• Aucun résultat trouvé

Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops

N/A
N/A
Protected

Academic year: 2021

Partager "Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-01523673

https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-01523673

Submitted on 18 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops

Virginie Montagne, Hervé Capiaux, Patrice Cannavo, Sylvain Charpentier, Sophie Renaud, Emilie Liatard, Claire Grosbellet, Thierry Lebeau

To cite this version:

Virginie Montagne, Hervé Capiaux, Patrice Cannavo, Sylvain Charpentier, Sophie Renaud, et al..

Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops. Scientia

Horticulturae, Elsevier, 2016, 206, pp.62-70. �10.1016/j.scienta.2016.04.035�. �hal-01523673�

(2)

ContentslistsavailableatScienceDirect

Scientia Horticulturae

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops

Virginie Montagne

a,b,c,d,∗

, Hervé Capiaux

b

, Patrice Cannavo

b

, Sylvain Charpentier

b

, Sophie Renaud

c

, Emilie Liatard

c

, Claire Grosbellet

c

, Thierry Lebeau

d,∗∗

aPlateformed’AnalyseMoléculaireBiodiversité-Environnement,IUT,85035LaRochesurYon,France

bIRSTV-AGROCAMPUSOUEST,UPEPHor,49042Angers,France

cFLORENTAISEcompany,44850Saint-MarsduDésert,France

dUMR6112CNRS,LPG,44322Nantes,France

a r t i c l e i n f o

Articlehistory:

Received21December2015 Receivedinrevisedform8April2016 Accepted29April2016

Availableonline11May2016

Keywords:

Fusarium Suppressivity Greenhouse Trichoderma TTGE

a b s t r a c t

Thedevelopmentofsustainablecropprotectionisexpectedbyvegetableproducersandhighlyencour- agedbyauthorities.Forcropsgrowninsoillesssystems,vegetablefibersarerelevantforbothagronomical andplantprotectionpurposes.Thisworkexaminestheirpotentialagainstthesoil-bornepathogenFusar- iumoxysporumf.sp.radicis-cucumerinum.

Woodfiber,coirfiberandpeatweretestedovertwocucumbercroppingperiods.Fusariumblight symptomsweremonitoredoncucumber,andfungalcommunitystructure(PCR-TTGE)insubstrates.

Substratesterilizationandbio-augmentationwithantagonisticstrainswerealsostudied;theydidnot modifyprotection.Comparedtotheothersubstrates,woodfiberincreasedprotectionattheendofthe firstassay,butdidnotduringthesecondassay.Differencesincropseasonandplantdensitymayhave impactedoncucumberphysiologyandmayhaveindirectlymodifiedrhizospherefungalcommunity structure.

Thesoledeterminationofmicrobialactivityinsubstratesisnotsufficienttopredictprotection.Growth conditions,substratetypeandthemicrobiomealtogetherimpactedontheprotectionofcucumber.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Consumersaremore andmoremindfulofthequalityofthe vegetablestheyconsume.In parallel, theimpactofagricultural practicesontheenvironmentismoreandmoreunderfocus.New agriculturalsystems, suchas soilless culture,can increase pro- ductivitywhatevertheclimateconditions,butalsooptimizethe managementofinputs(fertilizers,pesticides),withinagiveneco- nomicandenvironmentalframework.Theyalsoaimatcontrolling diseasesmoreefficiently(Gullinoetal.,2015).Mineralsoillesscul- turesubstrates,which hardlycontainanymicroorganisms, have been widely used. Organic substrates are also in use because theyappearmorenatural,theyhostmicroorganismslikelytobe usefulforplanthealth andthustheycansupply partof plants’

Correspondingauthorat:AgrocampusOuest−Centred’Angers,2rueLeNôtre, 49045Angerscedex1,France.

∗∗Correspondingauthor.

E-mailaddresses:montagne.v@live.fr,virginie.montagne@dijon.inra.fr (V.Montagne),thierry.lebeau@univ-nantes.fr(T.Lebeau).

nutritionalneeds. Peatis the mostcommonly usedmaterial in organic substrates because it exhibits unequalled stability and physico-chemicalproperties(AlNaddafetal.,2011).Compostsare addedtothegrowingmediatoimprovemicrobialactivity.They cansubstantiallyreducediseaseseverity(Khalil,2013).However, peatbogsrepresentaslowlyrenewablepoolandsanitaryissues remainlingeringdespitetheuseofpesticides.Othermaterials(coir orwoodfibers)arenowbeingusedinsteadofpeat(Olleetal.,2012;

Robin,1997).Theirphysicalresilienceisconsideredassufficient undercroppingconditions,butlittleiscurrentlyknownabouttheir physico-chemicalandmicrobiologicalproperties.

Soillesscultureofcucumberrepresentsasubstantialeconomic stake roundthe world(2,114,000 tons produced everyyear in Europe).Knowingi)howseveresomepathogenscanbe(especially theformaespecialesformsofFusarium oxysporumoncucumber;

Abeysinghe,2012),ii)therestricteduseofseveralactivemolecules, andiii)theproducers’wish toadoptagro-ecologicalproduction practices,othermeansofprotectionneedtobedeveloped.

Phytopathogenicity is related to the microbial populations present in the culture substrates. Yet, organic matter type appears as a determining factor for the development of both http://dx.doi.org/10.1016/j.scienta.2016.04.035

0304-4238/©2016ElsevierB.V.Allrightsreserved.

(3)

Table1

Physico-chemicalandmicrobialcharacteristicsofthesubstrates(±:standarddeviation,n=3).

Substrate Substrate origin

Process C:Nratio pHa (water)

Organic matterb (gdwkg−1)

Drybulk densityc (kgdwm−3)

Waterstorage capacityc (mll−1)

Microbial organicCd (mgdwkg−1)

BacterialCFUse (substrateg−1)

FungalCFUs (substrateg−1)

PiF1s Pine1 Screw

grinding

612 4.7 996 72.4 101 457.5

(±216.8)

2.1×106 (±5.2×105)

5.7×107 (±2.6×107)

CoF Coconut Unknown 130 6.4 962 59.4 116.8 388.6

(±103.3)

9×106 (±9×105)

2.19×105 (±1.04×104)

SpPn Sphagnum Extracted 48 6.9 867 110.2 284.9 875.9

(±30.8)

9.3×106 (±3.16×106)

1.23×106 (±4.06×105)

aNFEN13037(2000)standardmethod.

bNFEN13039(2011)standardmethod.

c NFEN13041(2000)standardmethod.

d NFISO14240-2(2011)standardmethod.

