• Aucun résultat trouvé

Stability of a pulsed Taylor-Couette flow in a viscoelastic fluid

N/A
N/A
Protected

Academic year: 2021

Partager "Stability of a pulsed Taylor-Couette flow in a viscoelastic fluid"

Copied!
7
0
0

Texte intégral

(1)

321

Article

Nihon Reoroji Gakkaishi Vol.42, No.5, 321~327 (Journal of the Society of Rheology, Japan)

©2014 The Society of Rheology, Japan

1. INTRODUCTION

Extensive experimental and theoretical investigations have been conducted in the modulation of the boundary conditions in the Taylor-Couette problem

1-10)

with a Newtonian fluid.

These works have considered the configuration in which the angular velocities of the inner and outer cylinders are respectively, W

1

 + e

1

cos(wt) and W

2

 + e

2

cos(wt). In this study, we are interested to the case considered by Carmi and Tustaniwskyj

6)

corresponding to a zero mean modulation, W

1

  =  W

2

  =   0, in phase, e

1

= e

2

. This configuration has been revisited theoretically by Aouidef et al.

11-12-14)

and Tennakoon et al.

13)

and for the first time experiments have been achieved by these authors. The experimental results, corresponding to the modulation in phase, considered with a narrow gap approximation, have been in good agreement with the linear stability analysis and shown that the threshold of instability is above that the one determined by Carmi and Tustaniwskyj.

6)

Furthermore, all results in references

11-13)

, have shown that the flow is less unstable in the limit of low and high frequency while destabilization is maximum for an intermediate frequency.

In this paper, we consider the stability analysis of a pulsating flow of a viscoelastic fluid in the Taylor-Couette geometry.

This study is restricted to the small gap approximation and the purpose is to analyze, in the case of a zero mean modulation in phase, the effect of frequency modulation and elasticity characterized by Deborah number on the threshold of instability.

The paper is organized as follows. In section 2, we determine the basic pulsed flow generated by the modulation in phase. After that, we perform in section 3, a linear stability analysis in which asymptotic critical parameters of instability in the limit of low and high frequency are determined. In section 4, we present the numerical approach. The numerical results on the effect of elasticity and comparison of these results with the asymptotic ones are discussed in section 5.

Section 6 is the conclusion.

2. BASE FLOW

Consider an incompressible viscoelastic fluid filling the annulus between two infinitely long cylinders of radii R

1

and R

2

= R

1

+ d where d is the gap length (Fig. 1). The angular velocity of each cylinder is W

0

cos( w t*), W

0

and w denote respectively the amplitude and the frequency of the modulated rotation. The governing equations are the conservation equations for momentum and mass

Stability of a Pulsed Taylor-Couette Flow in a Viscoelastic Fluid

Mehdi R

iahi

1, Saïd a

niss*,†

, Mohamed O

uazzani

T

Ouhami*

, and Salah s

kali

l

ami**

*

Université Hassan II, Faculty of Sciences Aïn-Chock, Laboratory of Mechanics, B.P.5366 Mâarif, Casablanca, Morocco

**

Lemta-UMR CNRS 7563-Ensem, 2, avenue de la Forêt de Haye, BP 160, Vandoeuvre-les-Nancy, 54504, France.

(Received : July 5, 2014)

The linear stability analysis of a pulsed flow in a linear Maxwell fluid confined in the Taylor-Couette system is investigated. Both cylinders are subjected to modulated rotation in phase with equal amplitude and frequency. We show that in the limit of low frequency, the Deborah number has no effect on the stabil- ity of the basic state which tends to a stable configuration. The basic state is potentially unstable at an inter- mediate frequency and it becomes more unstable as Deborah number increases. At high frequency limit, the Deborah number has a strong destabilizing effect. These numerical results are in good agreement with the asymptotic solutions obtained in the limit of high and low frequencies.

Key Words: Linear stability / Oscillating flow / Taylor-Couette flow / Maxwell model / Floquet theory

† E-mail: s.aniss@etude.univcasa.ma

(2)

322

Nihon Reoroji Gakkaishi Vol.42 2014

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1) (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(2) where V

*

is the velocity vector, t is the extra stress tensor and P

*

is the pressure. There are many different models proposed for viscoelastic fluids. We describe the viscoelastic effect of the fluid using Maxwell’s model which can be represented by a purely viscous damper and a purely elastic spring connected in series

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(3) We denote by D the rate of strain tensor defined by D =

∇V

*

+ ∇

t

V

*

. We designate by r the density, m the dynamic viscosity and l the relaxation time. Under the linear model that we consider in this study, we assume that the normal stresses are negligible compared to shear stress. However, it is noteworthy that the normal forces, plays a significant role in developing purely elastic instabilities of curved Streamlines.

These instabilities discussed in references

15-17)

can occur even in the absence of inertia. Although the Maxwell model is empirical and its range of validity is limited due to its simplicity, it is used in this study to investigate the effect of elasticity on the threshold of instability. Furthermore, assuming that the gap width d is small compared to the radius R

1

of the inner cylinder, we neglect curvature and we use the Cartesian coordinates instead of the radial coordinate.

In dimensional cylindrical-polar coordinates (r

*

, q, z

*

), the velocity components are given respectively in the radial, azimuthal and axial direction by (U

*

, V

*

, W

*

). We assume that the base flow is azimuthal and axisymetric and then it is written as V

*

= (0, V

*

, 0) where P

*

and V

*

are q independents.

