• Aucun résultat trouvé

ROLE OF THERMAL EXPANSION IN THE PHONON CONDUCTIVITY OF SOLIDS

N/A
N/A
Protected

Academic year: 2021

Partager "ROLE OF THERMAL EXPANSION IN THE PHONON CONDUCTIVITY OF SOLIDS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221581

https://hal.archives-ouvertes.fr/jpa-00221581

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ROLE OF THERMAL EXPANSION IN THE PHONON CONDUCTIVITY OF SOLIDS

G. Srivastava

To cite this version:

G. Srivastava. ROLE OF THERMAL EXPANSION IN THE PHONON CONDUC- TIVITY OF SOLIDS. Journal de Physique Colloques, 1981, 42 (C6), pp.C6-149-C6-151.

�10.1051/jphyscol:1981645�. �jpa-00221581�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C6, suppldmnt au n O 1 2 , Tome 42, ddcembre 1981 page C6-149

ROLE OF THERMAL EXPANSION I N THE PHONON CONDUCTIVITY OF SOLIDS

G.P. Srivastava

Physics Department, The new University of Ulster, Coleraine, N. IreZund B152 ZSA, United Kingdom

Abstract. We have studied the role of thermal expansion in the thermal conductivity of solids. By treating the Grfineisen constant as a temperature dependent semiadjustable parameter we find that the high temperature lattice thermal conductivity of Ge and Si can be explained. The fitted values of the Grfieisen constants show reasonable agreement with recent experimental and theoretical results.

The high-temperature lattice thermal conductivity of most insulators and semiconductors decreases faster then T-l. Recently welt2 have concluded that consideration of three-phonon processes (both acoustic- acoustic and acoustic-optical interactions), together with mass-defect and boundary scattering, cannot explain this Sehaviour. Inclusion of four-phonon processes does not improve the situation3. It was

suggested by ~csedy' that thermal expansion might be helpful in this respect. In this paper we study the role of thermal expansion on the lattice thermal conductivity of Ge and Si.

The effect of thermal expansion is to make the ~rcneisen constant of a material temperature dependent5r6. In our earlier work1 (here- after referred to as I) we have derived an expression for the Grfineisen constant in terms of the second- and third-order elastic constants of the material. Because of thermal expansion the elastic constants become temperature dependent. This would rec+uire calculating the Grzneisen constant at various temperatures using experimental data for elastic constants provided these were available. In view of the unavailability of elastic constants at different temperatures in our range of interest, we treat the ~ r h e i s e n constant y as a temperature dependent semiadjustable parameter for the thermal conductivity

calculation.

The model conductivity expression in the notation of I is

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981645

(3)

JOURNAL DE PUYSIQUE

*- 1

-

1

Here 6 = l/kBT, < f > = q q q q Cf W (fi +1), and ';T = T~ + T ; ~ + T R ' ,

w i t h q a s t h e e q u i l i b r i u m d i s t r i b u t i o n f u n c t i o n f o r phonons i n mode q. Also i n e q u a t i o n (1) T ~ *r e p r e s e n t s t h e single-mode r e l a x a t i o n t i m e of a phonon i n mode q d u e t o three-phonon N p r o c e s s e s

,

r a i s an e f f e c t i v e r e l a x a t i o n t i m e due t o t h r e e phonon U p r o c e s s e s , and T ~ i s I

t h e r e l a x a t i o n t i m e due t o mass d e f e c t and boundary s c a t t e r i n g .

E x p r e s s i o n s f o r t h e r e l a x a t i o n t i m e s can be o b t a i n e d u s i n g t h e f i r s t - o r d e r t i m e dependent p e r t u r b a t i o n method. A s i n Refs 1 and 2 r e s u l t s f o r t h e s e a r e d e r i v e d w i t h t h e c r y s t a l Hamiltonian e x p r e s s e d w i t h i n an i s o t r o p i c continuum approximation

Here y = y ( T ) i s t h e t e m p e r a t u r e dependent anharmonic (Grfineisen)

-

3-

c o n s t a n t , c i s an a v e r a g e phonon s p e e d , A = (a- +a ) e t c . a r e t h e

4 Y q

phonon f i e l d o p e r a t o r s , and o t h e r symbols a r e t h e same a s i n I . For a c o u s t i c - o p t i c a l phonon s c a t t e r i n g we make a c o r r e c t i o n t o t h e model p r e s e n t e d i n I: t h e r e d u c t i o n f a c t o r i n t h e c u b i c anharmonic Hamilton- i a n i s i n c l u d e d o n l y when d e a l i n g w i t h i n t e r a c t i o n s o f t h e t y p e

a c + a c f op.

