• Aucun résultat trouvé

Viscoelastic properties of immiscible telechelic polymer blends : effect of acid-base interactions

N/A
N/A
Protected

Academic year: 2021

Partager "Viscoelastic properties of immiscible telechelic polymer blends : effect of acid-base interactions"

Copied!
7
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Macromolecules, 25, 10, pp. 2651-2656, 1992-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1021/ma00036a015

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Viscoelastic properties of immiscible telechelic polymer blends : effect

of acid-base interactions

Charlier, Pascal; Jerome, Robert; Teyssie, Philippe; Utracki, L. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=b193d94f-839e-4bf6-8e07-c9c3ebeddb71 https://publications-cnrc.canada.ca/fra/voir/objet/?id=b193d94f-839e-4bf6-8e07-c9c3ebeddb71

(2)

1992, 25,

Viscoelastic

Properties of Immiscible Telechelic Polymer

Blends:

Effect of

Acid-Base Interactions

Pascal

Charlier,f

Robert Jéróme,*and

Philippe

Teyssié

Laboratoryof Macromolecular Chemistryand Organic Catalysis, University ofLiége,

Sart-Tilman B6,B-4000 Liége,Belgium L. A.

Utracki

Industrial MaterialsResearchInstitute, NationalResearch Council ofCanada, Boucherville,

Québec, CanadaJ4B6Y4

ReceivedOctober7, 1991;RevisedManuscriptReceivedJanuary27, 1992

ABSTRACT: Whenatelechelic polyisoprene(PIP)end-cappedwithtertiaryamine groupsisblendedwith

an immiscible telechelic polystyrene (PS) terminated with either sulfonicor carboxylicacid functions, a

proton transferoccurs fromthe acid to the amine end groups. Viscoelastic propertiesoftheseblendssupport theformation of eitherammonium sulfonateor ammonium carboxylate linkages betweenPSandPIP ina manner analogous to block copolymerization. Due to the lowstability ofammonium carboxylates, the related

polyblendshave beeninvestigated up to100°CandtheyshowTeofeachpolymeric partner. WhenPSand

PIPchainendsare associatedthroughmore thermallystableammonium sulfonates, thethermal

depend-ences ofstorageandloss shearmodulishowtwoadditional relaxationprocessesat leastinsome rangeof

PSandPIPmolecular weights. Byanalogywith SAXSanalysisof similarpolyblends, these relaxationshave been assignedtoaclassicorder-disordertransition similartothatseen in.traditional blockcopolymers and totheirreversible dissociationofthesulfonate salts at higher temperatures, respectively. Theseadditional transitionswhich involveachangeinphasemorphologyhavebeenconfirmedby the“Cole-Cole”logG"vs

logG' plots.

Introduction

Nowadays,thefinetailoring ofmultiphase polymersis

one ofthe most efficient ways to generate new organic materials ofhighperformance.1"9 That opportunityhas been highlighted for thefirst time by the

poly(styrene-b-diene-b-styrene) triblock copolymers which behave as thermoreversibly cross-linked rubbersand are commer-cializedasthermoplasticelastomers.4 Comparedto block copolymerization, melt blending of available polymers

usingtraditionalprocessingequipmentis a more conve-nientway to producemultiphasepolymericmaterials.1"3,5^

Although inthese systemseachofthepartners retains its own properties, the overall physicomechanical behavior

is only satisfactory when two demanding structural

requirements are met: (i) a controlled microphase sep-arationinrelation to aproper interfacialtension and/or appropriate processing conditions; (ii) an interphase

adhesionstrongenough toassimilatestressesandstrains

withoutdisruption oftheestablished morphology. Several strategies have been proposedwiththe viewofreaching

these targets.5 Creating a practically irreversible mor-phology either in the polymerizationprocess itself(e.g.,

HIPS andABS resins)10 or in the blending processis a

first possible approach.5·7·8 A more general strategy

consistsofusingdiblockcopolymersoftailored structure andmolecular weightasinterfacialagents.1·5·11"24 These

polymeric additivescan lead toexcellent propertiesofthe finalmaterialseven when usedinratherlowamounts(ca. 1-2 wt %). Mutual interaction of functional groups

randomly attached,one on eachimmiscible polymerofa binary blend, isanothermeans of controlling interfacial tensionandinterphaseadhesion. Severaltypes of inter-action can be promoted, e.g., acid-base, dipole-dipole,

ion-ion,andion-dipoleinteractions, hydrogen bonding,

* Towhom correspondence shouldbeaddressed.

