• Aucun résultat trouvé

Antibody-guided vaccine design : identification of protective epitopes

N/A
N/A
Protected

Academic year: 2021

Partager "Antibody-guided vaccine design : identification of protective epitopes"

Copied!
6
0
0

Texte intégral

(1)

Antibody-guided

vaccine

design:

identification

of

protective

epitopes

Antonio

Lanzavecchia

1,2

,

Alexander

Fru¨hwirth

1

,

Laurent

Perez

1

and

Davide

Corti

3

Inthelastdecade,progressintheanalysisofthehuman immuneresponseandintheisolationofhumanmonoclonal antibodieshaveprovidedaninnovativeapproachtothe identificationofprotectiveantigenswhicharethebasisforthe designofvaccinescapableofelicitingeffectiveB-cell immunity.Inthisreviewweillustrate,withrelevantexamples, thepowerofthisapproachthatcanrapidlyleadtothe identificationofprotectiveantigensincomplexpathogens, suchashumancytomegalovirusandPlasmodiumfalciparum, andofconservedsitesinhighlyvariableantigens,suchas influenzahemagglutininandHIV-1Env.Wewillalsodiscuss howthegenealogicalanalysisofantigen-stimulatedBcell clonesprovidesthebasistodelineatethebestsuitable prime-boostvaccinationstrategyfortheinductionofbroadly neutralizingantibodies.

Addresses

1InstituteforResearchinBiomedicine,ViaVincenzoVela6,6500 Bellinzona,Switzerland

2

InstituteofMicrobiology,ETHZu¨rich,Vladimir-Prelog-Weg1,8093 Zu¨rich,Switzerland

3HumabsBioMed,ViaMirasole1,6500Bellinzona,Switzerland

Correspondingauthor:Lanzavecchia,Antonio(lanzavecchia@irb.usi.ch)

CurrentOpinioninImmunology2016,41:62–67 ThisreviewcomesfromathemedissueonVaccines EditedbyRinoRappuoliandEnnioDeGregorio ForacompleteoverviewseetheIssueandtheEditorial

Availableonline22ndJune2016

http://dx.doi.org/10.1016/j.coi.2016.06.001

0952-7915/#2016TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).

Introduction

Whenourimmunesystemischallengedbyaninfectious

agent,apolyclonalantibodyresponseisgeneratedagainst

multipleproteinandnon-proteinantigens.Theextentof

theresponsereflectstheimmunogenicityofthe

individ-ualcomponents,whichisdeterminedbymultiplefactors

such as their abundance, their complexity and their

capacity to bind to cellular receptor and trigger innate

immunity, notto mention the influenceof pre-existing

immunity. In general, only a fraction of theantibodies

produced exerts protective activity by binding to

moleculesthat arerequired for invasion orvirulence or

byelicitingeffectormechanisms.Forinstance,thelargest

fraction of antibodies produced in response to a virus

infectionisdirectedagainstinternalorsurfaceproteinsin

adenaturedorpost-fusionconformationandistherefore

devoidof neutralizingactivity[1,2,3].Thus,the

immu-nogenicityof the most abundant proteins offers to the

pathogen the opportunity to limit the most effective

responsebyamechanismofantigenic competition.

In this review we discuss how recent advances in the

characterizationoftheneutralizingantibodyresponseto

humanpathogens,combinedwith advancedprotein

en-gineeringmethods,haveprovidedanewwaytosolvethe

problem of antigenic competition and have led to the

production of vaccine candidates that elicit antibody

responsesofhigh magnitudeandspecificactivity.

Analytic

vaccinology:

the

cases

of

HCMV

and

malaria

Humancytomegalovirus (HCMV)is a herpesvirus that

establishesalifelonginfectioninhealthyindividuals,but

causesseriouspathologyinthefetusandin

immunosup-pressed patients and has been associated with immune

senescenceandatherosclerosis[4].HCMVusesmultiple

glycoproteincomplexesforbindingandfusiontohostcells

andhasabroadcelltropism,beingabletoinfectfibroblasts

aswellasepithelial,endothelialandmyeloidcells[5].The

fusionproteingB hasbeen consideredthemost obvious

vaccinecandidatebutclinicaltrialswithrecombinantgB

(inthepost-fusion conformation)hasshownlimited

effi-cacy[6].ToidentifythemostpotentHCMVvaccine,an

analytic vaccinology approach was used to isolate, from

memoryBcellsofnaturallyinfecteddonors,alargepanel

of monoclonal antibodies selected for their capacity to

neutralize HCMV infection of multiple cell types [7]

(Figure 1). This approach led to the identification of a

newclassof antibodiesthatwere1000foldmorepotent

thatantibodiestogBin neutralizingHCMVinfectionof

epithelial,endothelialandmyeloidcells.Theseantibodies

weremappedtoninedistinctsitesonthe

gH/gL/UL128-131Acomplex,apentamericcomplexthatwaspreviously

foundtoberequiredforinfectionofthosecelltypes[8].

