• Aucun résultat trouvé

Optimization Didier Auroux (auroux@unice.fr

N/A
N/A
Protected

Academic year: 2022

Partager "Optimization Didier Auroux (auroux@unice.fr"

Copied!
2
0
0

Texte intégral

(1)

Optimization

Didier Auroux (auroux@unice.fr) Polytech’Nice-Sophia

Contents

1 Introduction to optimization 3

1.1 Notations and definitions . . . 3

1.2 Examples . . . 3

1.2.1 Example 1: linear problem . . . 3

1.2.2 Example 2: least squares problem . . . 4

1.2.3 Calculus of variations . . . 4

1.2.4 Example 3: optimal trajectory . . . 4

1.2.5 Example 4: geodesic . . . 5

1.2.6 Other examples . . . 5

2 Optimality conditions 7 2.1 Fr´echet and Gˆateaux differentiability . . . 7

2.2 Convexity and Gˆateaux differentiability . . . 9

2.3 Optimality conditions . . . 11

2.3.1 First-order necessary optimality conditions . . . 11

2.3.2 Convex case: sufficient optimality conditions . . . 12

2.3.3 Second-order optimality conditions . . . 13

3 Existence of a minimum 15 3.1 Existence of minima in finite dimension . . . 15

3.2 Infinite dimension . . . 15

3.2.1 Convex analysis: existence of a minimum in a Hilbert space . . . 15

3.2.2 Application to quadratic functions: . . . 15

3.2.3 Weak convergence . . . 16

3.2.4 Lower semicontinuous functions and epigraphs . . . 16

3.2.5 Proof of the existence of a minimum in a Hilbert space . . . 17

4 Lagrange multipliers and duality for constrained optimization 19 4.1 Minimization under equality constraints . . . 19

4.2 Saddle points . . . 19

4.2.1 Definition . . . 19

4.2.2 Inequality constraints . . . 20

4.3 Convex optimization: the Kuhn-Tucker theorem . . . 20

4.4 Duality . . . 21

1

(2)

5 Optimization algorithms 23

5.1 Unconstrained optimization . . . 23

5.1.1 Gradient algorithm with fixed step . . . 23

5.1.2 Gradient algorithm with optimal step . . . 24

5.1.3 Conjugate gradient . . . 25

5.2 Constrained optimization . . . 26

5.2.1 Gradient algorithm with projection . . . 26

5.2.2 Identification of a saddle-point: Uzawa’s algorithm . . . 27

2

Références

Documents relatifs

In an outstanding series of results, he develops and analyzes a greedy framework for sparsity- constrained optimization of a wide class of loss functions, shows how it may be applied

This section is devoted to the links between an energetic ordering ω on the cuts Π H (E) and the numerical ordering of the energies of these cuts. The question is set at the level

Optimization under equality constraints.

On voit donc qu’avec cette d´ ecomposition, le calcul de la solution ` a l’instant (m + 1) δτ en fonction de la solution ` a l’instant m δτ n’est pas particuli` erement

Theorem 4.1 If u is a local minimum of J over K, if the constraints are regular at u, and if J is differentiable at u, then there exist λ 1 ,... Remind that if J is infinite

Lorsque le mod` ele n’est pas lin´ eaire, et/ou que l’op´ erateur d’observation H n’est pas lin´ eaire, les op´ erateurs sont lin´ earis´ es (ou d´ eriv´ es) autour de

Algorithme num´ erique de r´ esolution du probl` eme d’identification 28 8. Equations de Saint-Venant

d´eveloppement d’une nouvelle m´ethode rapide, efficace, et facile ` a mettre en œuvre : le nudging direct et r´etrograde, ` a l’interface des m´ethodes s´equentielles