• Aucun résultat trouvé

Reconstructed drill-bit motion for sonic drillstring dynamics

N/A
N/A
Protected

Academic year: 2021

Partager "Reconstructed drill-bit motion for sonic drillstring dynamics"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02151646

https://hal.archives-ouvertes.fr/hal-02151646

Submitted on 10 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reconstructed drill-bit motion for sonic drillstring dynamics

Kaïs Ammari, Lotfi Beji

To cite this version:

Kaïs Ammari, Lotfi Beji. Reconstructed drill-bit motion for sonic drillstring dynamics. European

Journal of Control, Elsevier, 2019, �10.1016/j.ejcon.2019.04.003�. �hal-02151646�

(2)

Reconstructed drill-bit motion for sonic drillstring dynamics

Kaïs Ammari

a

, Lotfi Beji

b,

aUR Analysis and Control of PDEs, UR13ES64, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia

bIBISC-EA4526 Laboratory, University of Evry, 40 rue du Pelvoux, Evry 91020, France

IntunnelexcavationthatintegratesResonantSonicHeadDrilling(RSHD)machine,oneoftheimportant stabilityproblemtodealwithisrepresentedbythenecessitytoassignaxialvibrationamplitudeinduced bytheRSHDtoaresonantvibrationmode.Ingeneral,acontrollawdependsonsystemvariableswhich arepartiallyavailableformeasurements.Indrillingoperation,thedrillstringvariablesatthetipboundary aren’teasy,ifnotimpossible,tobemeasured.Thesonicdrillstringinfinitedimensiondynamics,derived inthispaper,willplayanimportantroleinPDE(PartialDerivativeEquation)observerdesignforthedrill bitmotion.Thewell-posednessproblemisaddressed,andthedesignedPDE-observerstabilityisdetailed usingtheresolventmethod.Thewavepeakamplitudeisdeterminedfromtheresonantdrillstringmode shape,andthesystem’sstabilityisanalyzedaroundapracticalfrequencymode.

1. Introduction

Ashard rockdrilling inducesseverfrictionphenomenaaround thedrillstringsystemandalsoatthebit,severvibrationvariations areinherentfortheequipmentandmayaffectRatesOfPenetration (ROP).ROParetheprincipalmonitoringfactorlikeperformancepa- rameterofdrilling.Indrillingenvironment,largermachinesarede- signedtodrillharderformations;thesemachinevibrate,rotateand injecta fluidforcoolingandremovalofwastecuttings. Machines equippedwithheadrotaryare usefulinoilwell drilling.However, for tunnel drilling support wherethe depth is limited, machines that integrate axial vibration tool are considered more efficient.

Thevariationoffrequencybytheoperatorandthedrillbitweight to matchthe materialheisgoingthrough, ensurethebestpene- trationrateandmostaccuratesamplingisobtained.

Sonic drilling has been used in industry for many years [17]. Themajorityoftheresearchhasbeenperformedbyprivateindus- trywheretheyhavekepttheknowhowthatthey havedeveloped internalandproprietary[3].Mostofthemodel,thatdescribesthe sonicdrillstringfound intheliterature, didnot take intoaccount the damping of the soil along the length of the drill and they modelpoorlytheinteractionbetweenthesonicdrillstringbitand thecrown[7].Thequantificationofthesonicdrillsystemvariables integratestheunderestimatedfrictionfromthedrillstringandthe crown. The essence of sonic drilling is high-frequency vibration

Corresponding author.

E-mail addresses: kais.ammari@fsm.rnu.tn (K. Ammari), Lotfi.Beji@ibisc.univ- evry.fr (L. Beji).

drillingwhereenergywavesaretransmittedthoughthedrillstring totheendstringandthenreflectedback.Asonicdrillheadworks bysendinghighfrequencyresonantvibrationsdownthedrillstring tothedrillbit,asshowninFig.1,whiletheoperatorcontrolsthese frequenciestosuitthespecificconditionsofthesoil/rockgeology.

Vibrationsmay also be generated within the drill head. The fre- quency is generally between50 and150 Hz (cycles per second) andcan be varied by the operator. Resonancemagnifies the am- plitudeofthedrillbit,whichfluidizes thesoilparticlesatthebit face,allowing forfastandeasypenetration throughmostgeologi- calformations.Aninternalspringsystemisolatesthesevibrational forcesfromtherestofthedrillrig.

Despitetheperformance oftheaxialvibration controllerspro- posedin[6,7]bymeansofadequatesimulationresults,implemen- tationonrealmachinemaybeimpractical.Actually,thedownhole system’svariables measurements, are unrealizableduringdrilling inundergroundtunnelingunlikeintheoilwellrotarydrillingfield.