Under these assumptions, a combination of the equations (1)- (2)-(3) leads to the following system

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

1Ω0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(4)

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5) 0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥) cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥)) cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥) sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥)) sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(5)

𝜕𝜕𝑡𝑡

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5) 0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑑𝑑2𝑡𝑡

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(6) We introduce the following dimensionless variables

𝜕𝜕𝑡𝑡

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(7) Equation (6) shows that the pressure is independent of z. Assuming that the gap width d is small compared to the radius R

1

of the inner cylinder and using the small-gap approximation in which all terms of order d/R

1

are neglected, the dimensionless azimuthal velocity satisfies equation (5) which is now in the form

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

1Ω0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(8) with the boundary conditions

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

1Ω0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(9) The parameters s = w d

2

/n and G = l n /d

2

denote respectively the frequency number and the Deborah number.

s is the ratio of the viscous diffusive time and the period of modulation whereas G is the ratio of the relaxation time and the viscous diffusive time. The pressure of the base flow, P

B

(x,t), is obtained from equation (4) which is written as

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(10) The solution of equations (8) and (9) is

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕𝜕𝜕𝑡𝑡2𝑉𝑉2𝐵𝐵

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(11) Here, the functions V

1

and V

2

are given by

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4) 𝜌𝜌 �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(12)

𝜌𝜌 �

𝜕𝜕𝑽𝑽𝜕𝜕𝑡𝑡

+ 𝑽𝑽

∙ ∇𝑽𝑽

� = − ∇𝑃𝑃

+ ∇ ∙ 𝝉𝝉 (1)

∇ ∙ 𝑽𝑽

= 0 (2)

𝝉𝝉 + λ

𝜕𝜕𝑡𝑡𝜕𝜕𝝉𝝉

= 𝜇𝜇 𝑫𝑫 (3)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �−

𝑉𝑉𝑟𝑟∗2

� = − �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑟𝑟

� (4)

𝜌𝜌 �1 + λ

𝜕𝜕

𝜕𝜕𝑡𝑡

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡

= 𝜇𝜇 �

𝜕𝜕𝜕𝜕𝑟𝑟2𝑉𝑉∗2

+

𝜕𝜕𝑟𝑟𝜕𝜕

𝑉𝑉𝑟𝑟

�� (5)

0 = − �1 + λ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑧𝑧

� (6)

𝑥𝑥 =

𝑟𝑟− 𝑅𝑅𝑑𝑑 1

, 𝑡𝑡 =

𝑡𝑡𝑑𝑑2

𝜈𝜈

, 𝑉𝑉

𝐵𝐵

=

𝑅𝑅𝑉𝑉

0

, 𝑃𝑃

𝐵𝐵

=

𝜌𝜌 𝑅𝑅𝑃𝑃

1𝑑𝑑Ωo2

(7)

Γ

𝜕𝜕2𝑉𝑉𝐵𝐵

𝜕𝜕𝑡𝑡2

+

𝜕𝜕𝑉𝑉𝜕𝜕𝑡𝑡𝐵𝐵

=

𝜕𝜕𝜕𝜕𝑥𝑥2𝑉𝑉2𝐵𝐵

(8)

𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 0, 𝑡𝑡) = 𝑉𝑉

𝐵𝐵

(𝑥𝑥 = 1, 𝑡𝑡) = cos(𝜎𝜎𝑡𝑡) (9)

�1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� 𝑉𝑉

𝐵𝐵

= − �1 + Γ

𝜕𝜕𝑡𝑡𝜕𝜕

� �

𝜕𝜕𝑃𝑃𝜕𝜕𝑥𝑥𝐵𝐵

� (10)

𝑉𝑉

𝐵𝐵

(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉

1

(𝑥𝑥) cos(𝜎𝜎𝑡𝑡) + 𝑉𝑉

2

(𝑥𝑥, 𝑡𝑡) sin(𝜎𝜎𝑡𝑡) (11)

𝑉𝑉

1

(𝑥𝑥) =

cos(𝛾𝛾𝛾𝛾𝑥𝑥)cosh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+cos(𝛾𝛾𝛾𝛾(1−𝑥𝑥))cosh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(12)

𝑉𝑉

2

(𝑥𝑥) =

sin(𝛾𝛾𝛾𝛾𝑥𝑥)sinh�𝛾𝛾𝛾𝛾(1−𝑥𝑥)�+sin(𝛾𝛾𝛾𝛾(1−𝑥𝑥))sinh(𝛾𝛾𝛾𝛾𝑥𝑥)

cos(𝛾𝛾𝛾𝛾) + cosh(𝛾𝛾 𝛾𝛾)

(13)

(13) where g = , b = ( sG+ )

1/2

and

x = ( - sG+ )

1/2

.

The parameter g expresses the ratio of two lengths g = d/d

N

where d

N

= is the thickness of the stokes layer for a Newtonian fluid. The parameters b and x express also the ratio Fig. 1. The Sketch of the modulated Taylor-Couette geometry.

Fig. 1. The Sketch of the modulated Taylor-Couette geometry.

Références

Documents relatifs

The mean number of defects, their lifetime, and the laminar time together with their correlation time and length have been measured from these diagrams, and from their behavior, a

The numerical re- sults show that at high frequencies, and in contrast to a Newtonian fluid, the critical Taylor and wave numbers are independent of the frequency number when the

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

The rotational Rayleigh discriminant has been generalized to include the elasticity effects of the polymer solutions, the resulting elasto-rotational Rayleigh discriminant predicts

this kind of measurement is typical of torque behav- iors in the globally supercritical case, one must rely on experiments in which the outer cylinder is also in ro-

When a polymer solution is sheared between concentric cylinders, with the inner rotating and the outer fixed, the torque on the inner cylinder is modified compared to a Newtonian

Taylor vortex flow, wavy vortex flow, helical flow having screw opposite to the basic Couette Poiseuille (CT) flow and moving in the direction of the Poiseuille

[r]