eEstimationofthenumberofculturablebacteria(TSA+cycloheximide)andfungi(PDA+streptomycinandtetracycline).

phytopathogenicmicroorganismsandtheirantagonists(Dome ˜no etal.,2011;Kleiberetal.,2012;Pérezetal.,2002)

Environment-friendlycontrolstrategies,amongwhichmicrobi- ologicalcontrol,areofgrowinginterestforthesector.Manystudies have addressed therole of microorganisms in plantprotection againstpathogens,includingsoil-borneones(MercierandManker, 2005; Shanmugam and Kanoujia, 2011). The specific physico- chemical properties of organicsubstrates are believed to drive microbialdevelopment,andsometimesleadtoaprotectiveeffect againstopportunisticpathogens(Clematisetal.,2009;Martínez etal.,2013).Competitionfornutrientsand/orspaceandantibiosis phenomenaoccuramongmicroorganisms(Benítezetal.,2004),but ourunderstandingofthesemechanismsstillremainstobefurther examined.Inthiscontext,wepreviouslycomparedthebiochemical composition of different organicsubstrates, the related micro- bialactivities,andthemicrobialcommunitystructures(Montagne etal.,2015).Ourresultsconfirmedthatspecificmicrobial activ- itiesandmicrobialpopulationstructuresarerelated tomaterial type(woodfiber,coirfiber,peat)andthereforetospecificorganic compositions. Hence it appeared interesting to investigate the involvementofspecificmicrobialcommunitiesinthecontrolof soil-bornepathogensofsoillesscrops.

Thepresentstudyaims attesting theresponsivenessofpine woodfiber,coirfiberandpeattothehost/pathogenpairCucumis sativus L.-Fusarium oxysporum,f.sp.radicis-cucumerinum (FORC), apathogenofcucumber.Twobioassayswereperformed:onein summer2014,andtheotherinspring2015,undergreenhousepro- ductionconditions.Plantgrowth,pathogenattacksymptoms,and theevolutionoftherhizosphericfungalcommunitystructurewere monitoredthroughoutthetwobioassays.

2. Materialsandmethods

2.1. Organicsubstrates

Thefollowingsubstrateswerestudied:pinewoodfiber(PiF1s), coirfiber(CoF),and peat (SpPn)(Florentaisecompany,France).

Their physico-chemicaland microbiological properties are pre- sentedinTable1.

2.2. Plant:croppingandmanagement

Cucumber (Cucumis sativus L. Galaxy F1, ENZA Zaden, Enkhuizen, The Netherlands)non-treated seedswere placed in vermiculiteshelves(25C, 12hphotoperiod).Aftergermination, plantletsweretransferredtopotsfilledwith1.1lofsubstrate.A drop-irrigation-fertilizationsystemwasused.Thenutrientsolution (pH5.6,electricalconductivity1.5dSm1)waspreparedfrommin- eralfertilizers(PlantProd229and216,Fertil,Boulogne-Billancourt,

France)toreachtheequivalentofa10-2-8nitrogen-phosphorus- potassiumratio.

Crops were grown under the greenhouse, minimum tem- perature was 18C, and openings allowed for aeration when temperaturesreached24C.Duringthecultivationperiod,plants werepropped,fruitwerecollectedattheendoftheassays,andbio- logicalprotectionwasappliedtocontrolthedevelopmentofpest insects byusingtheauxiliaryinsects Euseiusgallicus,Phytoseiu- luspersimilis,andSteinernemafeltiae(Biobest,Belgium).Climatic parametersaresummarizedinTable3.

2.3. Microorganisms:growthconditionsandinoculum preparation

Twoantagonisticstrainsandonepathogenicstrainwerestudied inthebioassays:

− the antagonistic strain Fusarium oxysporum(MIAE 00047, UMR1347Agroécologie,INRADIJON;Alabouvetteetal.,1987)iso- latedfromsoilfromChâteaurenard(France)in1976(Fo47);

−theTrichodermaatroviridaestrain(MUCL45632,NIXELabora- toire,SophiaAntipolis,France)(Tricho);

− the pathogenic strain Fusarium oxysporum f. sp. radicis- cucumerinum (FORC), first isolated from diseased plants at a producer’sfarm,andthen identifiedbyPCRusingspecificFORC primers(Lievensetal.,2008).

Microbialcultureandsubstrateinoculationwereperformedas follows:

−theFo47strainwasgrownonPotatoDextroseBroth(PDB,Lab- oratoriosCONDA,Spain)undershakingat100rpmat26C.Itwas inoculatedwhenseedsweresown(mixedwithvermiculite)and whenplantletswerepotted,ataconcentrationof103conidiaperml ofnon-tyndallizedsubstrate.Conidiawerecollectedafterfiltration ona48-␮mnylonfilter(Buisine,France),andwereenumeratedon aMalassezcountingchamber;

−theTrichodermastrainMUCL45632wasfirstgrownonwood fiber for 3 weeks toreach a highconcentration, and then the inoculum wasmixed withthe PiF1s substrate to reacha final concentration of approximately 105cellsg1 of non-tyndallized substrate;

−theFORCstrainwasgrowninthesameconditionsastheFo47 strain.Conidiawerecollectedandenumeratedasdescribedabove.

FORCwasinoculatedatthesurfaceofthepotsataconcentration of5×103conidiapermlofsubstrate(tyndallizedornot),when plantletswereatthe3–4leafstage.

Topreventmicroorganismsleachingfromthesubstrates,inthe weekfollowinginoculationplants wereirrigatedwiththesame amountofwaterasinthefollowingweeks,butitwasprovidedin smallerquantitiesandmorefrequently.

(4)

Table2

Conditionsofthetwobioassays.

Treatment Bioassay1 Bioassay2

FORC-free FORCadded FORC-free FORCadded

Withpriortyndallization PiF1s/FORC-free/Tynd PiF1s/FORC/Tynd PiF1s/FORC-free/Tynd PiF1s/FORC/Tynd

CoF/FORC-free/Tynd CoF/FORC/Tynd

SpPn/FORC-free/Tynd SpPn/FORC/Tynd

Withoutpriortyndallization PiF1s/FORC-free/NoTynd PiF1s/FORC/NoTynd PiF1s/FORC-free/NoTynd PiF1s/FORC/NoTynd CoF/FORC-free/NoTynd CoF/FORC/NoTynd CoF/FORC-free/NoTynd CoF/FORC/NoTynd SpPn/FORC-free/NoTynd SpPn/FORC/NoTynd SpPn/FORC-free/NoTynd SpPn/FORC/NoTynd Withoutpriortyndallization,

withbio-augmentation

PiF1s/FORC-free/Fo47 PiF1s/FORC/Fo47 PiF1s/FORC-free/NoTynd/Tricho PiF1s/FORC/NoTynd/Tricho

CoF/FORC-free/Fo47 CoF/FORC/Fo47

SpPn/FORC-free/Fo47 SpPn/FORC/Fo47

Table3

Temperatureandlightintensityinthegreenhouseduringthebioassays.