Observability is a property of a dynamical system which means that we can determine exactly the state of the system from the observerofitsinput andoutput onasufficientlylong timeinter- val.Notethatanobserverforagivensystemisananotherdynam- icalsystem thatproduces an estimate of thecurrentstate of the givensystembasedonpast observations.Theconstruction ofob- serversisimportantincontrolapplicationsforinfinite-dimensional systems.The locationofmeasurementandactuationplays anim- portantrole in thedesign oftheobserverfor PDEs.Ifthe sensor andtheactuatorareplacedattheoppositeboundaries,wecallthis ananti-collocatedsetup,otherwise,whenthesensorandtheactu- atorare locatedat thesameside, itis calledcollocatedsetup. In

(3)

Fig. 1. Drilling machine (RSHD) tip and top boundary conditions.

general,twoapproachesareusedtodesignaconvergentboundary observerforadistributedparametersystems.Thefirstapproachis basedonthebacksteppingtechnique:in[19],backstepping-based observersfor a classof linearparabolic integro-differential equa- tionswaspresented.Anobserverdesignforgeneralperiodicquasi- linearparabolic PDEs in one space dimension is used in [5]. For the case of a linear first-order hyperbolic system, an estimation of boundary parameters has been proposed in [11]. The contin- uum backsteppingapproach wasapplied to a hyperbolic PDEs in [8]to derive a collocated observer. The second approach is Lya- punov.Usingthistheory,boundaryobserverisdesignedforamo- torizedEuler–BernoulliBeamin[13],foratowedseismiccablein [14]andforaflexible-linkmanipulatorin[20].

In thepresentpaperthemain contributionhereistopropose acollocatedinfinitedimensionalobserverforaxialvibrationswith sensingrestrictedtothe boundary.Totheauthor’sknowledge,all previous works considering the vibrations control problem were carriedoutinthe fieldofoilwell drilling,wherethevariables in the bottom hole can be measured as there are sensors fixed on thedrill collarswhich is notthe casein thetunneling field. The estimationproblem ofthe unmeasured parameters relatedto vi- brationshasnotbeenfoundintheliterature.Theonlyresultsdeal withestimatingthepressureandtemperatureconditions.

The paper is organizedasfollows. The second section is con- cerned by the system model, we present a distributed parame- termodelofthedrillstringaxial vibrationsandwestate theob- serverproblem.InSection3,wedefinethecollocatedobserverde- sign.Sections5and6address thewell-posedness andthe stabil- ityproblems,respectively.Finally,simulationresultsareshownin Section7,andaconclusionwillendthepaper.

2. Mathematicalmodel

Toreducethecomplexityofthesystemandthusderiveamath- ematicalmodel,it isnecessaryto makesome initial assumptions andsimplifications of the system when the boundary conditions areselected[16].Itisassumedthatthedrillstringisalongpipe having a uniform cross-sectional area A and assumed to have a negligibleeffectofthetorsionalvibrationsduetothepipelimited length(3–18 m) andthe naturalapplied input forces(axial).The forcesthatexcitethedrillstringare assumedtoactonthetopof thesonicdrill.Inoilandgasfield,arotary tableisdeployed,and wherethepipelengthisveryimportant(km).Hence,torsionalvi- brationcannotbeneglected.Thus,thisphenomenahasintensively

studiedintheliterature.One mayreferto Saldivaretal.[18]and Zhao[21]andreferencestherein.

Because dampingalong the length is very low,the sonicdrill operator has to be very careful not to overstress the drill string atresonancewhenthebottomdrilltip isnotengagedindrilling.

Thedampingatthedrillbitisthemostimportantvariableofthe drillingsystem,asitdefinesthedrillingworkthatistakingplace.

The governing differential equations of motion for the sonic drillisderivedfromforcebalance.Wedenotebyu(x,t)thelongi- tudinaldisplacementofarod’ssectionA,thatisadistancexfrom theverticesattimetasshowninFig.2.

ρ

Adx

2u

(

x,t

)

t2 +2bAdx

u

(

x,t

)

t +aAdxu

(

x,t

)

+

σ

A

σ

A+ d

dx

( σ

A

)

dx

=0

where

ρ

isthe pipedensity,EistheYoungmodulus,a andb are respectivelythecouplinganddampingconstantsalong thelength ofthedrillstring, and

σ

isthestressgivenby

σ

=Eu(x,tx ).So,we get

ρ

Adx

2u

(

x,t

)

t2 +2bAdx

u

(

x,t

)

t +aAdxu

(

x,t

)

EAdx

2u

(

x,t

)

x2 =0 (1)

Dividingby

ρ

Adx,weobtain

2u

(

x,t

)

t2 +2b

ρ

u

(

x,t

)

t + a

ρ

u

(

x,t

)

E

ρ

2u

(

x,t

)

x2 =0 (2) Wedefinethespeed ofthesoundthroughthesteeldrillc byc=

E ρ.