1Present address: Machelen Chemical Technology Center,Exxon ChemicalInternationalInc.,2,NieuweNijverheidslaan,B-1831

Ma-chelen,Belgium.

charge-transfercomplexes, andmetal-ligand coordination

complexes.25

The beneficial effectofmutual acid-base interactions on themaincharacteristicsofpolyblendshas beenreported

in the scientificliterature.25"30 Forinstance,ionic cross-interactionsbetweenoriginallyimmiscible polymers are

generatedbyaproton transfer fromacid groupsattached

to one polymer to amino groups present on the second

polymer. For that transfer to be quantitative,pKa’sof

theacid andaminogroups havetobedifferentby atleast

3units.25 This isthe reason why sulfonic acid/aromatic amine(ApKa 4) isacommonlyusedacid/basepair. The effect promoted by the mutually interacting groups dependson theirconcentration. Belowacriticalvalue(5 mol%withrespect to the monomericunitsofthemodified

polymer),polystyrene/poly(ethylacrylate) and polystyrene/

polyisoprene blends are opaque and show two Tg’s, although theirmechanicalpropertiesare improved. Above the critical ionic content, blends are transparent and exhibitauniqueTgwhichis,however, observedasabroad relaxationpeakby mechanicalmeasurements, suggesting that miscibilitydoesnot existat ascale smallerthan 10

nm.25 Spectroscopicandmechanicalstudieson blendsof sulfonicacidcontaining polystyreneandpolyurethanealso showthataproton transfertakes placefrom the sulfonic

acid groups to the urethanemoieties.31"33 Interestingly enough, when used at a rate ofatleast 13 mol %, car-boxylic acid and pyridineunitsare ableto promote the

miscibility of poly(methyl methacrylate) (PMMA) and poly(butyl acrylate).34 A positive effect of hydrogen

bonding has also been reported forblends of

poly(2-vi-nylpyridine) and poly(ethylene-co-methacrylic acid).35 Finally,carboxylic acid-urethane interactions are likely

to occur sincemechanical propertiesof polystyrene/poly-urethane blendsare improvedwhenpolystyreneis mod-ified by carboxylicacidgroups.36·37

Proton transfer fromacid end groupsofone telechelic polymerto dimethylamine end groupsofan immiscible

0024-9297/92/2225-2651$03.00/0 © 1992American Chemical Society

(3)

2652 Charlieret al. Macromolecules, Vol. 25, No. 10, 1992 telechelic partnerhasbeeninvestigatedas amodel system

for the more complex situation in which intermolecular ionic bonding or hydrogen bonding is promoted by interactive moieties distributed at random along the polymericbackbones.38-42 Since the spontaneoustrend

oftheblendedpolymers to demixiscounterbalancednow

by cross-interactions between the chain ends of each

polymeric component, these mixtures are expected to mimicclosely thephasemorphologyand general properties

ofthecorrespondingmultiblockcopolymers. Thatanalogy hasbeen substantiated byseveraltechniques. IR

spec-troscopy38·41 supports the occurrence ofproton transfer from carboxylicacid to dimethylamine end groupswith

theformationof “interchain”ammonium carboxylate ion pairs (eq 1). Optical microscopy shows that the phase

-PA—COOK + R2N~^PB«

-PA—COO R2NH*~PB- (1)

separationofPA and PB is controlled by the ion pairs

bridging the chain extremities toalevelthatdepends(i) on the nature ofPA and PB and their intrinsic

immis-cibility,(ii)on the ion pair content, in relation to

molec-ular weightofPAandPB,and(iii)on the strengthofthe

ionpairs, ammonium sulfonatesbeing more effectivein

fightingtheimmiscibility ofPAandPB than ammonium

carboxylates.41 Tgmeasurementsare in qualitative agree-ment with the general pattern reported for multiphase blockpolymers.38·41 Thesolution viscosityofPA andPB telechelic polymerblendsinacommon, apolar solventis

significantly modified by the ionic bondingbetweenthe polymers and the possible dipolar interactions of the bridging ion pairs.41 Finally a temperature-dependent

small-angle X-ray scattering study has shown that the morphology ofthepolyblendsclosely resemblesthatseen in covalentlybonded blockcopolymers.39 When ammo-nium sulfonate ion pairsare concernedanddependingon themolecular weightofPAand PB,aclassicorder-disorder

transitionisobserved andeven possibly followed by the effectofacriticalsolution temperature. Thispaper deals

withthe viscoelastic properties ofblends of a,w-bis(di-methylamino)polyisoprene [PIPfNRzk] and

,

-dicar-boxy-or -disulfopolystyrene [PS(COOH)2or PS(S03H)2]. The effectofthebridging ion pairsandtheirstrengthand

content willbeconsidered, andthe dynamic mechanical behaviorwillberelatedasmuchaspossibletothephase

morphologypreviously investigated by SAXS.

Experimental

Section

SamplePreparation. Telechelic polymers were prepared

by anionicpolymerization. Pure andcarefully driedmonomers

and solventswere used. Isoprene and styrenewere driedover

CaH2atroom temperature anddistilledunder reduced pressure justbefore use. Isoprene andstyrene were mixed with rc-bu-tyllithiumandlithium fluorenyl, respectively, and againdistilled beforepolymerization.