Temperature(C) Lightintensity(Jcm2day−1) Bioassay Bioassay1 Bioassay2 Bioassay1 Bioassay2

Min 9.5 10.7 482 530

Max 36.7 42.7 2644 3064

Mean 21.4 22.1 1775 2017

2.4. Microbialanalysis

Differentmicrobiologicalanalyseswereperformedateachsam- plingtimeandattheendofeachassay:

–F.oxysporumwasenumeratedintherhizosphereandtheroots of5plantspercondition,inbioassay1only:therhizospheresfrom threeplantsfromoneblockwereused,andfromoneplantfromthe othertwoblocks.Suspensions/dilutionswereprepared,using1g ofvortexedsubstratein45mlofsterilewater.Thentheappropri- atedilutionswereenumeratedinPetridishesbyspreading1ml ofmicrobialsuspensionmixed withKomadamedium (Komada, 1975).TheF.oxysporum(Fo47orFORC)densitywasexpressedas colony-formingunits(CFU)/gofsubstrate.

F.oxysporumwasalsoenumeratedintheplants’roots.Roots werefirst disinfectedby dipping30sin70% ethanol, and then rinsedbybathing15sin twosuccessivesterilewater baths.At leastfiverootfragmentsfromasameplantwerelaidonKomada agarmedium.Petridishescontainingmicrobialsuspensionsorroot fragmentswereallreadafterfivedaysofincubationat25Cinthe dark,followedby3daysunderlighttorevealthepurplepinkF.

oxysporumcolonies(DavetandRouxel,1997);

−thestructureofrhizosphericfungalcommunitieswasdeter- mined: Rhizospheric substrate was kept at −20C and then analyzed by PCR-TTGE (Polymerase Chain Reaction−Temporal TemperatureGelElectrophoresis; Jaffrèsetal.,2009; Montagne etal.,2015).Briefly,microbialDNAextractedfromthesubstrate wasamplifiedaccordingtoJoly’sprotocol(Jolyetal.,2012).This step amplifiespartof fungal ITS 1, based onthefact that cer- tainITS1zonesvaryaccordingtomicroorganisms.Theamplicons migratedthroughanacrylamidegelunderatemporal tempera- turegradienttorevealsequence differencesamong thevariable regionsoffungalDNA.ThegelswerestainedwithGelRed(Biotium, UnitedStates),andthenfungalprofilesweredevelopedunderUV light.Geneticfingerprints(number,position,andintensityofthe bands)werecompared usingFPQuestSoftware(Bio-Rad,United States).

2.5. Experimentaldesign

Twoassayswereconductedattwodifferentseasons.Thefirst cropwas grown in late summer 2014, and the second one in spring2015.Theconditionsstudiedinthetwoassaysaredetailed

in Table 2. Some substrateswere first sterilized by tyndalliza- tion(Marchal,1976)whileotherswerebio-augmentedbyadding pathogenicorantagonisticmicroorganisms(FORC,F.oxysporum Fo47,andT.atroviridaeMUCL45632).

Alight/temperaturegradientwasappliedinthegreenhouse.

Thatiswhya3-blocksystemwasused,eachblockcontainingone replicateofeachoftheconditions.Ineachblock,3plantswere grownperconditionandpersamplingtime-point,i.e.9plantsin total.Twosamplings(S1andS2)wereperformedduringthebioas- says,andathirdone(S3)attheend.Firstsamples(S1)weretaken sevendaysafterinoculationwithFORC,i.e.after32daysofculti- vationinbioassay1,and34inbioassay2.SamplesS2weretaken 21daysafterinoculationwithFORC,i.e.after46daysofcultivation inbioassay1,and44inbioassay2.SamplesS3weretakenattheend ofthebioassays,i.e.after69daysofcultivationinbioassay1,and78 inbioassay2.SubstratepH,electricalconductivity(followingthe standardNFEN13038,2000)andmicrobialanalysiswererecorded atthebeginningofthecroppingperiods,duringsamplings,andat theendofthecroppingperiods.

The different conditions were randomly distributed in each block.Cropdensitywas45pots(1.1-l)perm2inbioassay1,and 12.5potsperm2inbioassay2.Cropdensitywasreducedinthe secondassaybecauseplantsweretoodifficulttohandleattheend offirstassay.

Plantsize,leafandfruitnumberswereevaluatedoverthetwo croppingperiods.Inparallel,theoutbreakofsymptomsrelatedto FORCattackwasmonitoredbyevaluatingi)thenumberofhealthy plants,ii)thenumberofdiseasedplantsexhibiting ayellowish, narrowerstem baseand pronouncedwiltingof theaerialparts, andiii)thenumberofdeadplantsinwhichmorethanhalfofthe aerialpartwasdryandyellow.

2.6. Dataanalysis

Analysesofvariance(ANOVA)wereperformedattheendofthe 2bioassays,usingTukey’stestwitha5%significancethreshold.

OnlyFORC-freeconditionswereanalyzedtotesttheeffectsofthe

“substratetype”,“tyndallization”,“Fo47”and“Trichoderma”fac- torsonplantgrowth.Forplanthealthdata,ANOVAanalyseswere supplementedby a Newman-Keulsmultiplecomparison testto comparethenumbersofdeadplantsamongconditionsattheend ofthetwobioassays.Varianceanalysesandmultiplecomparison testsweregeneratedusingR3.1.1(FreeSoftwareFoundation)and theSNK.testfunctionoftheagricolaepackage.

Fungalcommunitystructureanalysiswasperformedbasedon geneticfingerprints.Pearson’stestwasusedtocomparethem,and UnweightedPairGroupMethodwithArithmeticMean(UPGMA) wasusedtocreateadendrogrambasedonsimilaritycoefficients (Ibekweetal.,2010).

(5)

3. Results

3.1. Initialsubstratecharacteristicsandplantgrowth

Whateverthesubstrate,organicmattercontentswerehigh,but C/Nsignificatlydifferedbetweensubstrates(Table1).Becausepeat hadahigherwaterstoragecapacitythantheothertwosubstrates, waterregimeswereadaptedaccordingly(PaulandLee,1976).

Initialmicrobialcarbonwastwicehigherinpeatthaninwood fiberandcoirfiber.