Eq.(1)became

2u

(

x,t

)

t2 +2b

ρ

u

(

x,t

)

t + a

ρ

u

(

x,t

)

c

2

2u

(

x,t

)

x2 =0 (3) Itremainstodefinetheboundaryconditionsofthedrillstringdy- namicsgivenabove.

In order to calculate the drill string natural frequencies, the boundary conditions at the ends of the string must be known whenthe frequencyfunctionsare derived. Thesonicdrivermass, the input force from the sonic driver, and the air spring all re- side, wherexis equalto zero.The sonicdrivermass andtheair springarealwaysboundaryconditions.Atthedrilltipofthestring, where x is equal to the drillstring length L, a boundary condi- tion causedby couplingof thesonic drilltip tothe material be- ing drilledthrough exists.Allboundary conditionsarelocated on theendsofthedrillstringandbecauseofthis, alltheconditions havetoequaltheapparentforcesattheendconditions.Theforces fortheendsare foundbytakingthedrillstring’selastic constant E multiplied by the crosssectional area ofthe drill stringA and also multipliedby the partial derivative of the localdeflection u withrespect to the location in space xand setting thisequal to theboundarycondition,asshowninFig.2.

Topboundarycondition:

EA

u

(

0,t

)

x =msh

2u

(

0,t

)

t2 +csh

u

(

0,t

)

tU

(

t

)

+kshu

(

0,t

)

(4) wheremsh isthe massofthe sonichead,kshand csh are respec- tivelythespringandthedampingratesoftheairspringontopof thesonicdrill.

The input force is typically fixed, as it is dependent on the sizeoftheeccentricsandonthesquareoftheangularfrequency.

U(t)=mecrec(2

π ξ

)2sin(2

π ξ

t) where mec, rec and

ξ

are respec- tivelythemassofthetwoeccentrics,eccentricityoftheeccentrics, andthetemporalfrequencyenHz.

(4)

Fig. 2. Sonic drill model [10] .

Tipboundarycondition:

EA

u

(

L,t

)

x =−mbit

2u

(

L,t

)

t2cbit

u

(

L,t

)

tkbitu

(

L,t

)

(5) where mbit is themass of thesonic drillbit, kbit andcbit arere- spectivelythe springandthe dampingratesofthedrillbitwhile drilling.

Despitetheperformance ofthe axialvibrationcontrollers pro- posedin[6,7]bymeansofadequatesimulationresults,implemen- tationonrealmachinemaybeimpractical.Actually,thedownhole system’s variables measurements, are unrealizable duringdrilling inundergroundtunnelingunlikeintheoilwellrotarydrillingfield.

Theproblemistodesignanobserverforthesystemwithonly boundary measurements in the top of the drillstring (i.e. x=0) available, to estimate the drill bit parameters not accessible by measurements.

3. Observerdesign

We considertheaxialvibrations model(3)–(5)representedby adampedwaveequationandactuatedinthetopextremityofthe drillstring(x=0)bytheboundarycontrolinputU(t).

Theinvestigationoftheobservererrordynamics’s(9)–(11)sta- bility isreally defiant,crucialand innovative inthe underground tunnelingfield.

Inthefollowingdistributedparameterobserverdesign,we as- sume the availability of u(0, t) for measurement, as described above.Considerthefollowingdistributedparameterobserver.

2uˆ

(

x,t

)

t2 +2b

ρ

uˆ

(

x,t

)

t + a

ρ

uˆ

(

x,t

)

c

2

2uˆ

(

x,t

)

x2 =0 (6)

EA

uˆ

(

0,t

)

x =msh

2uˆ

(

0,t

)

t2 +csh

uˆ

(

0,t

)

t

U

(

t

)

+kshuˆ

(

0,t

)

G

(

uˆ

(

0,t

)

u

(

0,t

) )

(7)

EA

uˆ

(

L,t

)

x =−mbit

2uˆ

(

L,t

)

t2cbit

uˆ

(

L,t

)

tkbituˆ

(

L,t

)

(8) whereuˆistheobservedvalueofuandGistheobservergain pa- rameter.

Letu¯=uˆ−utheerrordynamicandsubtracting(6)–(8)by(3)– (5)givestheobservererrormodel:

2u¯

(

x,t

)

t2 +2b

ρ

u¯

(

x,t

)

t +a

ρ

u¯

(

x,t

)

c

2

2u¯

(

x,t

)

x2 =0 (9) withtheboundaryconditions

EA

u¯

(

0,t

)

x =msh

2u¯

(

0,t

)

t2 +csh

u¯

(

0,t

)

t +G˜u¯

(

0,t

)

(10)

EA

u¯

(

L,t

)

x =−mbit

2u¯

(

L,t

)

t2cbit

u¯

(

L,t

)

tkbitu¯

(

L,t

)

(11) whereG˜=kshG>0.

