• Aucun résultat trouvé

Lagrange multipliers

N/A
N/A
Protected

Academic year: 2022

Partager "Lagrange multipliers"

Copied!
15
0
0

Texte intégral

(1)

Lagrange multipliers

Lagrange multipliers

Sylvain Rubenthaler

28 octobre 2019

(2)

Gradients

Whenf :RnR is sufficiently differentiable. We can write a first order development, using many equivalent notations for the first order differential off:

f(x+u) = f(x)+df(x)(u)+o(kuk)

= f(x)+f0(x).u+o(kuk). We have

f0(x).u=

n

X

i=1

f

xi

(x)×ui. So, if we define the gradient off by

∇f(x)=

f

x1(x) ...

f

xn(x)

 ,

(3)

Lagrange multipliers Notations

Gradients

we then get

f0(x).u= 〈∇f(x),u〉 (〈. . . , . . .〉is the scalar product).

BThis is not a real proof.

(4)

Maximization of f

Suppose, we havef :Rn→R andg1, . . . ,gp:Rn→R. We set M={x:gi(x)=ci,1ip} (for some constantsci). We are interested in

argmax

xM

f(x),

which is the same as finding

½ maxf(x)

under gi(x)=ci,1ip. (1)

(5)

Lagrange multipliers

Optimization under equality constraints

Necessary condition

Suppose we have found a maximum inx0. Then, for any “small”

moveu such thatgi0(x0).u=0 (that is, a move that stays inM), we have

f(x0+u)=f(x0)+f0(x0).u+o(kuk). Sof0(x0).u=0. This means that

∇f(x0)Span(g1(x0), . . . ,∇gp(x0)).

(6)

Lagrangian function

We set

L(x,λ1, . . . ,λp)=f(x)

p

X

i=1

λi(gi(x)ci)

(L:Rn×Rp→R). In x0, there exist λ(0)1 , . . . ,λ(0)p such that

∇f(x0)=

p

X

i=1

λ(0)i ∇gi(x0).

(7)

Lagrange multipliers

Optimization under equality constraints

Lagrangian function

Let us compute

∇L(x,λ1, . . . ,λp)=

f

x1(x)−Pp i=1λigi

x1(x) ...

f

xn(x)Ppi

=1λigi

xn(x)

−(g1(x)c1) ...

−(gp(x)cp)

 .

We observe that

∇L(x0,λ(0)1 , . . . ,λ(0)p )=0.

(8)

Working our way back

The conclusion is that, when trying to find the solution of (1), a good candidate isx0 such that there exists (λ(0)i )1≤ip with

∇L(x0,λ(0)1 , . . . ,λ(0)p )=0.

The coefficientsλ(0)i are called “Lagrange multipliers”.

(9)

Lagrange multipliers

Optimization under inequality constraints

Maximization of f

Suppose, we havef :Rn→R andg1, . . . ,gp:Rn→R. We are interested in

½ maxf(x)

under gi(x)ci,1ip. (2) for somec1, . . . , cp.

(10)

Necessary condition

Suppose we have found a maximumx0. We then divide the indexes into

Ï for 1i≤k,gi(x0)=ci (we say the constraint is binding)

Ï for k+1i≤p,gi(x0)<ci (we say the constraint is not binding)

for somek in{0,1, . . .p}.

(11)

Lagrange multipliers

Optimization under inequality constraints

Necessary condition

Forv such that gi0(x0).v=0 (1ik), we have f0(x0).v=0

(becausex0 is a maximum of f restrained to

{x:gi(x)=ci,1ik}). So there existλ(0)1 , . . . ,λ(0)k such that

∇f(x0)=

k

X

i=1

λ(0)i ∇gi(x0). We set

λ(0)k+1= · · · =λ(0)p =0.

(12)

Necessary condition

Let us now takeh>0 (“small”). We have, for alli in {1,2, . . . ,k}, f(x0−hgi(x0))=f(x0)h〈∇f(x0),∇gi(x0)〉 +o(h),

and we should havef(x0−hgi(x0))f(x0). So

〈∇f(x0),∇gi(x0)〉 ≥0.

In the case where thegi(x0) are orthogonal, the above implies λ(0)i ≥0.

(13)

Lagrange multipliers

Optimization under inequality constraints

Lagrangian function

We define

L(x,λ1, . . . ,λp)=f(x)

p

X

i=1

λi(gi(x)ci) (L:Rn×Rp→R). The gradient ofL is (the same as before)

∇L(x,λ1, . . . ,λp)=

f

x1(x)Ppi

=1λigi

x1(x) ...

f

xn(x)Ppi

=1λigi

xn(x)

−(g1(x)c1) ...

−(gp(x)cp)

 .

(14)

Lagrangian function

We get that









L

x1(x0)=0, . . . ,xL

n(x0)=0, λ(0)i (gi(xi)ci)=0,1ip, gi(x0)ci,1ip,

〈∇f(x0),∇gi(x0)〉 ≥0,1ik.

(3)

(15)

Lagrange multipliers

Optimization under inequality constraints

Working our way back

The conclusion is that, when trying to find the solution of (2), a good candidate isx0 such that there exists (λ(0)i )1≤ip such that Equation (3) is statisfied.

Références

Documents relatifs

Dans le cadre général d'un groupe algébrique commutatif, toutes les mesures d'indépen- dance linéaire de logarithmes, obtenues jusqu'à maintenant, ont leur schéma de

We consider an optimal control problem where the state function is the solution to a variational inequality of obstacle type.. It is known that this state function may be

Cette évolution d’un gène de résistance n’est pas seulement liée au gène de structure mais elle peut être en relation avec une mutation dans le système de

27 تيلالما ثازاسللا فادها :يواثلا بلؼلما :يلً امًُ تُلاالإا ثاساشِلا ياذها مها لثمخج - الأ ريًىج نامط .يفأو يسود ىده ىلك ٘اىم - تُدبشلا مجح ىلك

D’un cˆ ot´ e, puisque seuls les sc´ enarios station vides ou ` a deux phases sont n´ ecessaires pour g´ en´ erer les sc´ enarios r´ e- seau, nous avons brid´ e le premier

After revisiting the ‘classical’ geometric criteria used in the literature, based on the angle between the structural boundary and the build direction, we propose a new

The purpose of the present paper is to propose a formulation of structural optimization problems which includes a control of porosity effects as a constraint, with the goal of

These atta ks are based on an improvement of the atta k due to Hell and Johansson against A hterbahn version 2 and also on an algorithm that makes prot of the short lengths of the