Themeanconcentrationofculturablebacteriainthesubstrates was106–107CFUsg−1,andthemeanconcentrationofculturable fungivariedfrom105to107CFUsg1.PiF1scontained100times morefungithanCoFand10timesmorethanSpPn,buthalfasmany bacteriaastheothersubstrates.

Climaticconditionsweremonitoredthroughoutthetwocrop- pingperiods(Table3).Onaveragetemperaturewassimilarforthe twocrops,butmeanlightintensitywashigherduringbioassay2.

AsforsubstratepHandelectricalconductivity,theyremainedclose to7.5and200␮Scm1throughoutthe2bioassays,respectively.

Theheightofcontrol(FORC-free)plantswasmeasuredduring thebioassays.Meanfinalsizewas225cminbioassay1,and170cm inbioassay2.Controlplantsdevelopedinahomogeneousmanner overtime inthetwo bioassays:there wasnosignificantdiffer- enceamongconditionsoramongblocks;p-valueswere0.1185in bioassay1,and0.4616inbioassay2.Moreover,attheendofthe bioassays,leafandfruitnumbersweresimilaramongconditions, butthenumberoffruitwashigherinbioassay2,with4fruitsper plantinbioassay2vs.2inbioassay1.Potdensitydifferedtoo:itwas lowerinbioassay2,with12.5potsm2vs.45potsm2inbioassay 1.

3.2. Diseasesuppressioninthedifferenttreatments

Thepathogendosewasinoculatedatthe3–4trueleafstageto allowforgradualandsufficientexpressionofthedisease.Whatever thebioassay,FORC-relatedsymptomscameoutonemonthafter inoculation,i.e.after55daysofcultivation.Statisticaldataanal- ysisdidnotrevealanyblockeffect.Meanpercentagesofhealthy, diseasedanddeadplantsweredeterminedattheendofeachbioas- say.Inthefirstbioassay(Fig.1),noplantwasfounddiseasedinthe FORC-freeconditions.

Significantdifferences in the number of dead plants among conditions were determined by one-way ANOVA (P-value:

7.3×1010).Thenamultiplecomparisonwasperformedtoform homogeneousgroupsbasedonthenumbersof deadplants.No deadplantwasobservedintheFORC-freecontrols,whichclustered ingroupc.Inthe9FORC-treatedconditions,woodfiber-grown plantsdisplayedaveragemortalityratesrangingbetween22and 33%dependingonthecondition,coirfiber-grownplantsbetween 55 and 77%, and peat-grown plants between 55 and 77% too.

Themortalityratesofnon-tyndallized woodfiber-grownplants (PiF1s/FORC/NoTynd.)andbioaugmentedwoodfiber-grownplants (PiF1s/FORC/Fo47)didnotsignificantlydiffer fromthecontrols, with 33 and 22%, respectively. However, bioaugmented wood fiber-grownplants also displayed a significantly lower number ofdeadplantsthantheplantsof2outofthe3peattreatments (SpPn/FORC/Tyndand SpPn/FORC/Fo47,with77% mortalityrate each),and2outofthe3coirfibertreatments(CoF/FORC/NoTynd andCoF/FORC/Tynd,with77%mortalityrateeach).

A two-way ANOVA solely applied to the FORC conditions showedaneffectofthesubstrate(P-value:0.005204).Thiscon- firmedtheexistenceofasignificantdifferencebetweenthemean highestmortalityratesandthemeanlowestmortalityrates.Conse- quently,theplantsgrownonwoodfiberwerelessseverelyattacked bythepathogenthanthosegrownoncoirfiberandpeat.Bycon-

trast, treatments(tyndallizationor bioaugmentationwithFo47) altogetherhadnoeffectonmortalityrates.

Inthesecondbioassay(Fig.2),amongcontrolconditions(i.e.

FORC-freesubstrates), only oneplantexhibited Fusarium blight symptomsalthoughithadnotbeeninoculatedwithFORC.Ascom- paredtothefirstbioassay,thepercentageofhealthyplantswas lower,andsowasthepercentageofdeadplants,butthepercentage ofdiseasedplantswashigher.

Aone-wayANOVAwasappliedwhosevariablewasthenumber ofdeadplantsandwhosefactorwasthe10conditions,andthen amultiplecomparisontestwasperformed(Fig.2).Thehomoge- neousgroupscorrespondingtodeadplantsareindicatedbyletters.

Onthisbasis,theFORC-inoculatedrawsubstrates(withorwithout prior tyndallization)sharedthesamegroupasthecontrolsub- strates.

Furtherin detail, consideringthenon-tyndallized conditions and FORC-inoculated substrates, no dead plant was observed amongCoF-treatedplants,andPiF1sandSpPntreatmentsdidnot showsignificantdifferencesascomparedtoprevioustreatments.

Thepercentageofdiseasedplantswassimilaramongthethree substrates,with66%.Asregardsthetyndallizationfactor,wenoted the same tendency as in bioassay 1 for substrate PiF1s only, namelythatpriortyndallizationofthesubstrate(PiF1s/FORC/Tynd) appearedtoincreasethepercentageofdeadplants,with33%vs.

11%forthesamenon-tyndallizedsubstrate(PiF1s/FORC/NoTynd).

Nevertheless, these differences were not significant, as shown by ANOVAresults (groupsab and b, respectively).By contrast, bioaugmentationwithMUCL45632(PiF1s/NoTynd/Tricho)hada significantnegativeeffectonplantmortality(66%)ascomparedto FORC/PiF1s/NoTynd(11%).

Thepercentagesofdiseasedand/ordeadplantsdifferedfrom thoseobtainedinbioassay1.Inotherwords,thetime-courseof thediseaseappearedfasterinbioassay1,withahigherpercentage ofdeadplants,whileinbioassay2plantswereonlydiseased,with asimilarpercentageofhealthyplants.

3.3. F.oxysporumplatecount

F.oxysporumpopulationswereenumeratedinthefirstbioassay (Table4).Fo47andFORCwerenotphenotypicallydiscriminatedon theKomadamediumusedtoassesstheCFUcount.

AtS1,theFo47-free,FORC-inoculatedconditions,andtheFo47- bioaugmentedconditions(bothFORC-freeandFORC-inoculated) displayed a highF.oxysporumdensity (ca.3 log(CFU)g−1).By contrast,theFORC-andFo47-free conditionsdidnot revealthe presenceofF.oxysporum.ThereforethepresenceofF.oxysporum correspondedtotheFORC-inoculatedorFo47-bioaugmentedcon- ditions.