4. Well-posedness

In this section, we will prove the global existence and the uniqueness of the solution of problem (3)–(5). For this purpose wewilluseasemigroupformulationoftheinitial-boundaryvalue problem(6)–(8).

Ifwedenote V:=(u,ut,u(0),ut(0),u(L),ut(L))T,we definethe energyspace:

(5)

H=

{ (

u,

v

,w1,w2,z1,z2

)

H1

(

0,L

)

×L2

(

0,L

)

×R4,w1=u

(

0

)

,z1=u

(

L

) }

.

Clearly,HisaHilbertspacewithrespecttotheinnerproduct

V1,V2

H= a

ρ

L 0

u1u2dx+c2 L

0

u1xu2xdx+ L

0

v

1

v

2dx

+c2 G˜

EAw11w21+c2msh

EA w12w22 +c2kbit

EA z11z21+c2mbit

EA z12z22 (12) forV1=(u1,

v

1,w1

1,w12,z11,z12)T,V2=(u2,

v

2,w2

1,w22,z21,z22)T. Therefore,ifUL2comp(0,+∞),1 theproblem(3)–(5)isformally equivalent to the following abstract evolution equation in the HilbertspaceH:

V

(

t

)

=AV

(

t

)

+BU

(

t

)

,t>0, V

(

0

)

=V0:=

(

u0,

v

0,w0

1,w02,z01,z02

)

T, (13)

wheredenotesthederivativewithrespecttotimet,B:=

0 0 0

1 msh

0 0

andtheoperatorAisdefinedby:

A

u

v

w1

w2

z1

z2

=

v

c2uxx−2b

ρ v

a

ρ

u

w2

EA msh

ux

(

0

)

csh

msh

w2G˜ msh

w1

z2

EA

mbitux

(

L

)

cbit

mbitz2kbit mbitz1

.

ThedomainofAisgivenby

D

(

A

)

=

{ (

u,

v

,w1,w2,z1,z2

)

TH;uH2

(

0,L

)

,

v

H1

(

0,L

)

,

w2=

v (

0

)

,z2=

v (

L

) }

. Wehavethefollowing.

Theorem4.1. TheoperatorAgenerates aC0 semigroupofcontrac- tions(etA)t≥0onH.

Proof.AccordingtotheLumer–Phillips’theorem,weshouldprove thattheoperatorAism-dissipative.

LetV=(u,

v

,w1,w2,z1,z2)TD(A).Bydefinitionofthe oper- atorAandthescalarproductofH,wehave:

AV,V

H

= a

ρ

L 0

v (

x

)

u

(

x

)

dx+c2

L 0

v

x

(

x

)

ux

(

x

)

dx

+ L

0

c2uxx

(

x

)

−2b

ρ v (

x

)

a

ρ

v (

x

)

dx+c2

G˜ EAw2w1

+c2msh EA

EA msh

ux

(

0

)

csh msh

w2G˜ msh

w1

w2+c2kbit EA z1z2

+c2mbit EA

EA

mbitux

(

L

)

cbit

mbitz2kbit mbitz1

z2.

1L 2comp(0 , + )=

f ∈ L 2(0 , + );the support of f is compact .

ByGreen’sformulaweobtain:

AV,V

H=−2b

ρ

L 0

v

2

(

x

)

dxc2csh

EAw22c2kbit

EAz22≤0. (14) ThustheoperatorAisdissipative.

Nowwewanttoshowthatfor

λ

>0,

λ

I−Aissurjective.

For F=(f1,f2,f3,f4,f5,f6)T∈H, let V= (u,

v

,w1,w2,z1,z2)TD(A)solutionof

( λ

I−A

)

V=F, whichis:

λ

u

v

= f1, (15)

λ v

c2uxx+2b

ρ v

+a

ρ

u=f2, (16)

λ

w1w2=f3, (17)

λ

w2EA

mshux

(

0

)

+ csh

mshw2+ G˜

mshw1=f4 (18)

λ

z1z2= f5 (19)

λ

z2+ EA

mbitux

(

L

)

+ cbit

mbitz2+ kbit

mbitz1= f6. (20) TofindV=(u,

v

,w1,w2,z1,z2)TD(A)solutionofthesystem (15)–(20),wesupposeuisdeterminedwiththeappropriateregu- larity.Thenfrom(15),(17)and(15),wegetrespectively:

v

=

λ

uf1,w2=

λ

u

(

0

)

f3,z2=

λ

u

(

L

)

f5. (21) Consequently,knowingu,wemaydeduce

v

,w1=u(0),w2,z1=

u(L),z2 by(21).

Werecall thatsinceV=(u,

v

,w1,w2,z1,z2)TD(A) weauto- maticallygetw2=

v

(0)andz2=

v

(L).