Theidentificationofthepentamerasthetargetofthemost

potentantibodieswassubsequentlyconfirmedbyseveral

studies[9,10,11].Asan example,asolublepentamer

producedbystablyatransfectedCHOcelllineelicitedin

(2)

and thatwere 300-1000fold higherthan those foundin

individualsthatrecoveredfromprimaryHCMVinfection

[10].Importantly,theantibodieselicitedbythe

penta-mer vaccine prevented cell-to-cell spread and viral

dis-semination from endothelial cells to leukocytes and

neutralizedinfectionofbothepithelialcellsandfibroblasts

duetotheproductionofantibodiestothegHglycoprotein,

whichisrequiredfor fibroblastsinfection.

Thetarget-agnosticapproachcanbeparticularlyusefulto

identify targets in complex pathogens such as bacteria

andparasites.Aninterestingexampleregardsthe

identi-fication of variant surface antigens (VSAs) which are

present on the surface of Plasmodium falciparum

(Pf)-infectederythrocytesandmediateadhesionto

endothe-lia,leadingtopathology.TheVSAsareencodedbymore

that 200 genes that are polymorphic and clonally

Figure1

1

2

3

1 Analytic vaccinology

2 Structu

re-based

vaccinology

3 Epitope-focused

vaccinol

ogy

Current Opinion in Immunology

Antibody-guidedvaccinedesign.Humanmonoclonalantibodiesisolatedfromimmunedonorsareusedtoidentifyprotectiveantigensand epitopes.Theantigensdiscoveredfromcomplexpathogensareproducedasrecombinantproteins(path1;e.g.HCMVpentamer)and,when necessary,engineeredforincreasedstability(path2;e.g.stabilizedpre-fusionHRSVFprotein)ormodifiedtoexpressparticulardomainsor epitopes(path3;e.g.head-lessHAorPalivizumabepitopedisplayedonVLPs).

(3)

expressed,thus providingthepathogenwithapowerful

mechanismofescapefromtheantibodyresponse.Human

monoclonalantibodiesisolatedfrommultiparouswomen

have been used to identify VAR2CSA as the primary

targetof antibodies that protect from placental malaria

[12].In amore recentstudy, Tan etal. isolated several

antibodiesthatbroadly reactwith erythrocytes infected

with differentPf isolatesand identified the target

anti-gensas distinct RIFINs[13].Surprisingly, these

anti-bodies acquired their broad reactivity through a novel

mechanismofinsertionofalargeDNAfragmentbetween

the V and DJ segments. The insert originates from

chromosome 19 and encodes the extracellular domain

of the collagen-binding inhibitory receptor LAIR-1,

which is both necessary and sufficient for binding to

RIFINs.Importantly,theLAIR-1domaincarriessomatic

mutationsthat abolishbinding to collagenandincrease

binding to infected erythrocytes. These findings

illus-trate,withabiologicallyrelevantexample,anovel

mech-anism of antibody diversification and demonstrate the

existence of conserved epitopes as candidates for the

developmentofamalariavaccine[14].

Structure-based

vaccinology:

the

case

of

HRSV

Humanrespiratory syncytial virus (HRSV)is the most

prominentviralagentofpediatricrespiratoryinfections.

Currently, the onlytreatment availableis Palivizumab

[15],ahumanizedmonoclonalantibodythatbindstoan

epitope that is conserved in the pre-fusion and

post-fusion conformation of the HRSV F protein [16]. On

the basis of the properties of Palivizumab, the initial

effortstowards anHRSV vaccine were focusedon the

use of the post-fusion F-protein that was engineered

to increase its solubility, resulting into highly stable

immunogen forms, that were tested either as soluble

antigens or displayed onto virus-like particles (VLPs)

[17,18].

Tworecentstudiesusedthestructuralinformationonthe

Palivizumablinearepitope,a24aminoacidhelix–loop–

helix structure, to develop epitope-focused vaccines.