Polymerization was performed in previously flamed and

nitrogen-purged flasks equippedwith rubberseptums. Hypo-dermicsyringesandstainless-steel capillarieswere usedtohandle

liquidproducts underanitrogenatmosphere. a,o)-Bis(dimeth-ylamino)polyisoprenewas anionicallypreparedinTHF,at-78 °C, using sodium naphthaleneas adifunctional initiator, ,

-Disulfopolystyrenewas prepared under thesame experimental

conditions exceptforthe counterionoftheactivespecieswhich

was Li insteadofNa. Theinitiatorsresultedfromthereaction ofnaphthalenewitha slightexcess oftheappropriate alkaline metalinTHF at room temperature.

The living macrodianions were deactivated by anhydrous

carbondioxide,43 1,3-propane sultone,44and l-chloro-3-(dime-thylamino)propane45withtheformation of ,

-dicarboxypoly-TableI

Molecular Characteristics of Telechelic Polymers

sample M„,X10"3 Mw/Mn Mt,°X10"3 Z6 PIP(NMe2)218K 18.0 1.2 19.5 1.85 PIP(NMe2)238K 38.4 1.3 41.5 1.86 PS(COOH)213K 13.2 1.4 13.5 1.96 PS(S03H)29K 9.1 1.3 10.0 1.82 PS(S03H)215K 14.6 1.2 15.8 1.85

0Mt= molecular weight determined bytitrationoftheend groups.37

bf = functionality= 2MJMt.

TableII

Compositions andCodeNamesof Blends of Telechelic Polymers

blends0 codename

PIP(NMe2)238K-PS(COOH)213K M38-13C PIP(NMe2)238K-PS(S03H)2 9K M38-9S PIP(NMe2)238K-PS(S03H)215K M38-15S PIP(NMe2)218K-PS(COOH)213K M18-13C PIP(NMe2)218K-PS(S03H)2 9K M18-9S PIP(NMe2)218K-PS(S03H)215K M18-15S “PIP/PS= 1/1 (mol/mol).

styrene [PS(COOH)2], , -disulfopolystyrene [PS(S030H)2], and a,ü>-bis(dimethylamino)polyisoprene [PIP(NMe2)2],

respec-tively.

The microstructure ofthe polyisoprene was found to be a

mixture of1,2/3,4inaratio of35/65. Molecularweightsofthe telechelicswere controlledbyadjustingthemonomer toinitiator molar ratio. The molecular weight and polydispersity ofthe telechelic polymerswere measured by size-exclusion

chroma-tography(SEC),asreportedelsewhere.45 Thefunctionalitywas

calculatedfrom theM„value (SEC) and from thepotentiometric

titration ofthe end groups. Dimethylamino groups and acid groups (COOH and S03H)were titratedwith perchloricacid and tetramethylammoniumhydroxide, respectively,ina9/1toluene/ methanolmixture. Polyisoprenewas carefullystabilized byan

antioxidant(1wt % ofIrganox1010).

The main molecular characteristicsoftelechelic polymersare

reported in Table I.

Polymer blendswere prepared bymeans ofsolvent-casting

techniques. Separate solutionsofeachpolymerina9/1toluene/ methanolmixturewere prepared. Afterhaving mixed the proper volumesofeachsolution(sothatthe acid/amine molarratiowas

1), the solutions were allowed to stir for24 h before casting. Filmswere preparedbyaslowevaporation ofthesolvent followed byvacuum dryingto constant weight at 70 °C (ca. 1 month).

Samplesfordynamic mechanical measurementswere prepared

by compressionmoldingat2MPaand140°Cfor20min. Table II summarizesthe compositionsofthe blends investigated in thisstudy togetherwith theircodenames.

Differential Scanning Calorimetry(DSC). DSC thermo-gramswere recorded, from-40 up to +200 °C. Sampleswere

previously annealed at200°Cfor15min. APerkin-Elmer

DSC-4 was usedataheating rateof20°C/minunderaconstantflow ofdrynitrogen.

Dynamic MechanicalMeasurements. A Rheometrics

me-chanical spectrometer (RMS 605S) was used with a

parallel-plate geometry. The 25-mm-diameter specimenin a 1.4-mm-wide gap was tested under a constant flow of dry nitrogen. Measurementwere carried out ataconstant frequency(t-= 1Hz)

and a constant heating/cooling rate of2 °C/min. Isothermal frequencyscans atfrequenciesfrom0.016to16Hzwere conducted forM38-13C and M18-15S blends.

Results and Discussion

Effect of

Strength

of the Ion Pairs and of Their Mutual Interactions. Figures 1-3illustratethethermal

dependenceofthestorage(GOandloss(G")shearmoduli,

measured atafrequency of1rads-1forblendscontaining PIP(NR2)2 38K (where 38K refers to molecular weight)

associated to PS (SOsH^ 15K, PS(S03H)2 9K, and PS (COOH)2 13K, respectively.