FromEqs.(16),(18),(20),and(21),umustsatisfy:

λ

2uc2uxx+2b

ρ λ

u+ a

ρ

u=f2+

2b

ρ

f1+

λ

f1, in

(

0,L

)

(22) withtheboundaryconditions

λ

2u

(

0

)

EA msh

ux

(

0

)

+

λ

csh

msh

u

(

0

)

+ G˜ msh

u

(

0

)

= f4+

λ

f3+ csh msh

f3, (23)

λ

2u

(

L

)

+ EA

mbitux

(

L

)

+

λ

cbit

mbitu

(

L

)

+ kbit

mbitu

(

L

)

= f6+

λ

f5+ cbit mbitf5. The variational formulation of problem (22), (23) is to find (u,w1,z1)∈H:=

{

(u,w1,z1);

ω

H1(0,L),w1=u(0),z1=u(L)

}

suchthat:

L 0

λ

2+2b

ρ λ

+a

ρ

u

ω

+ux

ω

x

dx

+c2msh EA

λ

2+

λ

csh

msh+ G˜ msh

u

(

0

)

w

(

0

)

+c2mbit EA

λ

2+

λ

cbit

mbit

+ kbit mbit

u

(

L

)

w

(

L

)

= L

0

f2+

λ

+2b

ρ

f1

ω

dx +c2w

(

0

)

f4+

λ

f3+ csh mshf3

+c2w

(

L

)

f6+

λ

+ cbit mbit

f5

, (24)

(6)

forany(

ω

,

ξ

1,

ξ

2)∈H. Since

λ

>0,the lefthand sideof(24)de- fines a coercive bilinear form on H. Thus by applying the Lax–

Milgramtheorem,thereexistsaunique (u,w1,z1)∈Hsolutionof (24).Now,choosing

ω

∈Cc ,(u,w1,z1)isasolutionof(22)inthe senseofdistributionandthereforeuH2(0,L).ThususingGreen’s formulaandexploitingEq.(22)on(0,L),weobtainfinally:

c2msh EA

λ

2+

λ

csh

msh+ G˜ msh

w

(

0

)

u

(

0

)

+c2mbit EA

λ

2+

λ

cbit

mbit + kbit mbit

w

(

L

)

u

(

L

)

=c2msh EA

f4+

λ

+ csh msh

f3

w

(

0

)

+c2mbit EA

f6+

λ

+ cbit

mbit

f5

w

(

L

)

.

SouH2(0,L)verifies(18),(20)andwe recoveru,w1=u(0),z1= u(L)and

v

H1(0,L) andthusby (21),weobtain w2=

v

(0),z2=

v

(L), we have found V=(u,

v

,w1,w2,z1,z2)TD(A) solution of (I−A)V=F.

ThiscompletestheproofofTheorem4.1. Wehave,inparticular,that theproblem(6)–(8),whichcanbe rewrittenasfollows:

Z

(

t

)

=AZ

(

t

)

,t>0, Z

(

0

)

=Z0=

(

u0,

v

0,w0

1,w02,z01,z02

)

T (25)

admits for all Z0∈H a unique solution Z(t)=etAZ0C(R+;H). Moreover, forZ0∈D(A),the system(25)admitsan unique solu- tion

Z

(

t

)

=

(

u

(

t

)

,ut

(

t

)

,u

(

0

)

,ut

(

0

)

,u

(

L

)

,ut

(

L

))

C

(

R+;D

(

A

) )

andsatisifesthefollowingenergyidentity:

E

(

t

)

E

(

0

)

=−2b

ρ

L 0

u2t

(

x

)

dxc2csh EAut2

(

0,t

)

c2kbit

EAu2t

(

L,t

)

,

t≥0, (26) where

E

(

t

)

:=1

2

Z

(

t

)

2H,

t≥0. (27)

Thusthewell-posednessofproblem(3)–(5)isensuredby:

Proposition 4.2. LetUL2comp(0,+∞),V0∈H, then there exists a uniquemildsolutionV(t)=etAV0+t

0e(t−s)ABU(s)dsC(R+;H)of problem(13).

5. Stability

Recallthefollowingfrequencydomaintheoremforexponential stabilityfrom[4,15]ofaC0-semigroupofcontractionsonaHilbert space:

Theorem5.1 [4,15].LetAbethegeneratorofaC0-semigroupofcon- tractions S(t) ona Hilbert space X.Then, etAis exponentially stable, i.e.,forallt>0,

||

etA

||

L(X)≤Ceδt,

forsomepositiveconstantsCand

δ

ifandonlyif

ρ (

A

)

i

γ γ

∈R

iR, (28)

and limsup

|γ|+

(

i

γ

IA

)

−1

L(X)<∞, (29)

where

ρ

(A)denotestheresolventsetoftheoperatorA.