AtS2,populationswereatabalanceataround3log(CFU)g1 fortheFORCandFo47conditions.

Ascomparedtopeatand coirfiber,in thepresence ofFORC wood fiber appeared to be more responsive to the F. oxyspo- rumstrains,whetherpathogenicornot(PiF1sFORC/NoTyndand PiF1s/FORC/Tynd).

AtS3(the end oftheassay), F.oxysporumwasfoundin the

“FORC-free/NoTynd.”and“FORC-free/Tynd”conditions,suggesting contaminationfrom theair or fromspores present in thesub- strates.However,thesamewasnotedwithtyndallizedsubstrates, andtyndallizationprovedefficientsincefungalamplificationatthe beginningoftheassayswasnotpossible(datanotshown).Contam- inationfromtheairthereforeappearsasarelevanthypothesis.

TomonitorthedevelopmentofF.oxysporumstrains,detection testswerecarriedoutinplantroots(datanotshown).Atleast20%

oftherootsystems,allconditionsincluded,containedF.oxysporum.

F.oxysporumdistributionaccordingtothedifferentconditionswas similarintherootsandintherhizosphere.Amaximumof100%

(6)

Fig.1.Percentagesofhealthy,wiltedanddeadplantsattheendofbioassay1(n=3,9plants).

Differentlettersofthehomogenousgroups(a,c,ab,bcandabc)indicatesignificantdifferencesamongtreatmentsforthenumberofdeadplants(blackbarsonly)according toNewman-Keulstest(P=0.05)

Fig.2.Percentagesofhealthy,wiltedanddeadplantsattheendofbioassay2(n=3,9plants).

Differentlettersofthehomogenousgroups(a,bandab)indicatesignificantdifferencesamongtreatmentsforthenumberofdeadplants(blackbarsonly)accordingto Newman-Keulstest(P=0.05)

(7)

Fig.3.FungalcommunitystructuresofPiF1s,CoFandSpPnthroughoutthetwobioassaysB1(in2014)andB2(in2015).Greyrectanglessymbolizethethreeclustersnamed 1,2and3onFig.S1FigS.S1,S2andS3aresamples.(F)indicatesthesamplesthatreceivedthephytopathogenFORC.−1and−2arereplicates.Technicaldifficultiesdidnot allowustoobtaintheSpPnB1(2014)profile.

infectedplantswasfoundintheFORC/Tynd,FORC/Fo47andFORC- free/Fo47substrates.

3.4. Characterizationofthefungalpopulationstructure

Thefungalstructuresof the3FORC-freeorFORC-inoculated substrates(NoTynd./FORCorFORC-free)weresampledatS1,S2and S3duringthetwobioassays(Fig.3).Foragivencondition,replicates noted−1and−2displayedratherlowsimilaritypercentages.Nev- ertheless,comparisonsbetweenthefungalstructuresofthetwo bioassayscanbemade,allconditionsincluded.Aboveall,fungal structuredependedonsubstratenature(CoFrepresentedbyrect- angle1,PiF1srepresentedbyrectangle2,andSpPnrepresentedby

rectangle3),whatevertheyearorthepresence/absenceofFORC.

Moreprecisely,inrectangle1whichmainlyrepresentsCoFsub- strates,aPiF1sclusterwaspresentanddifferedagainfromtheCoF cluster.

AsregardsCoF(rectangle1),similaritybetweenbioassay1(B1) and bioassay2 (B2)was low.Therefore the fungalstructure of CoFwasrelatedtotheyear.Themodificationofthefungalcom- munitystructureofCoFinbioassay1ascomparedtobioassay2 couldexplainthedifferentprotectionlevelssuppliedbythiskind ofsubstrate.

IfwespecificallyanalyzePiF1s(Fig.4)atthefirst(S1)andlast (S3)samplingtime-pointsofbioassays1and2,samplestructures rankaccordingtosamplingdate,notaccordingtotheyear.

(8)

Table4

CFUsofFusariumoxysporumpergofrhizosphericsubstrateafter32days(S1),46days(S2),andattheendofthecroppingseason(after69days,S3)inbioassay1 (means±standarddeviations;n=5).Dataareexpressedinlog-transformedvalues.

PiF1s CoF SpPn

32d 46d 69d 32d 46d 69d 32d 46d 69d

FORC-free/NoTynd. 0.00 0.00 2.83 0.00 0.00 2.37 0.00 0.00 0.00

±0.00 ±0.00 ±2.58 ±0.00 ±0.00 ±2.18 ±0.00 ±0.00 ±0.00

FORC/NoTynd. 3.88 1.98 4.63 2.59 0.53 4.51 0.79 2.21 4.02

±0.72 ±2.87 ±0.93 ±2.41 ±1.19 ±0.48 ±1.77 ±2.04 ±0.49

FORC-free/Tynd. 0.00 0.73 0.53 0.00 0.00 1.71 0.00 0.00 0.59

±0.00 ±1.63 ±1.19 ±0.00 ±0.00 ±1.58 ±0.00 ±0.00 ±1.32

FORC/Tynd. 3.72 2.65 4.46 3.58 1.40 4.89 2.71 2.80 4.45

±0.85 ±2.66 ±2.53 ±0.56 ±1.92 ±0.75 ±1.61 ±1.72 ±0.32

FORC-free/Fo47 2.96 1.12 3.22 1.24 1.85 3.68 1.85 0.73 3.33

±1.80 ±1.54 ±2.04 ±1.70 ±1.73 ±0.50 ±1.73 ±1.63 ±0.41

FORC/Fo47 2.98 2.11 2.17 3.50 0.53 2.21 2.63 2.88 4.12

±0.32 ±1.96 ±2.04 ±2.04 ±1.19 ±2.05 ±1.52 ±1.71 ±0.89

Fig.4.FungalcommunitystructureofPiF1sthroughoutthetwobioassaysB1(in2014)andB2(in2015).Greyrectanglessymbolizethetwoclustersnamed1and2onFig.

S1andS3aresamples.(F)indicatesthesamplesthatreceivedthephytopathogenFORC.−1and−2arereplicates.

4. Discussion

Thisstudyunderlinestheimplicationoforganicsubstratesin cropbioprotectionagainsta pathogenofcucumber(FORC),and onthereproducibilityofthatprotectionunderconditionsnearing large-scaleproductionconditions.

Plantsgrewwell,whateverthesubstratetype.Oursubstrates aresuited for soilless culture,although somephysico-chemical andmicrobiologicalparameters(Table1:waterretentioncapacity, biochemicalcomposition,granulometry,specialmicrobialpopula- tions,etc.)differedamongthethreesubstrates.