The p h y s i c a l p a r a m e t e r s and boundary l e n g t h s used i n o u r c a l c u - l a t i o n s a r e t a k e n from I. I n I a c o n s t a n t y was a d j u s t e d t o f i t t h e low t e m p e r a t u r e l a t t i c e t h e r m a l c o n d u c t i v i t y o f m a t e r i a l s from g r o u p s I V , 1 1 1 - V , 1 1 - V I and I - V I I . I t was n o t i c e d t h a t w i t h a c o n s t a n t y t h e i s o t o p e p a r a m e t e r A had t o be a d j u s t e d t o f i t t h e maximum i n t h e e x p e r i m e n t a l c o n d u c t i v i t y c u r v e . I n t h i s work we t a k e t h e experimen- t a l v a l u e f o r A ( 2 . 4 4 x s e c 3 f o r t h e G e b a l l e and H u l l ' s sample o f Ge, and 0.132 x lo-" s e c 3 f o r S i ) and o n l y a d j u s t y ( T ) t o f i t t h e e x p e r i m e n t a l c o n d u c t i v i t y c u r v e b o t h i n low and h i g h t e m p e r a t u r e r e g i o n s . The v a l u e s o f y ( T ) needed t o e x p l a i n t h e c o n d u c t i v i t y r e s u l t s of s i 7 and ~ e ' a r e l i s t e d i n T a b l e 1. I t i s c l e a r t h a t a r e l a t i o n y ( T ) = y o ( l + p T ) w i t h a p p r o p r i a t e yo and e x p l a i n s t h e h i g h t e m p e r a t u r e v a r i a t i o n of t h e t h e r m a l c o n d u c t i v i t y o f t h e samples

(4)

s t u d i e d h e r e . The f i t t e d v a l u e s o f y ( T ) a r e i n r e a s o n a b l e a g r e e m e n t w i t h r e c e n t e x p e r i m e n t a l g and t h e o r e t i c a l 6 r e s u l t s .

I n c o n c l u s i o n , w i t h i n a n i s o t r o p i c continum model f o r germanium and s i l i c o n we h a v e shown t h a t c o n s i d e r a t i o n o f t h e r m a l e x p a n s i o n e x p l a i n s b o t h t h e low and h i g h t e m p e r a t u r e l a t t i c e t h e r m a l

c o n d u c t i y i t y a f t h e s e m a t e r i a l s ,

T a b l e 1: T e m p e r a t u r e d e p e n d e n t Griineisen c o n s t a n t s f i t t e d t o e x p l a i n t h e l a t t i c e t h e r m a l c o n d u c t i v i t y o f S i and G e .

' S r i v a s t a v a , G.P., J . Phys. Chem. S o l i d s 41, 357 (1980) 2 ~ r i v a s t a v a , G.P., P h i l o s , Mag.

2,

795 (1976)

3 ~ c s e d y , D . J . and Klemens, P.G., Phys. Rev. G I 5957 (1977) ' ~ c s e d ~ , D . J . , i n Thermal c o n d u c t i v i t y 1 4 (Ed. P.G. Klemens, and

T.K. C h u ) , Plenum P r e s s , N . Y . , 1976 p.195

' ~ a t e s , B., Thermal Expansion (Plenum P r e s s , N . Y . , 1 9 7 2 ) 6 ~ o m a , T . , J . Phys. Soc. J p n 42, 1 4 9 1 (1977)

7 ~ o l l a n d , M.G. and N e u r i n g e r , L. J . , P r o c . I n t . Cong. o n t h e Phys. o f S e m i c o n d u c t o r s , p.475 E x e t e r 1962 (The I n s t . o f Phys. and Phys. S o c . , London 1 9 6 2 ) .

' ~ e b a l l e , T.H., and H u l l , G.W., Phys. Rev. 110, 773 ( 1 9 5 8 ) . 9 ~ l a c k , G . A . , and B a r t r a m , S.F., J. Appl. Phys. 46, 89 ( 1 9 7 5 ) .

T e m p e r a t u r e ( K ) 1 0

20 4 0 80 100 200 300 600 800 1200

J y J G r h e i s e n c o n s t a n t

--A

G e S i

1 . 6 0 . 6

0 . 5 0.65

0.36 0.35

0.28 0 . 2 7

0.29 0.25

0.39 0.29

0 . 4 3 0.33

0.52 0.39

0 . 5 5 0.42

-

0.45

,

Références

Documents relatifs

The solar wind pressure increase caused a brightening of the dayside auroral oval, and poleward moving au- roral forms (rayed arcs) developed in the pre-noon sec- tor at 74–76 ◦

Our molecular dynamics simulations show that the nanocapacitor stores monochromatic terahertz lattice waves, which can be used for phonon lasing - the emission of coherent

Thus, the thermal conductivity of the bentonite studied by Kahr and Müller – Vonmoos (1982) was higher than that studied in the present work at the same values of dry density

For the enriched sample, the specific value of the thermal conductivity at the peak is different, however the thermal conductivity obtained from theory between 3 K and 10 K and

Training Generalization.. approach may be inconsistent when using a low number of samples and it has proposed an optimal approach based on gradient algorithm [14]. It assumes that

— Near magnetic phase transitions a strong interaction between critical fluctuations in the magnetic spin system and the phonon heat carriers can lead to a phonon scattering that has

Fig. modulation frequency for a sample with 3100 A thick implanted layer. modulation frequency relatively to Fig.1. fn the context of theory of Mandelis et a1./3/ which gives

Résumé. - Nous exposons le principe d'une nouvelle technique optique permettant de mesurer simultanément, de façon rapide et précise, le coefficient de diffusion thermique et