Correiaet al.usedcomputationalproteindesignto

gen-eratestable protein scaffolds thataccurately mimicthe

Palivizumab epitope and, when chemically linked to

VLPs,induceHRSV-neutralizingantibodiesinmacaques

[19].Inasubsequentstudy,Milichandcoworkersused

anempiricalapproachbydirectlyinsertingthe

Palivizu-mabepitopeinVLPscomposedofwoodchuck

hepadna-virus core(WHcAg) protein, which were then selected

with the antibody and found to be immunogenic in

rodents [20]. While these studies provide for the first

timeaproof-of-principleforepitope-focusedvaccinology

(Figure1),itisnotevidentwhatcouldbetheadvantage

of limiting the response to a single epitope, given the

presence of several conservedepitopes in theHRSV F

protein.

The analysis ofthe humanantibodyresponse to HRSV

[21,22]andtheisolationofhumanneutralizing

monoclo-nalantibodies [23,24] showedthatthe largemajority of

HRSVneutralizingantibodieselicitedbynaturalinfection

arespecificforthepre-fusionFproteinconformationand,

unlikePalivizumab,donotcross-reactwiththepost-fusion

conformation.Onthebasisof theseobservationsandon

thecrystalstructureofthepre-fusionFproteinincomplex

withaneutralizingantibody[25],Kwongand coworkers

usedstructure-baseddesigntoproduceastabilizedHRSV

F protein through the introduction of cysteineresidues

and the filling of hydrophobic cavities [26,27]. This

protein(dubbedDS-Cav1)maintainedbindingtopotent

neutralizingantibodiesandwasabletoelicitinmiceand

macaques levels of HRSV-neutralizing antibodies that

exceededtheprotectivethreshold.Theseresultsprovide

aclearexampleofstructure-drivenvaccinologyto

gener-atestableimmunogenscapableof inducingapolyclonal

responsetomultiple neutralizingepitopesofviralfusion

proteins,overcomingtheproblemoftheirintrinsic

insta-bility(Figure1).

Epitope-focused

vaccinology:

the

cases

of

influenza

A

InfluenzaAandHIV-1aretheprototypesofvirusesthat

evade the antibody responseby continuously mutating

surfaceglycoproteins.However,certainsitesare

relative-lyconserved since they arerequired for infectivity and

fusionandcanbethereforeexploitedtodesignvaccines

capableofinducingbroadprotection.Inthelastdecade

theisolation of broadly neutralizingantibodieshas

pro-videdapowerfulplatformtoidentifysuchepitopes,thus

speedingupvaccinedesignefforts[28,29].

Thesialicacidbindingpocketofinfluenzahemagglutinin

(HA) is a conserved site that can be targeted by

anti-bodies,suchas CH65,thatcarryatthetipof HCDR3a

distinctmotifthatmimicssialicacid[30].Importantly,

theseantibodiesarisefromdiversegermlineoriginsand

affinity maturation pathways, suggesting that such an

antibodyresponse couldberapidlygenerated by

appro-priateimmunogens.However,thebreadthofthese

anti-bodiesissomewhatlimitedduetothepresenceofhighly

variableresiduesthatflankthereceptorbindingsite.

TheHAstemisamoreconservedregionwhichhasbeen

shownto berecognizedbydifferentfamiliesof broadly

neutralizingantibodiesthatrecognizemultiplesubtypes

ingroup1[31–34],group2[35]and,insomecases,both

group 1 and group 2 influenza A viruses [36,37,38].

Recently, Pappas et al. showed that most individuals

makeantibodiesthatbroadlyrecognizegroup1subtypes.

ThispublicantibodyresponsereliesexclusivelyontheH

chain,whichisencodedbyVH1-69alleleswith

phenyl-alanineatposition54andashortHCDR3withtyrosineat

position98.Interestingly,throughthe reconstructionof

(4)

found that high affinity binding was achieved in most

casesbyasinglemutation[39].Thesefindingsexplain

thehighfrequencyofantibodiesspecificforthestemof

group1HAs.Incontrast,antibodiesthatrecognizeboth

group 1 andgroup 2 HAs are muchless frequentsince

they use differentVH/VL genes. Furthermore they are

generated through a complex developmental pathway,

beingfirstselected for theirgerm-linereactivity against

group 1 and subsequently acquiring group 2 reactivity

throughsomaticmutations[36].Thelatterfinding

sug-geststhattherarepan-influenzaAneutralizingantibodies

might be elicited using an appropriate heterologous

prime-boost strategy.