Apartfromoneplant affectedbyFORC inthesecond bioas- say,control(FORC-free)plantsdidnotdisplayanyFusariumblight symptoms,whereasFORC-inoculatedplantsdid(thediseasecame outafter 55days).The onlydifferencebetweenthesetwo con- ditionswastheadditionofFORC,sothesymptomswereindeed relatedtothepresence ofFORC,andwerenotrelated topossi- bleindigenouspathogenicstrains.F.oxysporumdensityonKomada mediumduringthefirstbioassayactuallyshowedthatFORCand/or Fo47hadsettledinthesubstrates(Table4).

Inthefirstbioassay,tyndallizationhadastrongerimpactwhen appliedtoPiF1s,withalowernumberofhealthyplantsasaresult ofwoodfibertyndallization.Thatiswhythatfactoronlywastested againonPiF1sinthesecondbioassay.TheFo47factordidnotyield

homogeneousresultsacrossallsubstrates,soitwasreplacedby Trichoderma(onlytestedonPiF1s),astrainknownforitsgrowth- stimulatingeffects,whichseemstosettlewellinwoodfiber.Peat initiallycontainedthegreatestamountofmicroorganisms(ithad thehighestrateofmicrobialcarbon).Theculturablefungi/bacteria ratio wasapproximately 1, and wasthe highest (>1) in wood fiber.Theseinitialdifferencesimplieddifferentplantprotection potentials.Fusariumblightdifferedinitsexpressiondependingon thesubstratethroughoutthetwo bioassays.Plantfiberprocess- ing(screwgrindingforwoodfiber,unknownforcoirfiber)could explainthislessermicrobialcolonization,whilepeatwassimply extractedmechanically.

Lookingatthenumberofdeadplantsattheendofthebioas- says,it appearedthat substratetypehad asignificantinfluence onmortality.Mortalitywaslowerinplantsgrownonwoodfiber (PiF1s),particularlyinthefirstassay,despitethehighnumberof F.oxysporumCFUs.Thismayhaveresultedfromthepresenceof differentF. oxysporumpopulations, withpredominanceof non- pathogenicones.Competitionamongthemmayexplainthislow mortalityrate(Dhingraetal.,2006).Moreover,thesepopulations possibly triggeredplantresistance beforeFORC attack.Besides, distinguishingbetweendiseasedand deadplantsallowedusto assessthetime-courseofthediseaseinthetwobioassays.Mor- talityoccurredlaterinbioassay2,butaddingTrichodermacaused

(9)

ittooccurearlier.FORCattackoccursunderplantweaknesscon- ditions;itisallthemorevirulentasplantsareweakenedortheir innerresourcesaredepleted.Inourbioassays,symptomsprobably firstappearedconcomitantlywithcombinedstresses,suchasplant fruitload—forexample,attheendofbioassay2,plantbiomass (vegetativeparts+fruit)reached2250gonaverage—orincreases intemperatureandlightintensity(Table3).Inbioassay1,thedis- easesymptomsburstoutallofasudden,andplantsrapidlydied.

Conversely,symptomscameoutmore progressivelyinbioassay 2.Temperatureincreasedmoregradually,soplantsprobablygot acclimatedmoreeasily.Asaresult,fewerplantsdied,moreplants becamediseased(22–66%dependingontheconditions,vs.0–44%

inbioassay1).Moreover,thehigherplantdensityinbioassay1 probablyintensifiedthesestresses.

Tyndallizationdrasticallyreducesinitialmicrobialpopulation densities in the substrates, while maintaining their physico- chemicalandstructuralproperties.Itdidnotsignificantlymodify plantprotectionascomparedtonon-tyndallizedsubstrates.This meansthatthemicrobialpopulationsnaturallypresentinthesub- strateshavelittleinfluenceonplantprotection,whichissurprising andcontradictspreviouslypublishedresults(Clematisetal.,2009).

Theanalysisofthefungalcommunitystructureovertimedidnot evidenceanynoticeabledifferencebetweentyndallizedandnon- tyndallizedsamples.Thisconfirmsthatinthecaseoftyndallized substrates,re-colonizationisunderthecontrolofthesubstrate,and thereforeofitsphysico-chemicalcharacteristics(Table1).Ascrops grew,CoFfungalcommunitystructuredivergedfromPiF1sfungal communitystructure(Fig.3).Competitionforspaceand/oraccess tosubstratesprobablyexplainwhyprotectionwasmodulated.

IfwespecificallyanalyzePiF1s(Fig.4)atthefirst(S1)andlast (S3)samplingpointsofthe2B1andB2bioassays,wecannotethat thesamplingdateinfluencedfungalcommunitystructureindepen- dentlyoftheyearortheaddition(ornot)ofthephytopathogen FORC.Theevolutionofthefungalcommunitystructureaccordingto cultivationstagecouldbeexplainedbyquantitativeand/orqualita- tivevariationsofrhizodepositsinthecourseofthecroppingperiod (Zhangetal.,2014).Plantsgrewunderdifferentgrowthconditions inthe2bioassays,sowecanassumethatrootexudatecomposition wasdifferenttoo.Whenassociatedtootherfactorssuchassub- stratetemperatureandhumidity,theseparametersmayexplain thattherhizospheric microbialcommunitystructurewasmodi- fiedinthecourseofthe2bioassays,andinturntheresponsetothe pathogen.Wecanindeednotethat,especiallyforCoF,thefungal populationsofthetwoassaysevolved(Fig.3).Differentpopulations inCoFB1andCoFB2couldexplainwhytheyprovideddifferent levelsofprotectioninthe2bioassays.Gaoetal.(2015)workedon cucumbercrops;theyshowedthatmicrobialcommunitiesdiffered dependingontheseasonandtheculturalpractices(e.g.grafting).

Fo47wasonlystudiedinthefirstbioassay,onthe3substrates.F.

oxysporumFo47antagonizesthecausalagentsofFusariumblighton tomatoandmelon(Fuchsetal.,1997;Mighelietal.,2000).Besides, othernon-pathogenicF.oxysporumstrainscompetefornutrients withFORC(Alabouvetteetal.,2009;Mandeeland Baker,1991).

Inbioassay1, Fo47didnot influenceonmortality.Inthesame way,Fo47hadnoeffectinCoForSpPn,probablyduetoatoolow Fo47/FORCratio(Olivainetal.,2004).