Weare nowina positiontostate thefirst mainresultofthis section:

Theorem5.2. ThereexistC,

δ

>0suchthat

etA

L(H)≤Ceδt,

t>0.

Ourfirst concern is to show that i

γ

is not on the spectra of Aforanyrealnumber

γ

,whichclearlyimplies(28).Wehavethe following:

Lemma5.3. ThespectrumofAcontainsno pointon theimaginary axis.

Proof. SincetheresolventofAiscompact,itsspectrum

σ

(A)only consistsofeigenvaluesofA.Wewillshowthattheequation

AV=i

β

V (30)

withV =(u,

v

,w1,w2,z1,z2)TD(A)and

β

∈Rhasonlythetriv- ialsolution(i.e.V=(0,0,0,0,0,0)T).

Bytakingtheinnerproductof(30)withVandusing

AV,V

H=−2b

ρ

L 0

v

2

(

x

)

dxc2csh

EAw22c2kbit

EAz22, (31) since

AV,V

H=ℜ(i

β

V

2H)=0,thenweobtainthat

v

=0,w2=

0,z2=0.

Next,wegetthefollowingordinarydifferentialequation:

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎨

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎩

i

β

u=0,

(

0,L

)

,

−c2uxx+aρu=0,

(

0,L

)

, i

β

u

(

0

)

=0,

mEA

shux

(

0

)

+mG˜

shw1=0,

i

β

u

(

L

)

=0,

EA

mbitux

(

L

)

+mkbit

bitz1=0.

(32)

• If

β

=0then

0= L

0

−c2uxx+ a

ρ

u

dx

=c2 L

0

|

ux

(

x

) |

2dx+a

ρ

L 0

|

u

(

x

) |

2dx+c2 G˜ msh

|

u

(

0

) |

2

+c2 kbit mbit

|

u

(

L

) |

2

u=0,w1=u

(

0

)

=0,z1=u

(

L

)

=0. WhichimpliesthatV≡0.

• If

β

=0thenu=0,w1=u(0)=0andz1=u(L)=0.So V≡(0, 0,0,0,0,0)T.

Wededucethatthesystem(32)hasonlythetrivialsolution.

Proofof Theorem5.2. We suppose that condition(29)doesnot hold. This gives rise, thanks to Banach–Steinhaus Theorem2 (see [2,Theorem2.2]),to theexistenceofa sequenceofrealnumbers

γ

n→∞ and a sequence of vectors Vn=(un,

v

n,wn,pn,zn,qn)T

D(A)with

Vn

H=1 such that

(

i

γ

nI−A

)

Vn

H→0 as n→∞, (33) i.e.,

i

γ

nun

v

nfn0 in H1

(

0,L

)

, (34)

2Let E and F be two Banach spaces and ( T i) iIbe a family (not necessarily count- able) of continuous operators from E into F . Assume that sup iIT ix F<x E.

Then sup iIT iL(E,F)< .

(7)

Fig. 3. Practical and estimated axial displacements at the tip boundary ( x = L ), G = 1 .62 10 6.

Fig. 4. Practical and estimated axial displacements at the tip boundary ( x = L ), G = 1 .5 10 6.

i

γ

n

v

nc2

(

un

)

xx+2b

ρ v

n+a

ρ

ungn0 in L

2

(

0,L

)

, (35)

i

γ

nwnpn=an→0 in C, (36)

i

γ

npnEA msh

(

un

)

x

(

0

)

+ csh msh

pn+ G˜ msh

wnbn→0 in C, (37) i

γ

nznqn=rn→0 in C, (38)

i

γ

nqn+ EA

mbit

(

un

)

x

(

L

)

+ cbit

mbitqn+ kbit

mbitznsn→0 in C. (39) The ultimateoutcomewillbeconvergenceof

Vn

Htozeroas n→∞,whichcontradictsthefactthat

n∈N,

Vn

H=1.

Firstly,since

(

i

γ

nI−A

)

Vn

H

|

( (

i

γ

nI−A

)

Vn,Vn

H

) |

=−ℜ

AVn,Vn

H

=2b

ρ

L 0

| v

n

(

x

) |

2dx+c2csh

EA

|

pn

|

2+c2kbit EA

|

qn

|

2, itfollowsfrom(33)that

v

n0,0inL2

(

0,L

)

and pn0,qn0inC. (40)

Fig. 5. Drill-bit axial displacements at the boundary x = L under G = 1 . 7 10 6.

Fig. 6. Drill-bit axial velocities at the boundary x =L under G =1 .7 10 6.

Fig. 7. Practical and estimated axial positions at the tip boundary ( x =L ), G =1 .5 10 6.

(8)

Fig. 8. Practical and estimated axial velocities at the tip boundary ( x =L ), G =1 .5 10 6.