TheidentificationoftheHAstemasaconservedsiteof

influenza HAhas raisedthepossibilityofdevelopinga

universalinfluenza vaccine [40].Two approacheshave

been developed towards thisambitious goal. Thefirst

involvesaprime-booststrategyusingchimericHA

mole-cules carryingthe samestem combined with

heterolo-gousheads[41,42]andisbasedontheclassicalprinciple

oftheoriginalantigenicsinthatrepresentsinthiscasea

natural mechanism of immunofocusing. The second

approach of epitope-focused vaccinology involves the

productionofheadlessHAs [43](Figure1).Inarecent

report, Yassine et al.used iterative cycles of

structure-baseddesign toproduceastabilizedstemimmunogen,

HA-SS,geneticallyfusedtoferritinnanoparticles,which

is recognized by stem-specific monoclonal antibodies

and elicits, in mice and ferrets, broadly cross-reactive

antibodies[44].Ingeneral,theassembliesofmultiple

copiesofsubunitantigensinwell-orderedarrays,suchas

in the case of ferritin orVLPs, offer the advantage of

mimickingtherepetitivenessofmostnaturalpathogens

surfaceproteinspotentiallyprovidingimprovedantigen

stability and immunogenicity [45,46]. In an another

study,Impagliazzoetal.usedarationaldesigncombined

withalibraryapproach togenerateaHAstemantigen

called mini-HAthat protectsmiceandnon-human

pri-matesfromlethalityandsymptoms[47].Itshouldbe

noted that in both studies the neutralizing antibody

levels induce by the vaccine were modest, suggesting

thatinvivoprotectionmaybeachievedthrougha

com-bination of neutralization and Fc-dependent effector

function, which is known to be elicited by anti-stem

antibodies [36,48,49]. The headless HA vaccine has

been shown to workfor group 1 influenza viruses and

should beextendedtogroup2 viruses,andpossiblyto

influenza B, in order to fully realize the dream of a

universalinfluenzavaccine.

Factors

that

limit

the

antibody

response:

the

challenge

of

HIV-1

Aneffectiveantibodyresponseislimitedbythe

frequen-cy ofantigen-specificBcells in thenaı¨ve repertoire,by

thenumberofmutationsrequiredtoreachhighaffinityor

breadth,andbytheavailabilityofTcellhelp.Thus,an

idealvaccineshouldcontainasufficientlyhighnumberof

T and B cell epitopes and should be formulated to

effectively prime the germinal center reaction [50]. In

addition,thefindingthatpreexistingimmunitycanshape

theantibodyresponsetonewstructurallyrelatedantigens

[51–53]suggestsmodalitiesofprime-boostimmunization

to optimizetheantibodyresponse[54].

Recent technological advances are increasinglyused to

investigate thedevelopmental pathways leading to

po-tentandbroadly neutralizingantibodies.Theseinclude

theindepthanalysisoftheantibodyresponsethroughthe

isolationofmultiplecellswithinthesamelineage,

possi-bly implemented by next generation sequencing and

deconvolutionoftheserumantibodyrepertoirethrough

LC–MS/MSanalysis[39,55,56].Thesystematic

recon-structionofthegenealogytreesofantibodylineageshas

shownthatneutralizingantibodiestoinfluenzaorHRSV

mature rapidly [39] or may not even need affinity

maturation, while somatic mutations are critical to

achieve breadth[23,36].Thesituationisstrikingly

dif-ferentinthecaseofHIV-1,wherevirusesandBcells

co-evolve over a period of years, leading to a slow and

infrequent development of broadly neutralizing

antibo-dies[57].Inthelastdecademanynewbroadly

neutraliz-ing antibodies of high potency have been isolated and

newsitesofvulnerabilityontheEnvproteinhavebeen

defined.Importantly,inthelastfewyearscryo-EMand

crystallographywereusedtofinallysolvethestructureof

a stabilized soluble Env trimer molecule (i.e. BG505

SOSIP), alone or in combination with several broadly

neutralizingantibodies[58–60].Theseconstructsarenow

considered a relevant mimic of the native functional

trimer being recognized preferentially by neutralizing

antibodies. The HIV-1 broadly neutralizing antibodies

are found only in a fraction of infected individual and

have a slow and complex developmental pathway or

derive from very rare precursors characterized by

ex-tremely long HCDR3. These observations have led to

the proposal of a prime-boost strategy with different

antigens that target the naı¨ve precursors and different

stagesoftheantibodydevelopmentalpathwaydefinedas

‘Bcell-lineage vaccinedesign’[61].

