• Aucun résultat trouvé

Odd values of the Ramanujan <span class="mathjax-formula">$\tau $</span>-function

N/A
N/A
Protected

Academic year: 2022

Partager "Odd values of the Ramanujan <span class="mathjax-formula">$\tau $</span>-function"

Copied!
6
0
0

Texte intégral

(1)

B ULLETIN DE LA S. M. F.

M.R AM M URTY V.K UMAR M URTY T.N. S HOREY

Odd values of the Ramanujan τ-function

Bulletin de la S. M. F., tome 115 (1987), p. 391-395

< http://www.numdam.org/item?id=BSMF_1987__115__391_0 >

© Bulletin de la S. M. F., 1987, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » ( http:

//smf.emath.fr/Publications/Bulletin/Presentation.html ) implique l’accord avec les conditions générales d’utilisation ( http://www.numdam.org/

conditions ). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

ODD VALUES

OF THE RAMANUJAN T-FUNCTION

BY

M. R A M M U R T Y , V. K L M A R MURTY and T. N. SHOREY ( * )

R^SI'MF — Soil T la fonction de Ramanujan. Nous prouvons qu'il exisle une effeciivement calculable conslante (•>() ahsoluc. lei que si T ( n ) esi impaire. alors j T ( n ) j ^ ( l o g r t ) ' . Nous ulilisons les resuliats sur les formes lineaires des loganthmes.

ABSTRACT - Lei T denote Ramanujan's function. We prove that there exists an effecti- vely computable absolute constant t >0 such that if T ( n ) is odd. then J T ( n ) j ^ ( l o g n ) ' . We use results on linear forms in logarithms.

Ramanujan's T-function is defined by the relation

^n^n-^) 24 -!:., 1 ^

It is conjectured by ATKIN and SERRE (6, equation 4. 11 A;] that for any c>0.

l^)!^

92

^

In particular this implies that for any a, there are only finitely many primes p such that T(/?)=U. In this note. we study a related, though simpler, question. Our main result is the following.

( • » Textc re<;u Ie 7 avnl 19Hh

Research of the first two author ^a;» partial!) supported b\ NSERC grants L'0237 and lTn7? respecmelv

M R Ml im. Dt'fhirtmt'ni «»f Maihcmulu \. MtGtl! I niu'r\n\. Mimimil. CumiUii V K. Ml R T ^ . Department »*/ Mathematics Cimcnruta (.''mrm/fi. Montreal. Canada T N SHour^. .Srh«N»/ of Mathemaiu\. Tata InMnuie <ff Fundamental Research. B^mha\

4(NHR)5. InJtu

B i l l F T i s o r t A \ « x i r T i M A T H F M ^ T K ^ I f i»r » R A S ( ( - (X),^"'-y4K4 19K7().^ ?9j OS S2.50

^ (iaulhier-\(j(^rs

(3)

392 M. R. MURTY. V. K. MURTY AND T. N. SHOREY

THEOREM. — There exists an effectively computable absolute constant c > 0, such that for all positive integers n for which T (n) is odd^ we have

\x(n)\^(\ognY.

It follows from the theorem that for an odd integer a, the equation (1) T(n)==a

has only finitely many solutions.

As •:(?) is even, all integers satisfying (1) are squarefull (i.e. every prime divisor of n appears to at least the second power). We apply the theory of linear forms in logarithms to obtain lower bounds for T (/?'"), p a prime and m ^ 2, which, in particular gives the theorem.

We require several lemmas.

LEMMA 1. — T^)^ if and only ifm is odd and i(^)=0.

Proof. - Write T(/?)=ap+a^, a^/?

1172

^\ O^O^TI. Set

^(P)-- ' 1 , if mis even T (p), if m is odd and ^=exp(27ii7(w-h 1)). Then, as in Ramanujan [4],

(2) T^^a;'

1

-^

1

)^-^)

-T.WlT^^-^apX^-r^,)

^(P)^^^^

2

^

4

?

1

^

032

^^^^'

If the r-th factor is zero,

4cos

2

(Jl^/(w+l))=74-r

r

+2=T(^)

2

/p

l l

,

is both an algebraic integer and a rational number. Thus it is a rational integer and so must be one of 1, 2 or 3. But none of T^)

2

—/?

1 1

,

^(p)

2

-!?

11

, x^)

2

-^

11

can be zero, since i ( 2 ) = - 2 4 ^ ± 2

6

and T (3) = 252 ^ ± 3

6

. Thus T (p^ = 0 if and only if y^ (p) = 0.

The next three lemmas depend on the theory of linear forms in loga- rithms. They are stronger than needed for the proof of the theorem.

They may be of independent interest.

TOME 1 1 5 - 1987 - N 3

(4)

LEMMA 2. — There is an effectively computable absolute constant C, >0 such that for all m ^ 2, we have

l1^"')! ^ I V m ^ ) ! ^1 1 2 l ( n l'c l 1 0 9 m )-

Proo/. — Suppose that m is odd. If x(p)=0, there is nothing to prove.