(4)

Macromolecules, Vol.25, 10,

Figure 1. Storage(GOandloss(G") shearmodulivs

temper-ature (1 Hz) for theM38-15S blend (TableII).

Figure2. Storage(GOandloss (G'O shearmodulivs

temper-ature (1 Hz)for theM38-9Sblend (TableII).

Figure3. Storage (GOandloss(G") shearmodulivs

temper-ature (1 Hz)for theM38-13Cblend (TableII).

All

theG"curves showamaximumin the temperature

rangeof 70-80 °C. Such arelaxationhas been assigned totheglasstransitionof polystyrene(orpolystyrene-rich)

phases. Abovethat transitiontemperature, the material clearly starts to flow. That interpretationassumes that the investigated blends are phase separated. This has beenconfirmed elsewhere41and shown in this study by

differentialscanningcalorimetry(DSC). Indeed,twoTg’s

are reported (Table

III)

whichcomparedtoTgoftheparent PIP and PS are characteristicofphasesof that nature.

The difference in the Tg’sforeach type ofphase isalso

mentioned inTableIII. ATgissmaller byca. 10°Cwhen

Viscoelastic Properties Telechelic Polymer Blends TableIII

Tg’sof Telechelic PolymersandBinaryBlends

sample Tgi, °C Tg2,°C ATtb

PIP 18K“ 3 PIP38K° 17 PS9K“ 95 PS13K“ 97 PS15K 98 M38-13C 17 112 95 M38-15S 20 108 88 M38-9S 19 107 88 M18-13C 14 113 99 M18-15S 18 106 88 M18-9S 18 105 87 a

Polymerfreefromfunctionalend groups.6

ATf= “

T$l.

Figure4. Comparisonofthe log G'vstemperaturecurve (1Hz) forM38-15S and M38-13C blends (TableII).

thechainendsare held together through ammonium

sul-fonate ion pairs rather than carboxylate ones. This indicatesthatan increaseinthe strengthofthe bridging ion pairs is in favor of an improved miscibility, all the other conditionsbeing unchanged.

Figure4 comparesthe G' curves fortwo blends M38-15SandM38-13C which essentiallydifferon thenature

oftheacid end groups.

Theintermediate plateau below70-80°Cextendsover alargertemperaturerange, and G'of thatplateauishigher

when PSis end-cappedbyasulfonicacid. These

obser-vations mean that ammonium sulfonates are stronger dipoles than theircarboxylatecounterpartsandthattheir

mutual interactions stabilize a stronger chain network. Indeedthe telechelic polymerblendsunder investigation can be depicted not only as an ionically bonded block copolymerbutalsoas atwo-component(PS andPIP) ion-omer ofthesulfonic type. In thisregard,itiswell-known

thatthemutualassociationofsulfonateion pairs improves

thehigh-temperature properties oftheionomer muchmore effectively than carboxylate dipoles do.46

At

70°C, theM38-13C blend starts to flow rapidly which reflectsthe fast disruption ofthemutual association of

theammonium carboxylate ion pairsand mostlikelythe thermalrupture oftheion pairsthemselveswith release ofthe carboxylicacid and dimethylamineend groups.It isworth pointingoutthataPS(COOH)213Ksamplehas beenpreviously neutralizedwith triethylamineandthen

heatedat130°Cundervacuum. Thebackproton transfer

has been observed as supported by the quantitative elimination oftriethylamine47,48 (eq 2). Incontrastto

M38-130°C

PS(COO~ +HNR3)2 —

PS(COOH)2+ 2NR3 (2)

(5)

2654 Charlieret al. Macromolecules, Vol.25, No. 10, 1992

TableIV

MolarandWeightCompositionsofBinaryBlendsof Telechelic Polymers

pip_

ps so3-n+:

codename mol%< wt % mol %° wt % mol%°

M38-15S 79.3 71.7 20.4 28.3 0.28

M38-9S 86.3 80.9 13.4 19.1 0.31

M18-15S 64.4 54.5 35.1 45.5 0.49

M18-9S 74.9 66.7 24.5 33.3 0.57

0Onthebasisofthemonomer content.

Figure5. Storage (G') andloss (G")shearmodulivs

temper-ature(1 Hz) for theM18-15S blend (TableII).

13C, the occurrence ofthe flowregime isdelayed in the M38-15SblendandthedecreaseinG'atincreasing tem-peratureismuchslower. Forinstance,thecomplex shear modulusofM38-15Siseasily measured at 150°C (Figure

1)whereasitisalready too small tobemeasured accurately at100°Cfor theM38-13Cmixture(Figure3). Thisisthe

consequence of the highest thermal stability of the ammonium sulfonate ion pairscomparedto the

carbox-ylate ones.47’48

Effect

oftheIon

Pair

Content. Inthe previous blends, the molecular weight of PStSOsHh associated to

PIP-(NH2)2 38K was changed from 15K to 9K and no substantialmodificationintheviscoelasticbehaviorwas noted(seeFigures1and2). Itmust,however,bestressed

thattheion pair content remained essentially unaffected

ascalculatedinTableIV. Thisisthereason whyasecond

seriesofblendswaspreparedinwhich the molecularweight

of PIP(NH2)2 was made to decrease by a factor of 2. Accordingly, the ion pair content was increased by ca.