These hurdles represent a significant challenge to the

development of an effective HIV-1 vaccine. However,

these efforts contributed to the development of novel

vaccine design strategiesthatrepresentafertile ground

for significant advances in the generation of new and

bettervaccines againstotherpathogens.

Acknowledgements

WethankSiroBianchiforthehelpinthepreparationofthefigure.

TheworkinLanzavecchia’slaboratoryissupportedbytheEuropean ResearchCouncil(grantno.250348IMMUNExploreand670955 BROADimmune),theSwissNationalScienceFoundation(grantno. 160279),theSwissVaccineResearchInstitute.

(5)

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. Pinna D, Corti D, Jarrossay D, Sallusto F, Lanzavecchia A: Clonal dissectionofthehumanmemoryB-cellrepertoirefollowing infectionandvaccination.EurJImmunol2009,39:1260-1270.

2. CortiD,LangedijkJPM,HinzA,SeamanMS,VanzettaF, Fernandez-RodriguezBM,SilacciC,PinnaD,JarrossayD, Balla-JhagjhoorsinghSetal.:AnalysisofmemoryBcell responsesandisolationofnovelmonoclonalantibodieswith neutralizingbreadthfromHIV-1-infectedindividuals.PLoS ONE2010,5:e8805.

3. Po¨tzschS,SpindlerN,WiegersA-K,FischT,Ru¨ckerP,StichtH, GriebN,BarotiT,WeiselF,StammingerTetal.:Bcellrepertoire analysisidentifiesnewantigenicdomainsonglycoproteinBof humancytomegaloviruswhicharetargetofneutralizing antibodies. PLoS Pathog 2011, 7:e1002172.

4. Kenneson A, Cannon MJ: Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 2007, 17:253-276.

5. Compton T: Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol 2004, 14:5-8.

6. PassRF,ZhangC,EvansA,SimpsonT,AndrewsW,HuangM-L, CoreyL,HillJ,DavisE,FlaniganCetal.:Vaccinepreventionof maternalcytomegalovirusinfection.NEnglJMed2009, 360:1191-1199.

7. MacagnoA,BernasconiNL,VanzettaF,DanderE,SarasiniA, RevelloMG,GernaG,SallustoF,LanzavecchiaA:Isolationof humanmonoclonalantibodiesthatpotentlyneutralizehuman cytomegalovirusinfectionbytargetingdifferentepitopeson thegH/gL/UL128-131Acomplex.JVirol2010,84:1005-1013.

8. WangD,ShenkT:Humancytomegalovirusvirionprotein complexrequiredforepithelialandendothelialcelltropism. Proc Natl Acad Sci U S A 2005, 102:18153-18158.

9. Loughney JW, Rustandi RR, Wang D, Troutman MC, Dick LW, Li G, Liu Z, Li F, Freed DC, Price CE et al.: Soluble human

cytomegalovirus gH/gL/pUL128-131 pentameric complex, but not gH/gL, inhibits viral entry to epithelial cells and presents dominant native neutralizing epitopes. J Biol Chem 2015, 290:15985-15995.

10. 

Kabanova A, Perez L, Lilleri D, Marcandalli J, Agatic G, Becattini S, Preite S, Fuschillo D, Percivalle E, Sallusto F et al.: Antibody-drivendesignofahumancytomegalovirusgHgLpUL128L subunitvaccinethatselectivelyelicitspotentneutralizing antibodies.ProcNatlAcadSciUSA2014,111:17965-17970.

With[11]providesevidencefortheimmunogenicityofaHCMV penta-mericvaccine.

11. 

HofmannI,WenY,CiferriC,SchulzeA,Fu¨hnerV,LeongM, GerberA,GerreinR,NandiA,LiljaAEetal.:Expressionofthe humancytomegaloviruspentamercomplexforvaccineusein aCHOsystem.BiotechnolBioeng2015,112:2505-2515.

With[10]providesevidencefortheimmunogenicityofaHCMV penta-mericvaccine.

12. BarfodL,BernasconiNL,Dahlba¨ckM,JarrossayD,AndersenPH, Salanti A, Ofori MF, Turner L, Resende M, Nielsen MA et al.: Human pregnancy-associated malaria-specific B cells target polymorphic, conformational epitopes in VAR2CSA. Mol Microbiol 2006, 63:335-347.

13. 

Tan J, Pieper K, Piccoli L, Abdi A, Foglierini M, Geiger R, Maria Tully C, Tully CM, Jarrossay D, Ndungu FM et al.: A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 2015, 529:105-109.

Broadlyreactiveantibodies to malaria antigensgenerated by anew mechanismofDNAtransposition.