If x(/?)=40, then we see from (2) that T (/?'") ^0. Then T ^ ^ W l ^ l a ^

1

- ^ '

1

! ! ^ - ^ ; -

1

^ , 1 1 2 ^ - U j ^ ^ l ^

^. _ ( 1 l , 2 » < » n - C ^ log m)

where in the final step, we used the fact that the height of oip ^p is bounded by a power of p and estimate of BAKER [1] on linear forms. If m is even, the required estimate follows similarly.

The constant Ci above is quite large and so the bound is non-trivial only for large w. The next lemma gives a bound which is non-trivial for bounded m.

LEMMA 3. — Let m ^ 6. There is an effectively computable number C^>0 depending only on m such that either T (//") = 0 or

IT^")!:^.

Proof. - Let w ^ 6 and xip^^O. Observe that T^VY^O?) is a binary form in T(/?

2

) and p

11

with at least three distinct linear factors. We apply an estimate of F E L D M A N [3] or BAKER (2} on the magnitude of integral solutions of Thue's equation to obtain the assertion of the lemma.

Remark. - In fact. we could have applied a theorem of ROTH (5] on the approximations of algebraic numbers by rationals to obtain the following stronger, but ineffective, version of Lemma 3: for every c>0. T^^sO or

I

1

/

7

"')! ^ . m ^

1 1 2 1 1

" * "

4 1

'

1

-

LEMMA 4. — There is an effectively computable absolute constant C3>0 such that

iT^l^dog/^. w = 2 . 4.

BULLETIN DE LA SOC1FTF. MATHFMATIVl I Of » » \ \ < »

(5)

394 M R. MURTY. V. K MURTY AND T. N. SHOREY

Further.

m i n f l T ^ l j T ^

5

) ! ) ^

1 1 2

whenever T(p)^0.

Proof. — Observe that

T ^ )2^1 1^ ^2)

and

( 2 T ( ^ )

2

- 3 ^

1 1

)

2

= 5 / ?

2 2

+ 4 T ^

4

) .

Now we apply an estimate of SPRINDZUK [7] on the magnitude of integral solutions of hyperelliptic equations to obtain the first inequality of the lemma. The second inequality follows immediately from the relations.

T^3)^^)^)2^?1 1)

T ^ ^ T W T ^ )2- ^1 1) ^ )2- ^1 1) .

and

Proof of theorem. — Let n be such that x{n) is odd. As remarked in the beginning, we see that n is squarefull. Therefore, if p and m are such that p"!!^, it follows from our lemmas that

iT^l^log/^

where C4>0 is an effectively computable absolute constant. Hence,

h^hn^j^i^oog^ 4

which implies the assertion of the theorem.

The same method can be used to study the Fourier coefficients of other modular forms. Indeed, let /be a cusp form of weight k ' ^ 4 for ro(AQ and write

/(--)=$::,, a^—

for the Fourier expansion at i x. Suppose that:

(i) / 1 5 a normalized eigenform for all the Hecke operators Tp for (/?, N)=l;

(ii) f does not have complex multiplication:

TOME 115 - 1987 - N ^

(6)

(iii) the a^ are rational integers;

(iv) a^± 2^ and a^ ± 3

k/2

. Then, for n squarefull, a^ = 0 or

kl^logn)

0

for some effectively computable constant D > 0 which depends only on/

REFERENCES

[1] BAKER (A.), A sharpening of the bounds for linear forms in logarithms I, Acia Anth., Vol. 21, 1972, pp. 1 1 7 - 1 2 9 .

[2] BAKER (A.), A sharpening of the bounds for linear forms in logarithms II. Acta Anth., Vol. 24, 1973, pp. 33-36.

[3] FELDAM (N. L.), An effective refinement of the exponent in Liouville's theorem (Russian).

Izv. Akad. Nauk., Vol. 35, 1 9 7 1 . pp. 973-900.

[4] RAMANUJAN (S.), On certain arithmetical functions, Trans. Camhr. Phil. Soc., Vol. 22, 1916, pp. 159-184.

[5] ROTH (K. F.), Rational approximations to algebraic numbers, Mathematika, Vol 2.

1955. pp. 1-20.

[6] SERRE (J.-P.), Divisibilne de ccriaincs fonciion anthmetiqucs, LEns. Math.. Vol. 22.

1976, pp. 227-260.

[7] SPRINDZUK (V. G.), Hyperelliplic diophantme equations and class numbers of ideals (Russian), Acta Arith., Vol. 30. 1976. pp. 95-108.

BULLETIN DE LA SOC1ETE MATHFMATIQI f M HIAS( I

Références

Documents relatifs

Mautner in [M] formulated several integral identities of functions on GL(2).. Although the proof of these GL(2) identities is rather elementary, let us list them,

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

The conjectures of Birch and Swinnerton-Dyer have stimulated recent interest in the arithmetic properties of special values of L-functions.. This goal has not been

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utili- sation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

DORR, The approximation o f solutions of elliptic boundary-values problems via the p-version ofthe finite element method, SIAM J. BABUSKA,' The h-p version of the finite element

Examples of GE-rings are (i) the classical Euclidean rings (cf. [17]), (ii) rings with a weak algorithm [5], in particular free associative algebras over a commutative field, and

real x, there exists an increasing computable sequence of rational numbers which converges to x h- monotonically.. Now we are going to construct an increasing computable sequence (x s