MUCL45632 wasalsostudied asan antagonistic agent,only in PiF1sin bioassay 2.Numerous Trichoderma species canpro- tectcropsbyproducingchitinases(antibioticeffect)orcellulases (competitionfornutrients)andallowforplantstodevelopprop- erlyby improvingmineralbio-availability(Benítezet al.,2004;

Boehmetal.,1993;Johnetal.,2010;Lemanceauetal.,2012).Yet, underourexperimentalconditionstheTrichodermastrainweused (MUCL45632)hadnopositiveeffectoncucumbergrowth.Onaver- age,thenumberofdeadplantsinPiF1swasevenhigherinthe presenceofMUCL45632(Fig.2).TheMUCL45632patentpresents

itasastimulantofplantgrowth(Nixe,2008).Wedidnotspecifi- callymonitorthisstraininthiswork,sowecannotconcludeabout itsabilitytosurviveandtobeactiveinPiF1s.

5. Conclusions

Plant sensitivitytopathogens remains greatlydependenton cropping conditions that are in turn dependentonthe season, even though the organic composition of substrates canreduce pathogenvirulence.Microbiologicalcontrolbasedontheuseof organicsubstratesthereforeappearstobeefficientuptoa cer- tainphytopathogenthreshold.Our2bioassaysalsoshowedhow importantitistostudybio-controlmethodscasebycase,andhow difficultitistoreproducesuppressivenesseffects.

Conflictofinterest

Noconflictofinterestdeclared.

Acknowledgements

We would like to thank the Florentaise Company and the ANRT (Association Nationale de la Recherche et de la Technologie—convention CIFRE N 2012/1062) for funding this work. We thank La Roche sur Yon Agglomération for funding thebead grinder.We are more particularlygrateful tothefol- lowingpeopleandorganizationsfortheiroccasionalhelpinthe experiments and their advice: IUT la Roche sur Yon for pro- vidingmaterials;LaurentTosten fromFLORENTAISECo.,Claude AlabouvettefromAGRENECo. inDijon; ChristianSteinbergand CharlineLecomtefromtheINRACenterofDijon;MarcLollierfrom theUniversitédeHaute-Alsace;andChristianDouillardfrom“Les 3Moulins”company,atSaint-Philbert-de-Grand-Lieu.

References

Abeysinghe,S.,2012.BiologicalcontrolofFusariumoxysporumf.sp.

radicis-cucumerinum,thecasualagentofrootandstemrotofCucumissativus bynon-pathogenicFusariumoxysporum.RuhunaJ.Sci.1,4–31.

AlNaddaf,O.,Livieratos,I.,Stamatakis,A.,Tsirogiannis,I.,Gizas,G.,Savvas,D., 2011.Hydrauliccharacteristicsofcompostedpigmanure,perlite,andmixtures ofthem,andtheirimpactoncucumbergrownonbags.Sci.Hort.129,135–141.

Alabouvette,C.,DeLaBroise,D.,Lemanceau,P.,Couteaudier,Y.,Louvet,J.,1987.

UtilisationdesouchesnonpathogènesdeFusariumpourluttercontreles fusarioses:situationactuelledanslapratique.EPPOBull.17,5–674.

Alabouvette,C.,Olivain,C.,Migheli,Q.,Steinberg,C.,2009.Microbiologicalcontrol ofsoil-bornephytopathogenicfungiwithspecialemphasisonwilt-inducing Fusariumoxysporum.NewPhytol.184,9–544.

Benítez,T.,Rincón,A.M.,Limón,M.C.,Codón,A.C.,2004.Biocontrolmechanismsof Trichodermastrains.Int.Microbiol.7,249–260.

Boehm,M.J.,Madden,L.V.,Hoitink,H.A.,1993.Effectoforganicmatter decompositionlevelonbacterialspeciesdiversityandcompositionin relationshiptopythiumdamping-offseverity.Appl.Environ.Microbiol.59, 1–4179.

Clematis,F.,Minuto,A.,Gullino,M.L.,Garibaldi,A.,2009.Suppressivenessto Fusariumoxysporumfsp.radicislycopersiciinre-usedperliteandperlite–peat substratesinsoillesstomatoes.Biol.Control48,8–114.

Davet,P.,Rouxel,F.,1997.Détectionetisolementdeschampignonsdusol.Broché INRA,pp.203.

Dhingra,O.D.,Coelho-Netto,R.A.,Rodrigues,F.Á.,SilvaJr.,G.J.,Maia,C.B.,2006.

SelectionofendemicnonpathogenicendophyticFusariumoxysporumfrom beanrootsandrhizospherecompetentfluorescentPseudomonasspeciesto suppressFusarium-yellowofbeans.Biol.Control39,75–86.

Dome ˜no,I.,Irigoyen,I.,Muro,J.,2011.Comparisonoftraditionalandimproved methodsforestimatingthestabilityoforganicgrowingmedia.Sci.Hort.130, 335–340.

Fuchs,J.-G.,Moënne-Loccoz,Y.,Défago,G.,1997.NonpathogenicFusarium oxysporumstrainfo47inducesresistancetofusariumwiltintomato.Plant Disease81,492–496.

Gao,Y.,Tian,Y.,Liang,X.,Gao,L.,2015.Effectsofsingle-root-grafting, double-root-graftingandcompostapplicationonmicrobialpropertiesof rhizospheresoilsinChineseprotectedcucumber(CucumissativusL.) productionsystems.Sci.Hort.186,190–200.

Gullino,M.L.,Daughtrey,M.L.,Garibaldi,A.,Elmer,W.H.,2015.Fusariumwiltsof ornamentalcropsandtheirmanagement.CropProt.73,50–59.

(10)

Ibekwe,A.M.,Poss,J.A.,Grattan,S.R.,Grieve,C.M.,Suarez,D.,2010.Bacterial diversityincucumber(Cucumissativus)rhizosphereinresponsetosalinity,soil pH,andboron.SoilBiol.Biochem.42,567–575.

Jaffrès,E.,Sohier,D.,Leroi,F.,Pilet,M.F.,Prévost,H.,Joffraud,J.J.,Dousset,X.,2009.

Studyofthebacterialecosystemintropicalcookedandpeeledshrimpsusinga polyphasicapproach.Int.J.FoodMicrobiol.132,20–29.

John,R.P.,Tyagi,R.D.,Prévost,D.,Brar,S.K.,Pouleur,S.,Surampalli,R.Y.,2010.

MycoparasiticTrichodermavirideasabiocontrolagentagainstFusarium oxysporumf.sp.adzukiandPythiumarrhenomanesandasagrowthpromoterof soybean.CropProt.29,1452–1459.

Joly,P.,Besse-Hoggan,P.,Bonnemoy,F.,Batisson,I.,Bohatier,J.,Mallet,C.,2012.

