• Aucun résultat trouvé

Acousto-optic imaging in liquids: a step towards in-vivo measurements

N/A
N/A
Protected

Academic year: 2021

Partager "Acousto-optic imaging in liquids: a step towards in-vivo measurements"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-00261656

https://hal.archives-ouvertes.fr/hal-00261656

Submitted on 14 Mar 2008

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Acousto-optic imaging in liquids: a step towards in-vivo measurements

Pedro Santos, Michael Atlan, Benoit Forget, Emmanuel Bossy, Claude Boccara, Michel Gross

To cite this version:

Pedro Santos, Michael Atlan, Benoit Forget, Emmanuel Bossy, Claude Boccara, et al.. Acousto- optic imaging in liquids: a step towards in-vivo measurements. The Seventh Conference on Biomed- ical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar 2006, United States. pp.608613,

�10.1117/12.641676�. �hal-00261656�

(2)

Acousto-optic imaging in liquids : a step towards in-vivo measurements

Pedro Santos a

,Mihael Atlan a

, BenoîtC. Forget a

,Emmanuel Bossy a

, A.Claude Boara a

and

Mihel Gross b

a

Laboratoired'Optique, ESPCI, CNRS UPRA0005,

Université Pierre etMarie Curie, 10rue Vauquelin 75231 Parisedex 05. Frane

b

LaboratoireKastler-Brossel, Département de Physique de l'Eole Normale Supérieure,

UMR 8552 (ENS, CNRS, UMPC), 10rue Lhomond 75231Parisedex 05. Frane

ABSTRACT

The aim of this paper is to show that we an perform aousto-optial signal aquisition of one datapoint (or

voxel of a 3D image) in a very short time (2 - 4 ms), in order to overome the spekle deorrelation eet.

Todemonstratethis, wehaveperformed experimentsin in dynami sattering media suh as liquids. We will

show that wean work with pulsed wave ultrasound, to redue the sound irradiation duration in order to be

ompatiblewithsafetylimits. Thesearesigniantstepstowardsin-vivoexperiments.

Keywords: Medial and biologial imaging, Spekle interferometry, Turbid media, Ultrasound, Holographi

interferometry

1.INTRODUCTION

Aousto-optiimaging

1–4

aimsatobtainingimagesofoptialontrastinentimeterthikbiologialtissueswith

themillimeterspatialresolutionofultrasoundimaging. Itisbasedonthemodulationofthephotontravelpaths

within the areaof interation withthe foused ultrasoundbeam. This proessis often referredto as "photon

tagging". Thedetetion of tagged photons is diult : thesignal is weak, spatially inoherent and sinethe

detetion shemes are usually based on a modulation of the spekle intensity they require that this pattern

remain orrelatedthroughout the whole measurement time. In the ase of in-vivomeasurements, blood ow

limitsthisorrelationtimetoroughly1ms.

5, 6

Lastbutnotleast,thelevelofappliedlaserlightandultrasound

mustomplywithsafetyregulations.

The heterodyne parallel spekledetetion shemewehave developed allowsto detet tagged photonswith

optimal (shotnoise limited) sensitivity.

7, 8

Using either apulse or apseudo randomphase modulation ofthe

ultrasoundandthereferenebeamitispossibleto obtainaousto-optiimagesindynami satteringmediaat

speeds(afewms pervoxel)ompatiblewithfuture appliationtoin-vivoimaging.

2.HETERODYNE PARALLEL SPECKLE DETECTION

Theexperimental setupis representedin gure1. Thesetupitself as wellas theexperimental methodologyof

digitalholographyand heterodynedetetion applied to AO imaginghavebeen desribedpreviously

7, 9

and we

will only briey reall them here. As seenin gure1, the setup is basially a Mah-Zender interferometer in

whihthethereferenebeamis frequenyshiftedbyaousto-optishifters(modulators). Thisisdonein order

toensurethatthestatiinterferenepatternreordedbytheCCDorCMOSameraresultsfromtheinteration

of the referene eld and the so-alled tagged-photons

2

oming from the diusing sample whih have been

Furtherauthorinformation: (Sendorrespondene toBenoîtC.Forget)

BenoîtC.Forget: E-mail: forgetoptique.espi.fr ,Telephone: +33(0)1 40794590

Mihael Atlan: E-mail: atlanoptique.espi.fr

FrançoisRamaz: E-mail: ramazoptique.espi.fr

A.ClaudeBoara: E-mail: boaraoptique.espi.fr

(3)

refereneisfrequenyshiftedbyanextraamountin ordertoperformparallellok-indetetion

10

withtheCCD

or CMOSamera. Tofurtherimprovethesignalto noise,aspatial lter(slit) isintroduedat theoutputside

ofthediusingsampleandthereferenebeamisshiftedto performo-axisholography.

