA dans une largeur de bande de J Hz à 150 Hz.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19786536

(3)

One P h i l l i p s " p o t c o r e " Ferroxcube 3B2 g r a d e h a s been used f o r t h e t r a n s f o r m e r : g e o m e t r i c a l dimen- s i o n s o f t h e c o r e o b v i o u s l y c o n s t r a i n e d t h e maximum number of t u r n s f o r t h e p r i m a r y winding L

T'

I

, c , , a , , ,

,

, , , c , c 1 ,

,

, a , , , a ,

1 10 100

12

' " "

FREQUENCY (Hz)

F i g . 2 : (*) : e x p e r i m e n t a l b e h a v i o r iomS v e r s u s f r e q u e n c y ; i o i s t h e c u r r e n t which, f l o w i n g i n t h e i n p u t "tuned" c i r c u i t c a u s e s t h e SQUID t o s l i p one f l u x quantum. E x p e r i m e n t a l v a l u e s of t h e r e l e v a n t p a r a m e t e r s a r e : NT = 8360, Np = 6, L = 10.5 pH, L = 4.2 x lo-'' H, KTp = 0.95, M = 5.75 x lo-' H and C = 0.312 pF.

( A ) : measured root-mean s q u a r e f l u x n o i s e v a l u e s

i n u n i t s of

@,,

p e r H Z ' ~ v e r s u s f r e q u e n c y .

A two-hole symmetric SQUID (L = 4.2 x 10-lo H) has been used t o o b t a i n a v a l u e f o r M a s l a r g e a s pos- s i b l e . With t h e v a l u e of t h e i n d u c t a n c e LS mentio- ned above we a c h i e v e d e x p e r i m e n t a l v a l u e f o r t h e mutual i n d u c t a n c e M = 5.75 x lo-' H. The measured v a l u e of i 0

2

22 PA/@ a t f r e q u e n c i e s below r e s o - 0 n a n c s w e l l a g r e e s w i t h t h e c a l c u l a t e d v a l u e i0

c 't

- - "

Np a 20 PA/@,- It i s e v i d e n t from d a t a f i - K~~ NT %

g u r e 2 t h a t an improvement i n c u r r e n t s e n s i t i v i t y of a b o u t two o r d e r s o f magnitude a t a f i x e d frequen- c y i s o b t a i n e d by means of r e s o n a n c e .

A s t h e u l t i m a t e performances of t h e system a r e de- termined by t h e s i g n a l t o n o i s e r a t i o , i t i s impor- t a n t t o know t h e o u p u t n o i s e spectrum. I n f i g u r e 2 we a l s o r e p o r t t h e measured o u t p u t n o i s e e x p r e s s e d

i n f l u x quantum u n i t s p e r v e r s u s f r e q u e n c y . Noise measurements have been performed s e n d i n g t h e

c e s s i v e l y s q u a r e d and i n t e g r a t e d . Data show t h a t t h e o u t p u t n o i s e i s m o d e r a t e l y dependent on t h e f r e q u e n c y : i t s v a l u e , a t r e s o n a n c e , i s o n l y a b o u t one o r d e r of magnitude l a r g e r t h a n t h e v a l u e o b t a i - n a b l e w i t h t h e SQUID n o t coupled t o a t r a n s f o r m e r . T h i s means t h a t , a t t h e r e s o n a n c e f r e q u e n c y , t h e minimum d e t e c t a b l e c u r r e n t , i n 1 Hz bandwidth, i s

i a 0 . 8 x A.

min 'L

The s e n s i t i v i t y of t h e d e v i c e i s l i m i t e d by t h e r e l a t i v e l y low v a l u e o f t h e f a c t o r o f m e r i t of t h e i n p u t c i r c u i t (Q

%

8 5 ) . T h i s drawback d o e s n ' t seem due t o l o s s e s i n t h e f e r r i t e c o r e . The proper- t i e s of t h e c e r a m i c c o r e a s g i v e n by f a c t o r y ' s spe- c i f i c a t i o n s s h o u l d y i e l d t o a Q s e v e r a l o r d e r of magnitude l a r g e r t h a n t h e measured one. Moreover t h e s m a l l Q-value c a n n o t b e due t o l o s s e s i n t h e c a p a c i t a n c e , b e c a u s e of t h e above mentioned beha- v i o r of t h e n o i s e v e r s u s f r e q u e n c y . We b e l i e v e t h a t t h e l i m i t a t i o n s t o t h e r e s o n a n t g a i n i n t h e i n p u t c i r c u i t may be j u s t i f i e d a s due t o an i n p u t d i s s i - p a t i v e term o f t h e SQUID, which s h o u l d b e r e p o r t e d i n t o t h e i n p u t c i r c u i t , i n c r e a s e d by a f a c t o r

%

N ~ . The a u t h o r s a r e i n d e b t e d t o P r o f . R.P. G i f f a r d f o r u s e f u l d i s c u s s i o n s .

R e f e r e n c e s

/ I / C l a r k e , J . , Tennant, W.E. and Woody, D . : J.

Appl. Phys.

41

C1971) 3859.

/ 2 / Davidson, A . , Newsbower, R.S. and B e a s l e y , M.R.

Rev. S c i . I n s t r u m .

45

(1974) 838.

/ 3 / C l a a s s e n , J . H . , J . Appl. Phys.

5

(1975) 2268 / 4 / C a r e l l i , P., Modena, I. and Romani, G.L., Ad-

vance i n Cryogenics E n g i n e e r i n g

2

(1978) 512.

/ 5 / Barbanera, S., C a r e l l i , P., Modena, I. and Romani, G.L., J . Appl. Phys. (1978) i n p r e s s . 161 Cryoperm 10 s u p p l i e d by Vacuumschmeltz G.M.B.H.

Hanau, W. Germany.

" l i n e a r i z e d " SQUID o u t p u t t o a l o c k - i n used a s a narrow-band a m p l i f i e r , t h e o u t p u t of which i s suc-

Références

Documents relatifs

H2CO and 03 have been measured regularly since October 1990 at the urban site of the Campus of the "Université Libre de Bruxelles", using the Differential Optical

It can be seen that when the VDF has an enhanced tail of suprathermal particles approximated by a kappa or Lorentzian function, the total density in the exosphere is

= 0.25 4lo This particularity is clearly observed for a reduced current.. Direct measurement at 35 kHz for an applied flux of 0.25 4lo [1] and 0.75 ~o [2], plotted with

The immediate aim of this project is to examine across cultures and religions the facets comprising the spirituality, religiousness and personal beliefs domain of quality of life

Below is the kinetic description of this device as shown in

A small second loop will then be sufficient for nul- ling the response to uniform fields (figure la) so that inhomogeneous fields will produce a large flux in the SQUID, even

T h e quantum mechanics and the exact details involved in t h e operation of the rf SQUID system will not be discussed here but can be found in many good references

/3/ used a SQUID to measure the change in the average value of the z-component of magnetization of a copper sample as the frequency of a transverse H field was swept