14. RobbianiDF,NussenzweigRS:Anewwaytodiversify antibodiesbyDNAtransposition.Cell2016,164:601-602.

15. Palivizumab,ahumanizedrespiratorysyncytialvirus monoclonalantibody,reduceshospitalizationfrom respiratorysyncytialvirusinfectioninhigh-riskinfants. Pediatrics1998,102:531-537.

16. McLellanJS,YangY,GrahamBS,KwongPD:Structureof respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol 2011, 85:7788-7796.

17. Swanson KA, Settembre EC, Shaw CA, Dey AK, Rappuoli R, Mandl CW, Dormitzer PR, Carfi A: Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc Natl Acad Sci U S A 2011, 108:9619-9624.

18. Smith G, Raghunandan R, Wu Y, Liu Y, Massare M, Nathan M, ZhouB,LuH,BoddapatiS,LiJetal.:Respiratorysyncytialvirus fusionglycoproteinexpressedininsectcellsformprotein nanoparticlesthatinduceprotectiveimmunityincottonrats. PLoSONE2012,7:e50852.

19. 

CorreiaBE,BatesJT,LoomisRJ,BaneyxG,CarricoC,JardineJG, RupertP,CorrentiC,KalyuzhniyO,VittalVetal.:Proofof principleforepitope-focusedvaccinedesign.Nature2014, 507:201-206.

Togetherwith[20]providesanexampleofepitope-focusedvaccinology. 20.



SchickliJH,WhitacreDC,TangRS,KaurJ,LawlorH,PetersCJ, JonesJE,PetersonDL,McCarthyMP,VanNestGetal.: Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J Clin Invest 2015, 125:1637-1647.

Togetherwith[19]providesanexampleofepitope-focusedvaccinology.

21. Magro M, Mas V, Chappell K, Va´zquez M, Cano O, Luque D, Terro´n MC, Melero JA, Palomo C: Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc Natl Acad Sci U S A 2012, 109:3089-3094.

22. NgwutaJO,ChenM,ModjarradK,JoyceMG,KanekiyoM, KumarA,YassineHM,MoinSM,KillikellyAM,ChuangG-Yetal.: PrefusionF-specificantibodiesdeterminethemagnitudeof RSVneutralizingactivityinhumansera.SciTranslMed2015,7 309ra162–309ra162.

23. CortiD,BianchiS,VanzettaF,MinolaA,PerezL,AgaticG, GuarinoB,SilacciC,MarcandalliJ,MarslandBJetal.: Cross-neutralizationoffourparamyxovirusesbyahuman monoclonalantibody.Nature2013,501:439-443.

24. KwakkenbosMJ,DiehlSA,YasudaE,BakkerAQ,

vanGeelenCMM,LukensMV,vanBleekGM,WidjojoatmodjoMN, Bogers WMJM, Mei H et al.: Generation of stable monoclonal antibody-producing B cell receptor–positive human memory B cells by genetic programming. Nat Med 2009, 16:123-128.

25. McLellan JS, Chen M, Leung S, Graepel KW, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T et al.: Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 2013, 340:1113-1117.

26. 

McLellanJS,ChenM,JoyceMG,SastryM,Stewart-JonesGBE, YangY,ZhangB,ChenL,SrivatsanS,ZhengAetal.: Structure-baseddesignofafusionglycoproteinvaccineforrespiratory syncytialvirus.Science2013,342:592-598.

Aremarkable exampleofstructure-baseddesignofa stabilized pre-fusionRSVFproteinvaccine.

27. Stewart-JonesGBE,ThomasPV,ChenM,DruzA,JoyceMG, KongW-P,SastryM,SotoC,YangY,ZhangBetal.:Acysteine zipperstabilizesapre-fusionFglycoproteinvaccinefor respiratorysyncytialvirus.PLOSONE2015,10:e0128779.

28. CortiD,LanzavecchiaA:Broadlyneutralizingantiviral antibodies.AnnuRevImmunol2013,31:705-742.

29. Burton DR, Hangartner L: Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu Rev Immunol 2016, 34:635-659.

30. 

Schmidt AG, Therkelsen MD, Stewart S, Kepler TB, Liao H-X, Moody MA, Haynes BF, Harrison SC: Viral receptor-binding site antibodies with diverse germline origins. Cell 2015, 161:1-18.

Describesacommonmotifusedbyantibodiesthatbindtothereceptor bindingsiteofinfluenzaHA.