Therewith

wn→0,zn→0inC. (41)

Now,letustakethe innerproductof(35)withun.Astraight- forwardcomputationgives

c2 L

0

| (

un

)

x

|

2dx+ a

ρ

L 0

|

un

|

2dx

=− L

0

i

γ

nun

v

ndx+

L 0

gnundx−2b

ρ

L 0

v

nundx

c2 G˜

msh

|

wn

|

2c2kbit mbit

|

pn

|

2

i

γ

nwnpn+ csh mshpnwn

i

γ

nznpn+ cbit

mbit

qnpn

→0. (42)

Inthelightof(40),(41)and(42),weconcludethat

Vn

H→0 whichwasourobjective.

Lastly,thesufficientconditionsofTheorem5.1arefulfilledand theproofofTheorem5.2iscompleted.

Table 1

Numerical values used for simulations [12] .

L 3 m ρ 7850 Kg/m 3

E 2 . 1 10 11Pa A 8 . 6 10 −3m 2

m sh 453.6 Kg m bit 8 Kg

k sh 84040034.023 N/m c sh 10 N s/m c 2=E/ρ 2 .6752 10 7m 2/s 2 m ec 28.4 Kg

r ec 0.06 m k bit 1194.519 N/m

c bit 1 N s/m b 0 N s/m 4

a 2334.434 N/m 4 ξ 68 Hz

6. Simulationresults

UsingtheobtainedanalyticalformofthesonicdrillPDEmodel and integrating the boundaries, at first, we have computing the differentmodelresonant frequencies. Forthis, we are referred to the work of Lieu and Jovanovic [9] and the MatlabChebfun’tool inorder to solvethe analytical formin a frequencydomain. The detailedfrequency analysiswas addressedin [12] wherethe ob- tained

ξ

=68Hzmatchesthevaluerequestedinpracticeintunnel reinforcingdomain [7].Recall here, inorderto achievethe simu- lation procedure,we used the Fouriertransform to compute the frequencyoperatorofthesystem. Thispermitstoquantifying the system’sperformance in the presence ofa stimulus, and it char- acterizesthesteady-stateresponseofastablesystemtopersistent harmonicforcing.Consequently,themodelintegratingtheobserver istransformedin(x,

ξ

)domain(Fouriertransformw.r.t.timetand temporal frequency

ξ

). In a second step,we study the temporal response using the intbvp andtrapz Matlab functions. Numerical resultsare performedwiththe initialmodel (3)–(5), andtheob- serverscheme(6)–(8).Forthis, thephysicalparameters aregiven inTable1.

TheresultsaresketchedinFigs.3–9fromwhichtheproposed observerschemeisshownstable/practicallystableintermsofthe drill-bitdisplacementsandvelocities.Forexample,showsthesta- bilitybehavioroftheobservedandtherealwavesignals.Thesys- tem’stotal energyis represented in a frequency domain forG= 1.62∗106whereweproveanimportantquantityofenergyatthe resonance

ω

=68Hz(Fig.9(left)).Fig.9(right)showsalessquan- tityofenergyundertheobservergainparameterG=0.5∗106.Un- derthislast value, thesystemlossesthe resonance(figureisnot givenhere).Hence,we mayconclude, theadequate choice ofthe

Fig. 9. Total energy, the maximum is emphasized at the resonance ( ω= 68 Hz), G = 1 . 62 10 6(left) and G = 0 . 5 10 6(right).

(9)

gainparameterwillguaranteethattheobserverworksatthedrill- stringresonancemode. Otherparameters relatedto nonhomoge- neous underground layers can be studied under a control based observer.

7. Conclusion

From the idea ofbeing not able to measure the drill bitam- plitude at the bottom, defined here as the top boundary, a PDE observerwasperformedfromthedrillstringdynamics.Theoretical computationswereconductedtowardthewell-posednessproblem andthe stabilitysufficient conditionsof the observer.In general, sonicdrilloperatorswillmonitorhydraulicpressureofmotorsthat driveatresonantrotationofeccentricsandproducethemaximum axialvibrations.Notethattheoperatorhastoadjustthedrillstring behavior and fluid injection till a resonant value. Consequently, to implement axial vibration control and reach an autonomous drillingoperation,andtherebytheimprovementofsafetylevelon construction sitesand also reducing the drilling time, a PDE ob- serverisdeveloped forthetip boundary. Futureresultsrequirea newcontrolinputelaborationinagreementwiththedesignedob- server. Possibility of integrate and evaluate the effect of moving boundaryonthesystemstability,asforexampleduetothepres- enceofthecuttingsinthecrown(Thewaveequationcaseisstud- iedin[1]).

References

[1] K. Ammari , A. Bchatnia , K.E. Mufti , Stabilization of the wave equation with moving boundary, Eur. J. Control 39 (2018) 35–38 .

[2] H. Brezis , Analyse fonctionnelle, in: Théorie et Applications, Masson, Paris, 1992 .

