• Aucun résultat trouvé

Lumping errors of analog circuits for heat flow through a homogeneous slab

N/A
N/A
Protected

Academic year: 2021

Partager "Lumping errors of analog circuits for heat flow through a homogeneous slab"

Copied!
23
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Lumping errors of analog circuits for heat flow through a

homogeneous slab

Stephenson, D. G.; Mitalas, G. P.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=b8123eb2-d6ff-4c15-92db-ca3057df2f92

https://publications-cnrc.canada.ca/fra/voir/objet/?id=b8123eb2-d6ff-4c15-92db-ca3057df2f92

(2)

Ser

TH1

N21r

2

no. 139

c.

2

I

BLDG

NATIONAL

RESEARCH

COUNCIL

CANADA

DlVlSlON OF BUILDING RESEARCH

LUMPING ERRORS O F ANALOG CIRCUITS FOR

HEAT FLOW THROUGH A HOMOGENEOUS SLAB

BY

D. G. S T E P H E N S O N AND G. P . MITALAS

REPRINTED FROM

INTERNATIONAL DEVELOPMENTS I N HEAT TRANSFER AMERICAN SOCIETY O F MECHANICAL ENGINEERS

PART I, SECTION A, 1961, P. 28 - 3 8

RESEARCH PAPER NO. 139

OF T H E

DIVISION OF BUILDING RESEARCH

PRICE 25 CENTS

OTTAWA

OCTOBER 1961

(3)

This publication

is

being d i s t r i b u t e d by the Division

of Building R e s e a r c h of the National R e s e a r c h Council.

It

should not be reproduced in whole or in p a r t , without p e r m i s

-

sion of the o r i g i n a l publisher. The Division would be glad to

be of a s s i s t a n c e i n obtaining such p e r m i s s i o n .

Publications of the Division of Building Re s &ar

ch m a y

be obtained by mailing the a p p r o p r i a t e r e m i t t a n c e , ( a Bank,

E x p r e s s , o r P o s t Office M ~ n e y

O r d e r o r a cheque m a d e pay-

able a t p a r in Ottawa, to the R e c e i v e r ~ e n k r a l

of Canada,

c r e d i t National R e s e a r c h Council) to the National R e s e a r c h

Council, Ottawa. Stamps a r e not acceptable.

A

coupon s y s t e m has been introduced to m a k e pay-

m e n t s for publications r e l a t i v e l y s i m p l e . C ~ u p o n s

a r e avail-

able i n denominations of 5, 25 and 50 c e n t s , and m a y be ob-

tained by making a r e m i t t a n c e a s indicated above.

These

coupons rnay be used for the p u r c h a s e of all National R e s e a r c h

Council publications including specifications of the Canadian

Government Specifications B o a r d .

(4)

Circuits for Heat Flow Through

I

National Research Council Div. of Building Research Ottawa, Canoda

a Homogeneous slab"

ABSTRACT

D. G. Stephenson

G. P. Mitalas

T h i s paper compares t h e transfer functions for s e v e r a l electrical analog circuits, both a c t i v e and p a s s i v e , with the theoretical functions for heat con- duction through a homogeneous s l a b . T h e results in- d i c a t e t h e magnitude of t h e errors due to s p a c e lumping a s a function of non-dimensional frequency for e a c h circuit. T h i s permits t h e s e l e c t i o n of the s i m p l e s t circuit which will a c h i e v e a specified ac- curacy over a specified frequency range.

1. INTRODUCTION

An accurate calculation of t h e heat flux and tem- perature distribution through the walls, ceiling or floor of a room requires t h e simultaneous calculation of the room s i d e surface heat flux of a l l the elements enclosing the room. Reference

[l]

d i s c u s s e s the u s e of an analog computer for t h i s type of bujlding heat transfer problem. It i s pointed out in t h a t paper that one of t h e important considerations in s e t t i n g up a computer for a room h e a t transfer calculation is:

6 c

Iiow t o simulate accurately t h e wall, roof and floor s e c t i o n s with a s few computer elements a s possible." T h i s paper p r e s e n t s a method of designing analog circuits to c a l s u l a t e one-dimensional h e a t conduction through a homogeneous s l a b with a s p e c i f i e d accuracy.

T h e a n a l y s i s differs from earlier s t u d i e s [ 2 , 3 , 4 , 5 ] in two respects: it compares the frequency r e s p o n s e of the analog c i r c u i t s with t h e theoretical frequency re- s p o n s e of a homogeneous s l a b ; and it i n c l u d e s elec- tronic analog circuits with their p o s s i b i l i t i e s f o r u s i n g higher accuracy difference expressions, a s well a s the p a s s i v e resistance-capacitance ladder networks.

Previous s t u d i e s [ 2 , 3 , 4 , 5 ] have considered the transient r e s p o n s e of p a s s i v e analog circuits a n d have concluded that many elements are. required if a n analog i s to represent accurately t h e response of a s l a b to a sudden change in the driving function. Only the low frequency components of t h e o u t s i d e surface tempera- ture, however, have any s i g n i f i c a n t effect on t h e con- ditions i n s i d e buildings. T h u s any analog that is accurate for frequencies up to t h e third or fourth harmonic of a diurnal driving function i s quite s a t i s - factory for calculating conditions inside a building.