(6)

31. ThrosbyM,vandenBrinkE,JongeneelenM,PoonLLM,AlardP, CornelissenL,BakkerA,CoxF,vanDeventerE,GuanYetal.: Heterosubtypicneutralizingmonoclonalantibodies cross-protectiveagainstH5N1andH1N1recoveredfromhuman IgM+memoryBcells.PLoSONE2008,3:e3942-e4015.

32. Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen L-M, Santelli E, Stec B, Cadwell G, Ali M et al.: Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 2009, 16:265-273.

33. Corti D, Suguitan AL, Pinna D, Silacci C,

Fernandez-Rodriguez BM, Vanzetta F, Santos C, Luke CJ, Torres-Velez FJ, Temperton NJ et al.: Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 2010, 120:1663-1673.

34. WrammertJ,KoutsonanosD,LiG-M,EdupugantiS,SuiJ, MorrisseyM,McCauslandM,SkountzouI,HornigM,LipkinWI etal.:Broadlycross-reactiveantibodiesdominatethehuman Bcellresponseagainst2009pandemicH1N1influenzavirus infection.JExpMed2011,208:181-193.

35. EkiertDC,FriesenRHE,BhabhaG,KwaksT,JongeneelenM, YuW,OphorstC,CoxF,KorseHJWM,BrandenburgBetal.:A highlyconservedneutralizingepitopeongroup2influenzaA viruses.Science2011,333:843-850.

36. 

CortiD,VossJ,GamblinSJ,CodoniG,MacagnoA,JarrossayD, VachieriSG,PinnaD,MinolaA,VanzettaFetal.:Aneutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011, 333:850-856.

Firstexampleofapan-influenzaAneutralizingantibody. 37. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R,

Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M et al.: Highly conserved protective epitopes on influenza B viruses. Science 2012, 337:1343-1348.

38. NakamuraG,ChaiN,ParkS,ChiangN,LinZ,ChiuH,FongR, YanD,KimJ,ZhangJetal.:Aninvivohuman-plasmablast enrichmenttechniqueallowsrapididentificationof therapeuticinfluenzaAantibodies.CellHostMicrobe2013, 14:93-103.

39. 

PappasL,FoglieriniM,PiccoliL,KallewaardNL,TurriniF, SilacciC,Fernandez-RodriguezB,AgaticG,Giacchetto-SasselliI, PellicciottaGetal.:Rapiddevelopmentofbroadlyinfluenza neutralizingantibodiesthroughredundantmutations.Nature 2014,516:418-422.

Describes the requirements and developmental pathway of broadly influenzaneutralizingantibodies.

40. Yewdell JW: To dream the impossible dream: universal influenza vaccination. Curr Opin Virol 2013, 3:316-321.

41. Hai R, Krammer F, Tan GS, Pica N, Eggink D, Maamary J, Margine I, Albrecht RA, Palese P: Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 2012, 86:5774-5781.

42. KrammerF,PaleseP:Universalinfluenzavirusvaccines:need forclinicaltrials.NatImmunol2014,15:3-5.

43. SteelJ,LowenAC,WangTT,YondolaM,GaoQ,HayeK, Garcı´a-SastreA,PaleseP:Influenzavirusvaccinebasedonthe conservedhemagglutininstalkdomain.mBio2010,1e00018-10.

44. 

YassineHM,BoyingtonJC,McTamneyPM,WeiC-J,KanekiyoM, KongW-P,GallagherJR,WangL,ZhangY,JoyceMGetal.: Hemagglutinin-stemnanoparticlesgenerateheterosubtypic influenzaprotection.NatMed2015,21:1065-1070.

With[47] showsan exampleof epitope-focused vaccine basedon influenzaHAstem.

45. Lo´pez-SagasetaJ,MalitoE,RappuoliR,BottomleyMJ: Self-assembling protein nanoparticles in the design of vaccines. Comput Struct Biotechnol J 2016, 14:58-68.

46. KingNP,BaleJB,ShefflerW,McNamaraDE,GonenS,GonenT, YeatesTO,BakerD:Accuratedesignofco-assembling multi-componentproteinnanomaterials.Nature2014,510:103-108.

47. 

ImpagliazzoA,MilderF,KuipersH,WagnerMV,ZhuX, HoffmanRMB,vanMeersbergenR,HuizinghJ,WanningenP, Verspuij J et al.: A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349:1301-1306.

With[44]shows an exampleofepitope-focused vaccine based on

influenzaHAstem.

48. DiLillo DJ, Tan GS, Palese P, Ravetch JV: Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgR interactions for protection against influenza virus in vivo. Nat Med 2014, 20:143-151.