80% withrespecttosamplesofthefirstseries(TableIV). Figures5and6showtheG' andG"curves forthe

M18-15Sand M18-9S mixtures whichare basically different from those reported for the related blends containing PIP(NR2)2ofa twice as high molecular weight (Figures

1and2). Actually, two additional transitionsare observed on the high-temperature side. In order to assign the relaxationprocessesobservedin the investigated temper-ature range, it is worthreferringto TgdataofTable II. Inspiteofasubstantialincreaseintheionpaircontent, the telechelic polymer blends are still phase separated

and the Tg of each phase as measured by DSC is not significantly modified. According to the G" curves of Figures 5 and 6,the first maximumon the low-temper-ature sideisobservedat 65°C andthenext one at

120-130°C. Oneofthesemaxima shouldbeattributedtothe Tgofpolystyrene-rich phases. The decrease in the PIP molecular weight together withthe increasein thecontent oftheionpairs whichhaveto accumulateintheinterfacial

regionisexpectedtoenhancethe polymermiscibilityand

TEMPERATURE ( C!

Figure6. Storage (G') andloss(G") shearmodulivs

temper-ature (1 Hz) forthe M18-9S blend (TableII).

Figure7. SchematicphasediagramofblendsofPIP(NR2)2 and PS(COOH)2or PS(S03H)2.35

move Tg’s closer together. On that basis, the glass

transitionofthePS-richphasesshouldbeatthe originof

therelaxation at65°C. If thisisso,dynamic mechanical

measurements conclude to a decrease in Tg ofthe rigid

phaseswhenthePIP molecular weightisdecreasedfrom 38K to18K. The apparent contradictionwithDSCdata (Table

III)

will be discussed later.

Theadditionalrelaxations observed at 120-130 and 160-180°C, respectively, havesomethingto dowiththe

sul-fonateion pairsandtheir association, sincepolystyrene

ionomersof the sulfonic type exhibitan ionicrelaxation inthat range oftemperature.49 It is,however, ofgreat

significancetorefernow toapreviousstudyon thethermal

dependence ofthe SAXS profile of blends comprising PIP(NR2)218Kanda,w-disulfopoly(a-methylstyrene)of

various molecularweights.39 Fromthatstudy, the general phasediagramschematizedin Figure7hasbeen proposed whereUCSTistheuppercriticalsolution temperature of

the constituent telechelic polymers, MST is the

mi-crophase-separationtemperatureoftheioniccopolymers, Tgistheglasstransitionofthehardphases,andT¡ isthe

(6)

25, Viscoelastic Properties Telechelic Polymer Blends

block copolymers are disrupted. T¡ depends on the strengthoftheionpairs, theintrinsic immiscibility ofthe

polymerpair,andthe molecular weightofeachofthem.

When Tiisaboveboth TgandtheMSTcurve (represen-tativesystemA),anorder-disordertransitionoccurs when

the microphase-separated system goes across the MST curve and a uniform melt is observed. At higher tem-peratures, i.e.,greater thanT¡,the effectivehomogeneous

copolymer melt is broken up into the constituent

ho-mopolymersand phaseseparationofthe homopolymers occurs. The two additional relaxation mechanisms of Figures5and6couldnow beaccounted for. The maximum

in G" at 120-130 °C should correspond to the classical

order-disordertransitionseen incovalentlybondedblock

copolymers. In the investigated blends (M18-15S and

M18-9S), that transition is actually triggered by the

relaxationofthe ionpairassociation.50"53 Inotherwords,

themutual interactionsoftheammonium sulfonate ion pairs are unable to stabilize a microphase-separated morphology at temperatureshigher than120-130 °C. As

longasthe ion pairsare stable, chainsretaina “blocky” structure and the system remains homogeneous at the microscopiclevel. Athigher temperatures(160-180 °C)

thethermalbreakupoftheammonium sulfonate ion pairs occurs togetherwithareleaseofsulfonic acid andtertiary amine end groups,resulting ina macrophase separation.

Thisissupported by the elsewhere-reported observation that ammonium sulfonates attached at the end of a polystyrene chainare unstable above 180 °C.47,48 Since

it

iswell-knownthataliphatic sulfonicacidsare unstable at such high temperatures, the ionic block copolymer

structureisirreversiblylost.

