• Aucun résultat trouvé

Electrochemical Li-Ion Battery Modelisation for Electric Vehicles

N/A
N/A
Protected

Academic year: 2021

Partager "Electrochemical Li-Ion Battery Modelisation for Electric Vehicles"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: cea-02349631

https://hal-cea.archives-ouvertes.fr/cea-02349631

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Electrochemical Li-Ion Battery Modelisation for Electric Vehicles

A Falconi, D Sicsic, R. Cornut, C. Lefrou

To cite this version:

A Falconi, D Sicsic, R. Cornut, C. Lefrou. Electrochemical Li-Ion Battery Modelisation for Electric Vehicles. 18th International Meeting on Lithium Batteries (IMLB 2016), Jun 2016, Chicago, United States. �cea-02349631�

(2)

Electrochemical Li-Ion Battery Modelisation for Electric Vehicles

A. Falconi

1

, D. Sicsic

2

, R. Cornut

3

, C. Lefrou

4

1

Renault s.a.s, CEA/DSM/IRAMIS/NIMBE/LICSEN, Université de Grenoble Alpes, Grenoble, France

2

Renault s.a.s, Renault technocentre, Guyancourt, France

3

CEA/DSM/IRAMIS/NIMBE/LICSEN, Gif Sur Yvette Cedex, France

4

Université de Grenoble Alpes, LEPMI, CNRS, Grenoble, France

Abstract

The future development of electric vehicles is now strictly linked with their batteries. In parallel of the actual research focused on the development of new materials and increase their

performances in terms of energy, power, cost, durability and weight, it is necessary to develop modeling tools. The simulations are helpful for improving the knowledge of both physical and chemical phenomena, optimize the battery design according with the user requirements, and

reduce the test/validation phase. In this framework, this articles, contributes to the development on an electrochemical based model for Li-ion batteries [1], using the powerful COMSOL

Multiphysics® software, allowing to use custom equation systems. The partial differential equations are resolved coupling a 1D geometry, describing the cell cross section, with a 2D geometry describing the active material particles using the "coefficient form PDE"[2].

This work revisits one of the most used porous electrodes based model to describe the behavior of lithium-ion batteries. Firstly, all the physical quantities are set in a dimensionless form, as commonly used in fluid mechanics: the parameters that act in the same or the opposite ways are regrouped and the total number of simulation parameter is thus reduced. Then the numerical explorations with the limit conditions, allow to understand the effect of each dimensionless parameter, in the overall equation system. The Figure 1 shows the effect of the solid phase diffusion over the practical retained capacity for a galvanostatic discharge, while in Figure 2 shows the voltage drop and relaxation for pulses. The simulations are finally compared with half- cell obtained from commercial 18650 Lithium ion cells for EV. The mid-term perspectives

includes the simulation of ageing and temperature [3].

(3)

Reference

[1] M. Doyle, et. al., Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell, J. Electrochem. Soc. 140 (1993) 1526.

[2] COMSOL Tutorials, App. ID 14133, App. ID 14527, App. ID 686, App. ID 12667.

[3] M. Tang, et. al., Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles, J. Electrochem. Soc. 156 (2009) A390.

Figures used in the abstract

Figure 1

: Retained capacity for galvanostatic discharge with reference to solid diffusion parameters

Figure 2

: Pulses for different values of solid phase diffusion parameter

Figure 3

(4)

Figure 4

Références

Documents relatifs

En comparaison avec le lancer de marteau, quel type d’action doit exercer le Soleil sur une planète pour l’empêcher de s’échapper dans l’espace?. (figures 1 et

Mean hourly AC electrical energy use for the Test and Reference house on the six baseline days closest in weather to our peak load reduction days.. Also shown is the

The general framework of this model is based on classical thermodynamics of irreversible systems, describing the mass transports (migration and diffusion), and the

Figure 3-3: Normalized histograms using the classical approach with an arbitrarly initial vector (green lines = theoretical values, yellow lines = estimated mean values) These

1 -a – Compléter le schéma suivant avec les noms des changements d’état physique convenable ( fusion – vaporisation – solidification – liquéfaction ). 1 –b- donner le

In combination with the slow transformation rate of individual particles the internal phase structure observed at present this exposes a very different picture from the

the real data without any conductivity correction(dotted line) and the real measurements with conductivity correction (squared line): case of a four electrodes sensor in a

Grâce au couplage, la somme des ampères x tours moyens est théoriquement nulle (pas tout à fait en pratique car le rendement de conversion ne peut pas être égal..