11

Figure 1. Setup. Near-infrared light (wavelength λL = 780 nm, optial frequeny fL) is provided by a CW, single

axialmode400mWoutputpowertitanium:sapphirelaser(Coherent,MBR110). Thelight pathissplitintoareferene

(loalosillator, LO)andanobjetarm,byabeamsplitter. Intheobjetarm,asetoflenses(notshown)expandsthe

beamilluminating the sample. The sampleis immersedina transparent watertank, set ona 1D displaement stage.

Transmittedlightpassesthroughaspatiallter(SF)madeofa3×100mmretangulardiaphragm. Twoaousto-opti modulators(AOM1,2: CrystalTehnologie s,dirationeieny: 50%)are plaedinthereferenearm,toshift theLO

optial frequenyfLO=fL+fAOM1−fAOM2,wherefAOM1,2 arethefrequeniesofsignalssentto AOM1,2. A10mm

foallengthlensisplaedinthereferenearminordertoreateaslightlyo-axis(θ≈1tiltangle)virtualsourepoint intheSFplane. A 10bit,1Megapixel(square pixels,pixelsize: d=17.5 µm)CMOSamera (HSS4,LaVision)isset

at a distane L =40 mfrom SF,faing the aperture, reordingthe interferene patternof light from both arms, at frameratefC. An aoustitransduer (Panametris AusanA395S-SU, foallength: 68mm)providesthe ultrasoni pressurewaveatthefrequenyfA=2.25MHz,0.25MPaatfoalpoint.

3.PULSED AND PSEUDO RANDOM MODULATION TECHNIQUES

Toaddresstheproblemofspatialresolutionalongtheultrasoniaxisz(axialresolution),Wangetal. developed frequeny-sweptAOimaging withamonodetetor.

12, 13

Forget et al.

14

have extended thishirptehniqueto

PSD byreording asequene ofCCD images while sweepingthe frequenyof the US.These hirptehniques

requirethatthespekleremainsorrelatedthroughoutthedurationofthefrequenyhirp(severalseonds),and

are thus inompatible within vivotomography, beausethe spekle loosesits memoryin atime (1ms)muh

shorterthatthehirpduration(∼10s).

(4)

sample reference light

(LO beam)

ultrasound light pulse (LP)

vsü c ü

acoustic pulse (AP)

detection

(i) (ii) (iii)

x y

z

Figure 2. Strobosopidetetionoftheaousti pulseAP(pulselengthvsτ wherevs≃1500m/sissound veloity)by

theLObeamlightpulseLP(pulselengthwherecislightveloity). (i)theAPpropagatesinthesamplewhiletheLO

beamisturnedo. (ii)APandLPoverlapwithintheAOvolumeofinterest. Heterodyneampliationanddetetionof

ultrasound-taggedphotonsours. (iii)theLObeamisturnedountilthenextAPreahestheAOvolume.

Togethighaxialresolutioninvivo,LevandSfez

5, 15

useontinuous-wave(CW)illuminationandpulsed-wave

(PW)ultrasound. However,theSNRisintrinsiallylowbeausetheyworkwithasingledetetorofalowoptial

throughput. Wehaveadapted ourparallel detetiontehniquetoaommodatepulsed-waveultrasound.

9

The

prinipleisdesribedingure2.

The ideais to gateone of the optial beamin order to ash the propagatingaousti pulse at a spei

loation along axisy (dened in gure 2). Tobetter illustrate the tehnique, in gure 2 the objet beam is

gated, butfor experimentsitis morepratialtogatethe referenebeam. The interferenepatternis present

(andreordedbytheCCDorCMOSamera)onlyforashorttimeorrespondingtothepositionoftheaousti

pulseat thistimeinthemedia. Byintroduingaontrollabledelaybetweenthelaunhoftheaoustiandthe

referenelightbeampulsesitispossibletosanthepositionsalongthepropagationaxis.

The axialresolutionis learlydeterminedbytheonvolutionprodutofthetwotimegates (aoustialand

optial). Asin anbeseenin ref.,

9

inreasingthepulsedurationdegradesthespatial resolutionresolution(as

well astheontrastwhih isintrinsiallylinkedtotheresolution). This hasled ustoproposeanewshemeto

obtainaxialresolutionbasedonpseudorandomphasemodulation.

