• Aucun résultat trouvé

Using Bayesian inference to recover the material parameters of a heterogeneous hyperelastic body

N/A
N/A
Protected

Academic year: 2021

Partager "Using Bayesian inference to recover the material parameters of a heterogeneous hyperelastic body"

Copied!
1
0
0

Texte intégral

(1)

ECCOMAS Congress 2016

Using Bayesian inference to recover the material parameters of a heterogeneous

hyperelastic body

Jack S. Hale1*, Patrick E. Farrell2, 3, Stéphane P. A. Bordas1, 4, 5 1

University of Luxembourg Research Unit in Engineering Sciences

6, rue Richard Coudenhove-Kalergi, L-1359, Luxembourg. {jack.hale,stephane.bordas}@uni.lu

2

University of Oxford Mathematical Institute

Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK. patrick.farrell@maths.ox.ac.uk

3

Simula Research Laboratory Centre for Biomedical Computing P.O.Box 134, 1325 Lysaker, Norway.

patrick@simula.no

4

University of Western Australia Intelligent Systems for Medicine Laboratory 35 Stirling Highway, Crawley, WA 6009, Australia.

stephane.bordas@uni.lu

5

Cardiff University

Institute of Mechanics & Advanced Materials The Queen's Building, The Parade, Cardiff, CF24 4AG, UK.

bordasS@cardiff.ac.uk

ABSTRACT

We present a method for calculating a Bayesian uncertainty estimate on the recovered material parameters of a heterogeneous geometrically non-linear hyperelastic body. We formulate the problem in the Bayesian inference framework [1]; given noisy and sparse observations of a body, some prior knowledge on the parameters and a parameter-to-observable map the goal is to recover the posterior distribution of the parameters given the observations. In this work we primarily focus on the challenges of developing dimension-independent algorithms in the context of very large inverse problems (tens to hundreds of thousands of parameters). Critical to the success of the method is viewing the problem in the correct infinite-dimensional function space setting [2]. With this goal in mind, we show the use of automatic symbolic differentiation techniques to construct high-order adjoint models [3], scalable maximum a posteriori (MAP) estimators, and efficient low-rank update methods to calculate credible regions on the posterior distribution [4].

References

[1] Statistical and Computational Inverse Problems, Kaipio, Jari, Somersalo, E., Springer, 2005.

[2] The Bayesian Approach To Inverse Problems, Masoumeh Dashti, Andrew M. Stuart, arXiv:1302.6989 [math.PR].

[3] Automated derivation of the adjoint of high-level transient finite element programs, Patrick E. Farrell, David A. Ham, Simon W. Funke and Marie E. Rognes, SIAM Journal on Scientific Computing 35.4, pp. C369-C393. doi:10.1137/120873558 [cs.MS].

[4] Optimal low-rank approximations of Bayesian linear inverse problems, Alessio Spantini, Antti Solonen, Tiangang Cui, James Martin, Luis Tenorio, Youssef Marzouk, arXiv:1407.3463 [math.NA].

Powered by TCPDF (www.tcpdf.org)

Références

Documents relatifs

Hussein Rappel, Lars Beex, Jack Hale, Stephane

An alternative identification method is the Bayesian approach which explicitly accounts for the experimental noise and consequently gives a probabilistic estimation of the

The parameters to be identified for the linear elastic-perfectly plastic model are the Young’s modulus and the initial yield stress which are stored in parameter vector x = E σ y0

Under the Bayesian methodology for statistical inverse problems, the posterior distribution encodes the probability of the material parameters given the available

the mean values of the maximum force and dissipated energy are higher for both cases with the identified joint PDF than for the cases with the true joint PDF. However, this is not

Q: What can we infer about the parameters inside the domain, just from displacement observations on

The Hamiltonian Monte Carlo algorithm and a method based on a system of dynamical stochastic differential equations were considered and applied to a simplified pyrolysis model to

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des