ImpactofmaizeformulatedherbicidesmesotrioneandS-Metolachlorapplied aloneandinmixture,onsoilmicrobialcommunities.ISRNEcol.1–9.

Khalil,S.,2013.Internationalsymposiumongrowingmediaandsoilless cultivation1034,371–378.

Kleiber,T.,Markiewicz,B.,Niewiadomska,A.,2012.Organicsubstratesfor intensivehorticulturalcultures:yieldandnutrientstatusofplants:

microbiologicalparametersofsubstrates.PolishJ.Environ.Stud.21(5).

Komada,H.,1975.Developmentofaselectivemediumforquantitativeisolationof Fusariumoxysporumfromnaturalsoil.Rev.PlantProt.Res.8,114–124.

Lemanceau,P.,Pivato,B.,Mougel,C.,Avoscan,L.,Mazurier,S.,2012.Diversitéet activitésmicrobiennesdanslarhizosphère:desatoutsmajeursen agroécologie.14émecolloquesscientifiquesetjournéesàthème.Soc.Natl.

Horticult.France,Paris,42–46.

Lievens,B.,Rep,M.,Thomma,B.P.H.J.,2008.Recentdevelopmentsinthemolecular discriminationofformaespecialesofFusariumoxysporum.PestManage.Sci.64, 781–788.

Mandeel,Q.,Baker,R.,1991.Mechanismsinvolvedinbiologicalcontrolof FusariumwiltofcucumberwithstrainsofnonpathogenicFusariumoxysporum.

Phytopathology46,462–469.

Marchal,N.,1976.Initiationàlamicrobiologie.Techniqueetvulgarisation,192.

Martínez,F.,Castillo,S.,Borrero,C.,Pérez,S.,Palencia,P.,Avilés,M.,2013.Effectof differentsoillessgrowingsystemsonthebiologicalpropertiesofgrowth mediainstrawberry.Sci.Hort.150,59–64.

Mercier,J.,Manker,D.C.,2005.Biocontrolofsoil-bornediseasesandplantgrowth enhancementingreenhousesoillessmixbythevolatile-producingfungus Muscodoralbus.CropProt.24,355–362.

Migheli,Q.,Steinberg,C.,Davière,J.-M.,Olivain,C.,Gerlinger,C.,Gautheron,N., Alabouvette,C.,Daboussi,M.-J.,2000.Recoveryofmutantsimpairedin pathogenicityaftertranspositionofimpalainFusariumoxysporumf.sp.

melonis.Phytopathology90,1279–1284.

Montagne,V.,Charpentier,S.,Cannavo,P.,Capiaux,H.,Grosbellet,C.,Lebeau,T., 2015.Structureandactivityofspontaneousfungalcommunitiesinorganic substratesusedforsoillesscrops.Sci.Hort.192,148–157.

NFEN13038,2000.Amendementsdusoletsupportsdeculture−déterminationdu pH.AssociationFranc¸aisedeNormalisation,France.

NFEN13038,2000.Amendementsdusoletsupportsdeculture−déterminationde laconductivitéélectrique.AssociationFranc¸aisedeNormalisation,France.

NFEN13039,2011.Amendementsdusoletsupportsdeculture−déterminationde lateneurenmatièresorganiques.AssociationFranc¸aisedeNormalisation, France.

NFEN13041,2000.Amendementsdusoletsupportsdeculture−détermination despropriétésphysiques—massevolumiqueapparentesèche,volumed’air, volumed’eau,valeurderétractionetporositétotale.AssociationFranc¸aisede Normalisation,France.

NFISO14240-2,2011.Qualitédusol−déterminationdelabiomassemicrobienne dusol—partie2:Méthodeparfumigation-extraction.AssociationFranc¸aisede Normalisation,France.

Nixe,2008.BrevetEP1876232AIdeTrichodermaatrovirideMUCL45632http://

www.google.com/patents/EP1876232A1?cl=fr.

Olivain,C.,Alabouvette,C.,Steinberg,C.,2004.Productionofamixedinoculumof Fusariumoxysporumfo47andPseudomonasfluorescensC7tocontrolfusarium diseases.BiocontrolSci.Technol.14,227–238.

Olle,M.,Ngouajio,M.,Siomos,A.,2012.Vegetablequalityandproductivityas influencedbyrowingmedium:areview.Agriculture99,399–408.

Pérez,J.,Mu ˜noz-Dorado,J.,delaRubia,T.,Martínez,J.,2002.Biodegradationand biologicaltreatmentsofcellulose,hemicelluloseandlignin:anoverview.Int.

Microbiol.5,53–63.

Paul,J.L.,Lee,C.I.,1976.RelationbetweengrowthofChrysanthemumandaeration ofvariouscontainermedia.J.Am.Soc.Hortic.Sci.115,500–503.

Robin,D.,1997.Intérêtdelacaractérisationbiochimiquepourl’évaluationdela proportiondematièreorganiquestableaprèsdécompositiondanslesoletla classificationdesproduitsorganominéraux.Agronomie17,157–171.

Shanmugam,V.,Kanoujia,N.,2011.Biologicalmanagementofvascularwiltof tomatocausedbyFusariumoxysporumfsp.lycospersicibyplant growth-promotingrhizobacterialmixture.Biol.Control57,85–93.

Zhang,F.,Meng,X.,Yang,X.,Ran,W.,Shen,Q.,2014.Quantificationandroleof organicacidsincucumberrootexudatesinTrichodermaharzianumT-E5 colonization.PlantPhysiol.Biochem.83,250–257.

Références

Documents relatifs

However when attention is divided at test two contrasting predictions are made: a distinctiveness account predicts an absence of a production effect as a result of the disruption

It is expected that the result is not true with = 0 as soon as the degree of α is ≥ 3, which means that it is expected no real algebraic number of degree at least 3 is

Using her mind power to zoom in, Maria saw that the object was actually a tennis shoe, and a little more zooming revealed that the shoe was well worn and the laces were tucked under

Under the arrival process and service time distributions described in Section 3 and the parameter values in Table 3, we have validated our simulation model by comparing the

When a number is to be multiplied by itself repeatedly,  the result is a power    of this number.

We define a partition of the set of integers k in the range [1, m−1] prime to m into two or three subsets, where one subset consists of those integers k which are < m/2,

Nonlocal operator, nonlocal function space, trace inequality, boundary value problem, heterogeneous localization, vanishing horizon.. Supported in part by

Consider an infinite sequence of equal mass m indexed by n in Z (each mass representing an atom)... Conclude that E(t) ≤ Ce −γt E(0) for any solution y(x, t) of the damped