16

Consideragaintheinterferenepatternreordedbytheamera,expressedastheprodutoftheobjeteld

and the onjugatereferene eld, but this time wereplae thegated sine phasemodulation induedby the a

pseudorandomphasemodulationfrnd(t):

I=O×R=I0ejfrnd(tz/v)ejfrnd(tτ) (1)

Wemustnowtakeinto aountthattheamerawill integrate,during oneframetimetcam,thissignal:

Icam= Z tcam

0

I0ejfrnd(tz/v)ejfrnd(tτ)dt (2)

As mentioned frnd is a pseudo random funtion, therefore so are exp(jfrnd(t−z/v)) and exp(jfrnd(t−τ)).

Theresultsoftheintegrationineq. 2anbeinterpretedastheautoorrelationfuntion ofthepseudorandom

funtion exp(jfrnd(t−z/v)).

If exp(jfrnd(t−z/v)) is onsidered a purely random funtion, then this autoorrelation is delta funtion meaningthat thesignalreordedbytheamera,Icam iszeroexept whenτ=z/v. Ourpseudorandomsignal

(5)

from0toπ. Inthisasetheautoorrelationisnotadeltafuntionbutstillaverynarrowone. Asseeningure 3,evenforadurationmorethantwoordersofmagnitudegreater(1msomparedto 3µs),theautoorrelation funtionisnarrowerandthereforethespatialresolutionis3timesbetterwithapseudorandommodulationthan

withapulsedsinemodulation.

Figure 3.Numerialalulationoftheautoorrelationof(left)a1mspseudorandomsignal,(enter)a3µssinepulse

and(right)a5µs sinepulse

One again, by adjusting the delay τ between the aousti and referene beam signals, we an selet a

speipositionalongtheUSpropagationaxis.

4.EXPERIMENT

A50mmthikaquariumislledwithsatteringliquid: adilutedsolutionofintralipid10%. Thissolutionisthen

further dilutedto vary theoptial stteringproperties ofthe liquid. Measurementsof thespetralbroadening

of the diuse light using the methodology disribed in ref.

6

as shown are in the range of the kHz, whih is

omparable to suh mesurementsmade in vivo.

6, 15

The inlusion is asmall latex pouh a few milimiters in

diameterlled withthesamesolutiondyedwithblakink.

Experimental sans alongtheUS propagationaxisusing thepulsedaoustiand referenebeamtehnique

are shown in gures 4 and 5. The signalis plotted in normalized units. As desribed in ref

7

our tehnique

allowsusthmeasure thesignalandtheshotnoisesimultaneously. Wedeneournormalizedsignalas (signal-

shotnoise)/shot noise. Figure 4omparesresultsontwodilutions(3%and 5%)and showsin eahasde two

sansalongtheUSpropagationaxis: oneovertheinlusion(irles)andoneawayfromtheinlusion(squares).

Theexperimentisrepeated(8 timesforeahsan)toimprovethesignaltonoiseratio. Theinlusionislearly

visible evenforasmallnumbeofaumulations. Figure5showresultsonfurther dilutedliquids. As expeted

theinlusionismoreeasilyseenin themostdilutedsolution.

Experimental resultsusingthepseudorandom modulationtehniqueareshown in gure6. Thedilutionis

5%andtheinlusionislearlyseeninthesanontheleftandthe2Dimageontheright. Thenormalizedsignal

levelisroughly5timeshigherthantheoneobtainedwiththepulsetehnique,theresolutionomparbleandthe

signalto noiseratioismuh better,withasinglesan.

5.CONCLUSION

Theseresultsareanimportantsteptowardsinvivo measurementinwhiheetsofdeorrelationofthespekle

bymovementof, orin,thebiologialtissuesisimportant. Theomparisonof thetwoexperimental tehniques

mustbepushedfurther determinewhih oersthebeast ompromisebetweensignalleveland resolutionwhile

remaininginthesafetylimitsfortheamplitudeanddurationoftheUSpulses. Thesetupanandmustalsobe

adapted forthe onurrentaquisition ofthe signalat multiple wavelengths, addingspetrosopiinformation

totheimages.

ACKNOWLEDGMENTS

ThisworkhasbeensupportedbytheRégion Ile-de-Frane ,aspartoftheCanerpled'Ile deFrane . Wewould

(6)

and away fromthe inlusion for 2dilutions of the sattering liquid. Averagingthe signal improvesthe signal to noise

ration

(7)

0 50 0.08

0.1 0.12

transverse axis (mm) C = 5%, 2 accumulations

0 50

0.08 0.1 0.12

transverse axis (mm) C = 5%, 4 accumulations

0 50

0.08 0.1 0.12

transverse axis (mm) C = 5%, 8 accumulations

inclusion no inclusion

0 50

0.05 0.06 0.07 0.08

transverse axis (mm) C = 3%

0 50

0.05 0.1

transverse axis (mm) C = 1.5%

0 50

0 1 2 3

transverse axis (mm) C = 0.75%

Figure 5. Experimentalsans along theUS propagationaxis using thepulsetehnique. Theinlusion islearly more

easilydistinguishedasthesolutionismorediluted,thuslesssattering.