49. DiLilloDJ,PaleseP,WilsonPC,RavetchJV:Broadlyneutralizing anti-influenzaantibodiesrequireFcreceptorengagementfor invivoprotection.JClinInvest2016,126:605-610.

50. VictoraGD,NussenzweigRS:Germinalcenters.AnnuRev Immunol2012,30:429-457.

51. AndrewsSF,HuangY,KaurK,PopovaLI,HoIY,PauliNT, HenryDunandCJ,TaylorWM,LimS,HuangMetal.:Immune historyprofoundlyaffectsbroadlyprotectiveBcellresponses toinfluenza.SciTranslMed2015,7316ra192–316ra192.

52. AndrewsSF,KaurK,PauliNT,HuangM,HuangY,WilsonPC: High preexisting serological antibody levels correlate with diversification of the influenza vaccine response. J Virol 2015, 89:3308-3317.

53. Huang K-YA, Rijal P, Schimanski L, Powell TJ, Lin T-Y, McCauley JW, Daniels RS, Townsend AR: Focused antibody response to influenza linked to antigenic drift. J Clin Invest 2015, 125:2631-2645.

54. WangS,Mata-FinkJ,KriegsmanB,HansonM,IrvineDJ, EisenHN,BurtonDR,WittrupKD,KardarM,ChakrabortyAK: Manipulatingtheselectionforcesduringaffinitymaturationto generatecross-reactiveHIVantibodies.Cell2015,160: 785-797.

55. WuX,ZhouT,ZhuJ,ZhangB,GeorgievI,WangC,ChenX, LongoNS,LouderM,McKeeKetal.:FocusedevolutionofHIV-1 neutralizingantibodiesrevealedbystructuresanddeep sequencing.Science2011,333:1593-1602.

56. IppolitoGC,BeausangJ,BusseCE,WardemannH,QuakeSR, GeorgiouG:Thepromiseandchallengeofhigh-throughput sequencingoftheantibodyrepertoire.NatBiotechnol2014, 32:158-168.

57. Liao H-X, Lynch R, Zhou T, Gao F, MunirAlam S, Boyd SD, Fire AZ, Roskin KM, Schramm CA, Zhang Z et al.: Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 2013, 496:469-476.

58. Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, Klasse PJ, Burton DR, Sanders RW, Moore JP et al.: Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 2013, 342:1477-1483.

59. LyumkisD,JulienJP,deValN,CupoA,PotterCS,KlassePJ, BurtonDR,SandersRW,MooreJP,CarragherBetal.:Cryo-EM structureofafullyglycosylatedsolublecleavedHIV-1 envelopetrimer.Science2013,342:1484-1490.

60. PanceraM,ZhouT,DruzA,GeorgievIS,SotoC,GormanJ, HuangJ,AcharyaP,ChuangG-Y,OfekGetal.:Structureand immunerecognitionoftrimericpre-fusionHIV-1Env.Nature 2014,514:1-24.

61. 

HaynesBF,KelsoeG,HarrisonSC,KeplerTB:B-cell-lineage immunogendesigninvaccinedevelopmentwithHIV-1asa case study. Nat Biotechnol 2012, 30:423-433.

Références

Documents relatifs

Key aspects for their analysis and behavioral assessment are re- ported from the literature, giving evidence of material sen- sitivity to high temperatures, as well as presenting

Mites fed on hens vaccinated with Deg-CALU showed average oviposition of 0.62 ( ± 0.1) eggs per viable fed female (Figure 8B) mite while for those vaccinated with Rhm-SUB

The tobacco industry is unrelenting in its attempts to draw in new customers, grow its profits and undermine tobacco control efforts.. It monitors our activities and efforts so that

ERRATUM ON “ENTROPY-ENERGY INEQUALITIES AND IMPROVED CONVERGENCE RATES FOR NONLINEAR..

The decisions ladder from the SOCA phase (see Figure 7) led the development of the interfaces by capturing the information requirements for the actors, indicating the

In the first bioassay, tyndallization had a stronger impact when applied to PiF1s, with a lower number of healthy plants as a result of wood fiber tyndallization.. That is why that

(3) To address the inverse classification problem, we adopt a pragmatic approach based on sensitivity analysis [17][18][19], introducing indicators that quantify

Han et al., showed that transfer of β-1, 2-mannotriose [β-(Man) 3 ]-specific IgM MAbs enhance the resistance to disseminated candidiasis in normal, SCID and neutropenic mice,