It

isnow worthmentioning

thatthe samples analyzedbyDSCinthis studyhave been

previouslyannealedat200°Cin order tomakethemfree

from any residual solvent. That pretreatment might

explain the discrepancy inTgvaluesdetermined byDSC anddynamic mechanicalmeasurements. Whenthe high-temperaturepretreatmentisnot applied, data provided bythe two methodsare consistent.41 TheG' andG"curves reported inFigures1-3can alsoberationalizedbyreferring to thephase diagram ofFigure 7 where B is the repre-sentativesystem. Since T¡ is below Tg, as soon as Tg is reached, the components ofthe ionic block copolymer behaveas individualhomopolymer moleculesbelow the UCSTandcoarse phaseseparationensues. Thus,above Tg of the rigid PS phases, no additional relaxation is expectedtooccur,asisactuallyobserved. Figure8 sche-matizes the three main phase situations which can be observed when ion pairs associate the chain ends of immiscible telechelic polymers.

Transitions observed at 120-130 and 160-180 °C in

Figures5and6havebeenassigned torelaxationprocesses thatinvolveachangein thephasemorphology: an order-disorder transition and a macrophase separation of a

homogeneous system. Very interestingly, Han etal.54-56

have proposedamethodwhichhasprovento be

fruitful

in giving prominence to the order-disordertransitionin poly(styrene- -isoprene-b-styrene) copolymers.57 The

methodconsistsof firstrecording the isothermal

depend-ence ofG'andG"on frequencyandthenplottinglogG" versus logG'. These graphsare actually Cole-Cole plots on a log-log scale. As long as the morphology remains

unchanged in the investigated temperature range,

iso-thermallogG"vslogG'curves superimposewithformation

ofasingle“mastercurve”.54 Incontrast,whenthephase

morphology is modified, the superposition failsat least until it becomes againtemperature independent. Onthe

basisof that criterion, theCole-ColeplotofFigure9shows thatthemorphology oftheM38-13Cmixtureispreserved

from40up toca. 100°C,i.e.,up to theoriginoftheviscous

'·...I-Figure8. Representationofthemainphasesituationsobserved in blends of immiscible telechelic polymers, where

sche-matizesanammonium carboxylate (~COO"R2+NH-)or sulfonate

(-SC>3"R2+NH-) ion pair. 7 6 4 3 2 3 4 5 6 7 logG' (Pa)

Figure9. logG'vslogG"curves fortheM38-13Cblend (Table

II). 6 , 4 3 2 2 3 4 5 6 logG' (Pa)

Figure 10. Cole-Coleplot forthe M18-15S blend (Table II). flowregime. Thus,as longas TgofthePSphases isnot

exceeded, the two-phase structure is stabilized by that rigid PS componentinagreement with Figure7 (repre-sentative system B). When the M18-15S blend is

con-cerned,thesituationradicallychanges, as illustratedby Figure10. The superpositionofthe logG"vslogG'curves

does not fit in two temperature ranges. The first one

extendsapproximately from 115to 155 °C,which

corre-sponds satisfactorily to the second relaxation seen in Figure5. The Cole-Coleplotgivesaccordingly credit to

(7)

2656 Charlier etal.

the assignment ofan order-disorder transition to that relaxation. The same conclusion can be drawn for the

secondtemperaturerangein which superpositionofthe

Cole-Coleplotdoesnotwork(i.e.,aboveca. 165°C),since it fits the third relaxation observed in the viscoelastic

curves ofFigure5 andsubstantiates the attribution ofa

macroscopicphase demixing.

Inconclusion, thereisaverygood agreement between

the viscoelastic properties of blendsof

a,o>-bis(dimeth-ylamino)polyisopreneand , -dicarboxy-or

-disulfopoly-styrene and the phase morphology which has been

determined by SAXSfor analogousblends.39 The relative positions of Tg of the PS phases, the order-disorder transitiontemperatureofthebridging ion pairs(T¡), and the MST curve play a key role. That situation can interestinglybecontrolled by (i) theintrinsicstrengthof theion pairs(ammoniumcarboxylates against sulfonates)

whichaffectsthepartial

miscibilitity

ofPSandPIP (thus Tgof thePS phase),the strength of themutual ion pair

association (thus theMSTvalue), andT¡and by (ii) the molecular weight of the telechelic polymers, i.e., the

thermodynamic repulsion of PS and PIP which acts adversely onto the electrostatic interactions of the am-monium cation andsulfonate (or carboxylate) anion, as wellas on theirmutualassociation. Asaresult,itisquite possible togothroughthe whole phasediagramshownon Figure7andtochangedeeply theviscoelasticbehaviorof the polyblends.

Acknowledgment. P.C., R.J., andPh.T.are very much indebted to the “ServicedelaProgranimationdela Poli-tique Scientifique” and the “Fonds National de la Re-chercheScientifique” (FNRS) for financial support. P.C. is very much indebted to IMRI for the opportunity of

spendinga 3-monthstayintheir facilities. Theskillful technical assistanceofP. Sammut (IMRI) for dynamic mechanicalmeasurementsisverymuchappreciated.P.C. also thanks the

“Instituí

pour l’Encouragement de la RechercheScientifiquedansl’lndustrieet Agriculture” (IRSIA)forafellowshipand the FNRS for having awarded him a grant to visit the Industrial Materials Research

Institute (IMRI) ofMontreal. Referencesand Notes

(1) Teyssié, Ph.;Fayt,R.;Jéróme, R.Makromol. Chem.,

Macro-mol. Symp. 1988, 16, 41.