(8)

0 10 20 30 40 50 60 70 80 0.25

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Cut along x

Normalized signal

Ultrasound propagation axis(mm)

Random phase modulation

x axis (mm)

Ultrasound propagation axis

10 20 30

0

10

20

30

40

50

60

70

Figure6. Experimentalresultsusingthepseudorandommodulationtehnique.

REFERENCES

1. L.H.Wang,S.L.Jaques,andX.M.Zhao,Continuous-waveultrasonimodulationofsatteredlaserlight

toimageobjetsin turbidmedia, Opt.Lett. 20,p.629,1995.

2. W.LeutzandG.Maret,Ultrasonimodulationofmultiplysatteredlight, PhysiaB 204(14),1995.

3. L.-H.Wang,Mehanismsofultrasonimodulationofmultiplysatteredoherentlight: ananalytimodel,

Phys. Rev. Lett. 87,pp.0439031,2001.

4. Kempe,M.Larionov,D. Zaslavsky,andA. Z.Genak,Aousto-optitomographywithmultiple sattered

light, JOSA14, pp.11511158,1997.

5. A. Lev and B. Sfez, in vivo demonstration of ultrasound-modulated light tehnique, J. Opt. So. Am.

A20,pp.23472354,de2003.

6. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boara, and A. K. Dunn, Heterodyne

detetionof multiplysattered monohromati lightwith amultipixel detetor, Opt. Lett. 30, pp. 1357

1359,june2005.

7. M. Gross, P. Goy, and M. Al-Koussa, Shot-noise detetion of ultrasound-tagged photonsin ultrasound-

modulatedoptialimaging, Opt.Lett. 28,pp.248284,15De.2003.

8. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boara, and M. Gross, Pulsed aousto-opti imagingwith a

digitalholographysheme, in Photons Plus Ultrasound: Imaging andSensing 2005, A. A. Oraevskyand

L.V. Wang,eds.,Po. SPIE5697,pp.209219,2005.

9. M.Atlan,B.C.Forget,F.Ramaz,A.C.Boara,andM.Gross,Pulsedaousto-optiimagingindynami

satteringmediawithheterodyneparallelspekledetetion, Opt.Lett.30, pp.13601362,june2005.

10. S.Lévêque,A.C.Boara,M.Lebe,andH.Saint-Jalmes,Ultrasonitaggingofphotonpathsinsattering

media: parallelspeklemodulationproessing, Opt.Lett.24(3), p.181,1999.

11. F.Leler,L.Collot,andM.Gross,Numerialheterodyneholographywithtwo-dimensionalphotodetetor

arrays, Opt.Lett.25,p. 716,2000.

12. L.V. Wang andG.Ku,Frequeny-sweptultrasound-modulatedoptialtomographyofsattering media,

Opt.Lett. ,15June1998.

13. GangYao,ShuliangJiao,andLihongV.Wang,Frequeny-sweptultrasound-modulatedoptialtomography

inbiologialtissuebyuseofparralleldetetion, Opt.Lett.25,p. 734,15May2000.

14. B.C.Forget,F.Ramaz,M.Atlan,J.Selb, andA.C.Boara,HighontrastFFTaousto-optialtomog-

raphyof phantomtissueswithafrequenyhirpmodulationof theultrasound, Appl. Opt.42,p. 1379, 1

Mar.2003.

15. A. Lev and B. Sfez, Pulsed ultrasound-modulated light tomography, Opt. Lett. 28, pp. 154951, 1

(9)

adigitalholographysheme: newshemetoobtainaxialresolution, inNovel Optial Instrumentation for

Biomedial Appliation II ,C.Depeusinge,ed.,Pro. SPIE5864,2005.

Références

Documents relatifs

Following a similar reasoning Y II can be assigned to Y44 for which no sig- nificant interaction with the ribosome are observed in the X-ray structure of the complex (Fig. 2

The first evaluations of sound fields, in this case the velocity of sound in various liquids, were made in 1932. An example of these early efforts is shown in Fig. No

sound velocity in triacetin by SMBS spectra that in the triacetin cleared by means of distillation more than a year before it was observed the temperature depen- dence

[r]

Although aspirin and ticagrelor used separately slightly decreased platelet aggregation compared to untreated and infected PRP ( Figures 1B and 2C ), the highest decrease was

caryophyllene and 1,8-cineole emission rates of branches A and B in July 2004 using three emission algorithms; the temperature de- pendent TEMP algorithm (Guenther et al., 1993) and

Une consistance qui ressemble à celle du sirop.. Un accueil qui vient