[3] J.B. Cheatham , in: The state of knowledge of rock/bit tooth interactions under simulated deep drilling conditions, 1977 . TerraTek Report.

[4] F. Huang , Characteristic conditions for exponential stability of linear dynamical systems in hilbert space, Ann. Differ. Equ. 1 (1985) 43–56 .

[5] L. Jadachowski , T. Meurer , A. Kugi , Backstepping observers for periodic quasi–

linear parabolic PDEs, in: Proceedings of the Ninteenth World Congress, The International Federation of Automatic Control, 2014, pp. 24–29 . Cape Town, South Africa.

[6] K. Latrach , L. Beji , Analysis and control of axial vibrations in tunnel drilling system, in: Proceedings of the Second IFAC Workshop on Automatic Control in Offshore Oil and Gas Production, 2015, pp. 27–29 . Brazil.

[7] K. Latrach , L. Beji , Axial vibrations tracking control in resonant sonic tunnel drilling system, in: Proceedings of the Fifty-forth IEEE Conference on Decision and Control, 2015, pp. 15–18 . Osaka, Japan.

[8] X. Li , J. Liu , Collocated observer design based on continuum backstepping for a class of hyperbolic PDEs, J. Comput. 7 (12) (2012) 2955–2961 .

[9] B.K. Lieu , M.R. Jovanovic , Computation of frequency responses for linear time-invariant PDEs on a compact interval, J. Comput. Phys. (2013) .

[10] P.A. Lucon , Resonance: the science behind the art of sonic drilling, The Mon- tana State University, Bozeman, Montana, Ph.D. Thesis, 2013 .

[11] F.D. Meglio , D. B-Pietri , U.J.F. Aarsnes , An adaptive observer for hyperbolic sys- tems with application to underbalanced drilling, in: Proceedings of the Nin- teenth World Congress, The International Federation of Automatic Control, 2014, pp. 24–29 . Cape Town, South Africa.

[12] I. Mnafeg , A. Abichou , L. Beji , Analytical and numerical studies of sonic drill- string dynamics, in: Proceeding s of the Twenty-forth Mediterranean Confer- ence on Control and Automation, June 21–24, Athens, Greece, 2016 .

[13] T.D. Nguyen , O. Egeland , Tracking and observer design for a motorized eu- ler-bernoulli beam, in: Proceedings of the Forty-second IEEE Conference on Decision and Control, volume 4, 2003, pp. 3325–3330 .

[14] T.D. Nguyen , O. Egeland , Observer design for a towed seismic cable, in: Pro- ceedings of the American Control Conference, 3, 2004, pp. 2233–2238 . [15] J. Prüss , On the spectrum of c 0-semigroups, Trans. Amer. Math. Soc. 284 (1984)

847–857 .

[16] S. Rao , S. Singiresu , Vibration of Continuous Systems, John Wiley and Sons.

Inc., Hoboken, 2007 .

[17] W.C. Rockefeller , Mechanical Resonant Systems in High-Power Applications, s.l., United Engineering Center, 1967 .

[18] B. Saldivar , S. Mondié, S.I. Niculescu , H. Mounier , I. Boussaada , A control ori- ented guided tour in oilwell drilling vibration modeling, Ann. Rev. Control 42 (2016) 100–113 .

[19] A. Smyshlyaev , M. Krstic , Backstepping observers for a class of parabolic PDEs, in: Systems & Control Letters, 54, Elsevier, 2005, pp. 613–625 .

[20] H. Yang , J. Liu , X. Lan , Observer design for a flexible-link manipulator with PDE model, J. Sound Vib. 341 (2015) 237–245 .

[21] Y. Zhao , Torisional vibration control in oilwell drilling, IFAC-PapersOnLibe 50 (1) (2017) 6035–6042 .

Références

Documents relatifs

This effect is more relevant in the case of the Aerogels, in which it is possible strongly reduce their gravitational masses by using sonic waves of low frequency.. Key words:

The question is: what a real social situation will be realized today in the place through the atmosphere at work in a building or a space that have been constructed, whose roots

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Histological examination of Gas1 mutants demon- strated a ventrally displaced pituitary gland located im- mediately adjacent to the oral ectoderm and interfering with closure of

The nonlinear dynamics analyzed considers the main efforts that the column is subjected to as, for instance, imposed rotation at the top, fluid-structure interaction, impact between

The aim of this paper is to investigate how the fluid affects this dynamics using a simplified fluid-structure interaction model that takes into account the fluid that flows

The sonic nebulizer NL11SN associates a 100 Hertz (Hz) sound to the aerosolization to improve deposition in the nasal/paranasal sinuses. The aim of the present study

Given a learning task defined by a space of potential examples together with their attached output values (in case of supervised learning) and a cost function over the