(2) Utracki, L.A.Int. Polym.Process. 1987, 2, 3.

(3) Schreiber, P.;Latham,J.Polym.News 1987, 13,19.

(4) Legge,N.R.,Holden,G., Schroeder, . E., Eds.Thermoplastic Elastomers;Hanser: Munich,1987.

(5) Paul, D. R., Newman, S., Eds. Polymer Blends; Academic Press: NewYork,1978;Vols.1 and2.

(6) Olabisi,0.; Robeson, L. M.; Shaw, . T. Polymer-Polymer

Miscibility;Academic Press: NewYork, 1979.

(7) Walsh, D. J.; Higgins,J.S.PolymerBlendsand Mixtures;

Ma-connachie,A., Ed.; NATOAdvancedStudyInstituteSeries;

MartinusNijhoff: Dordrecht, The Netherlands,1985. (8) Utracki, L.A.Polymer Alloys andBlends,Thermodynamics

andRheology; Hanser: Munich, 1989.

(9) Utracki, L.A., Weiss,R.A., Eds.MultiphasePolymers: Blends

andlonomers; ACS Symposium Series395;AmericanChemical Society: Washington,DC,1989.

(10) Bucknall,C.B. Toughened Plastics;AppliedScience: London,

1977.

(11) Fayt,R.;Jéróme, R.; Teyssié, Ph.J. Polym.Sci.,Polym. Lett.

1981, 19,79; 1986, 24, 25.

(12) Fayt,R.; Jéróme, R.; Teyssié, Ph.J. Polym.Sci., Polym. Phys. Ed.1981, 19, 1269; 1982,20, 2209; 1989, 27, 775.

(13) Fayt,R.;Jéróme, R.; Teyssié, Ph.Makromol.Chem. 1986,187, 837.

Macromolecules, Vol. 25,No. 10, 1992 (14) Fayt, R.; Jéróme,R.;Teyssié, Ph. Polym.Eng. Sci.1987,27,

328.

(15) Fayt, R.; Jéróme, R.; Teyssié, Ph. J.Appl.Polym. Sci. 1986,32, 5647.

(16) Fayt,R.; Teyssié, Ph. Macromolecules 1986, 19, 2077. (17) Ouhadi,T.; Fayt,R.;Jéróme, R.; Teyssié, Ph.J. Polym.Sci.,

Polym.Phys. Ed. 1986,24, 973.

(18) Ouhadi,T.; Fayt,R.;Jéróme, R.; Teyssié, Ph. Polym. Commun. 1986, 27, 212.

(19) Ouhadi,T.; Fayt,R.;Jéróme,R.;Teyssié, Ph. J.Appl. Polym.

Sci. 1986,32, 5647.

(20) Heuschen, J.; Vion,J. M.;Jéróme, R.; Teyssié, Ph. Polymer

1990,31, 1473.

(21) Barlow,J. W.; Paul, D. R.Polym.Eng. Sci.1984,24, 525. (22) Anastasiadis,S.H.; Gancarz,I.; Koberstein,J.T.

Macromol-ecules 1989, 22, 1449.

(23) Shull, K. R.; Kramer, E. J.; Hadziioannou, G.; Tang, W. Macromolecules 1990,23, 4780.

(24) Cho, K.; Brown, H. R.;Miller, D. C. J. Polym.Sci.,PartB;

Polym.Phys. 1990,28, 1699.

(25) Smith, P.; Kara, M.;Eisenberg, A. A Review ofMiscibility Enhancement via Ion-Ion and Ion-Dipole Interactions. CurrentTopicsin PolymerScience; Hanser: NewYork,1987; Vol.2,Part6.

(26) Eisenberg, A.;Smith,P.;Zhou,Z.L.Polym.Eng. Sci. 1982,22, 1117.

(27) Smith,P.;Eisenberg, A.J. Polym.Sci., Polym.Lett.Ed.1983, 21, 223.

(28) Zhou, Z. L.; Eisenberg, A. J. Polym. Sci.,Polym. Phys. Ed. 1983,21, 595.

(29) Bazuin,C.G.;Eisenberg, A.J. Polym.Sci.,Polym.Phys. Ed. 1986,24, 1021.

(30) Murali,R.; Eisenberg, A. J.Polym. Sci.,Polym.Phys. Ed.1988, 26, 1385.

(31) Rutkowska,M.;Eisenberg, A.Macromolecules 1984,17,821. (32) Tannenbaum,R.;Rutkowska,M.;Eisenberg, A. J.Polym. Sci.,

Polym.Phys. Ed. 1987,25, 663.

(33) Natansohn, A.; Murali,R.; Eisenberg, A. Makromol. Chem.,

Makromol. Symp. 1988, 16, 175.

(34) Jo, W.H.;Lee,S. C.;Lee,M.S.Polym.Bull. 1989, 21, 183. (35) Lee,J.Y.;Painter,P. C.;Coleman, . M. Macromolecules1988,

21, 954.

(36) Hsieh,K. H.; Wu,M. L. J.Appl.Polym.Sci. 1989, 37, 347. (37) Hsieh,K. H.;Chou,L. M.;Chiang, Y.C.Polym. J. 1989,21,1. (38) Horrion,J.;Jéróme, R.;Teyssié, Ph.J. Polym. Sci., Polym.

Lett.Ed. 1986,24, 69.

(39) Russel, T. T.;Jéróme, R.; Charlier, P.; Foucart, M.

Macro-molecules 1988,21, 1709.

(40) Horrion, J.; Jéróme, R.; Teyssié, Ph.; Vanderschueren, J.; Corapci,M. Polym.Bull. 1989,21, 627.

(41) Horrion,J.;Jéróme, R.; Teyssié, Ph. J. Polym. Sci., Polym.

Chem.Ed.1990,28, 153.

(42) Charlier, P.;Jéróme, R.; Teyssié, Ph.;Utracki, L. A.Polym.

Networks Blends 1991,1,27.

(43) Broze, G.;Jéróme,R.;Teyssié, Ph. Macromolecules1982,15, 920.

(44) Foucart, M.Ph.D. Thesis,University ofLiége,Belgium,1988. (45) Charlier,P.;Jéróme, R.; Teyssié, Ph. Macromolecules 1990,23,

1831.

(46) Lundberg,R.D.;Makowski, H.S.Adv.Chem.Ser. 1980,187, 21.

(47) Charlier,P.Ph.D. Thesis,University ofLiége,Belgium,1990. (48) Charlier,P.;Jéróme, R.;Teyssié, Ph.;Prud’homme,R. E., to

bepublished.

(49) Bazuin,C. G.;Eisenberg, A.Ind.Eng. Chem. Prod.Res.Dev. 1981 20 271

(50) Chung,C.I.;Lin, . I.J. Polym.Sci.,Polym.Phys. Ed.1978, 16, 545.

(51) Widmaier,J.M.; Meyer,G. C.J. Polym.Sci.,Polym. Phys. Ed. 1980, 18, 2217.

(52) Roe,R.J.;Fishkis,M.;Chang,J. C.Macromolecules 1981,14, 1091.

(53) Kraus,G.;Hashimoto,T.J.Appl.Polym.Sci.1982,27, 1745. (54) Han,C.D.; Kim,J.J.Phys. Sci.,Polym.Phys. Ed. 1987,25,

1741.

(55) Kim,J.;Han,C.D.J. Polym.Sci.,Polym.Phys. Ed.1988, 26, 677.

(56) Han,C.D.;Kim,J.;Kim,J.K.Macromolecules1989,22, 383. (57) Han,C.D.; Back, D.M.;Kim,J.K. Macromolecules1990,23,

Figure

Figure 2. Storage (GO and loss (G'O shear moduli vs temper- temper-ature (1 Hz) for the M38-9S blend (Table II).
Figure 6. Storage (G') and loss (G&#34;) shear moduli vs temper- temper-ature (1 Hz) for the M18-9S blend (Table II).
Figure 8. Representation of the main phase situations observed in blends of immiscible telechelic polymers, where  sche-matizes an ammonium carboxylate (~COO&#34;R2+NH-) or sulfonate (-SC&gt;3&#34;R2+NH-) ion pair

Références

Documents relatifs

We also compared the size of the spindles from the metaphase to the end of the 9th syncytial mitosis by measuring the distance between centrosomes in wild- type and

Delenne, Simulation numérique de la fissuration d’un matériau granulaire cimenté par une approche peridynamique, 21 ème Congrès Français de Mécanique, Bordeaux, 26–30

1 Tree growth, biomass partitioning and biomass allocation - Biological concepts 2 Sampling strategy and stratification. 3

The aim of this work was thus to assess the performance of several varieties of durum wheat (elite pure lines, populations and genetic resources) in

~ 82 ~ قدلما روصت نم نوكي يتلا فعضلا طاقن ىلإ ةفاضلاب اذه ةوقلا طاقن قيبطت مدع وأ قيبطت ءوس يتلا ق اهيلإ لصوي اهيلإ لصوتلما جئاتنلا ىلع دامتعلاب

These edge coherent modes (ECMs) observed in the I-phase, during ELM-free and ELMy H-mode phases have common characteristics, such as their frequency of 50–200 kHz, radial position

If we consider the band between 500-600 cm −1 in the VV spectra, its form and intensity is well reproduced for the highly polymerized (high silica content) NS4 composition. As it