Designing an analog circuit for a limited fre- quency range l e a d s to simpler circuits than a r e needed for an a c c u r a t e response t o a s t e p change in t h e driv- ing function. T h u s the frequency response approach i s u s e d in t h i s investigation.

Carslaw and Jaeger [6] s h o w that when t h e tern- peratures a t each surface of a homogeneous s l a b vary sinusoidally, the surface temperatures and h e a t flows a r e related by linear equations which c a n be ex- p r e s s e d as:

* T a b l e s I - I V h a v e been deposited a s Document 6 6 7 9 w i t h the American Documentation Institute P u b l i c a t i o n s Project. A copy may be secured by citing the Document number and by remitting 8 1 . 2 5 for photoprints, or $ 1 . 2 5 for 35 mm microfilm.

(5)
(6)

T h i s error can be reduced by choosing t h e value of

( A ~ ) ~ ( ~ )

d x 2

=

a-l

- ? a +

O i + ,

-r*-

( A x ) 4

(~1:)

-

(7)

a s o that t h e coefficients of t h e neglected d e r i v a - i t i v e s a r e a s s m a l l a s p o s s i b l e . F o r i n s t a n c e , when for

1

<

i

<

N-1

d 3 8

a =

1 ,

the c o e f f i c i e n t of

-

in

( 6 )

i s z e r o s o t h e

d x 3

a2e

E q u a t i o n s

(5)

a n d

( 6 )

also apply a t points

N

and

N-1

first term in the for

7

ax

is

r e s p e c t i v e l y when

Ax

i s replaced by

- A x

and the

m2

(2).

This

is the same for

all

t h e internal

s u b s c r i p t s

12

1 ,

0 by

N ,

points. T h e error c a n be reduced by d e c r e a s i n g

1

by

N-1,

and

Ax,

i.e. i n c r e a s i n g t h e number of lumps. T h e f i r s t

2

by

N-2.

two terms which a r e neglected in t h e e x p r e s s i o n

Ax

i s t h e d i s t a n c e between the e q u a l l y s p a c e d inter- f o r the temperature gradient a t t h e s u r f a c e , however,

. - n a l p o i n t s a n d X 1 - X o X

-

- N

-

X ~ - l a =

Ax

Ax

( A x )

( A x ) 3

(5

)

a r e

-

3

(5)

1

-

-

12

1

T h e terms including t h e third and a l l higher When a =

0.5,

the third derivative term i s r e d u c e d to d e r i v a t i v e s a r e u s u a l l y neglected. T h i s c o n s t i t u t e s

t h e error in t h e finite difference approximations. 8

(s),

a n d the fourth derivative term d i s -

INTEGRATOR

FIG.20 ANALOG CIRCUIT T O COMPUTE SURFACE H E A T F L U X AND I N T E R N A L TEMPERATURES FOR A HOMOGENEOUS SLAB WHEN SURFACE T E M P E R A T U R E IS GIVEN.

FIG.2b ANALOG CIRCUIT T O COMPUTE SURFACE TEMPERATURE AND TEMPERATURES THROUGH A HOMOGENEOUS SLAB WHEN SURFACE H E A T F L U X IS GIVEN.

(7)

a p p e a r s . T h i s improvement in t h e a c c u r a c y of t h e e x p r e s s i o n for t h e s u r f a c e g a d i e n t i s p a r t i a l l y o f f s e t by t h e r e a p p e a r a n c e of a

"

6

(9)

in t h e e x p r e s s i o n for

1

(

e)

1

T h e c i r c u i t s for a n operational amplifier type of a n a l o g s h o w n in F i g s . 2 a and 2 b a r e b a s e d on t h e difference e q u a t i o n s for a = 1.0

voltage a t a n y internal point i i s d e s c r i b e d by

T h u s if l*R =

-

( A x )

t h i s t y p e of c i r c u i t w i l l s o l v e the s e t of ordinary dif- f e r e n t i a l e q u a t i o n s for the temperatures through a s l a b .

With t h i s t y p e of a n a l o g t h e s u r f a c e h e a t flux i s r e p r e s e n t e d b y current; t h u s

for 1

<

i

<

N-1 T h i s i s e q u i v a l e n t to u s i n g

Ax = L / N

T h e c i r c u i t s for a = 0.5 a r e only s l i g h t l y more com- p l i c a t e d .

T h e v a l u e s of t h e t r a n s m i s s i o n matrix coeffi- c i e n t s for t h i s type of a n a l o g circuit h a v e b e e n c a l c u l a t e d a n d t h e r e s u l t s for a = 1.0 a r e g i v e n i n T a b l e I, a n d for a = 0.5 in T a b l e

11.

T h e e x p r e s - s i o n s u s e d for c a l c u l a t i n g t h e s e c o e f f i c i e n t s a r e derived i n Appendix

11.

It i s p o s s i b l e t o o b t a i n t h e matrix c o e f f i c i e n t s u s i n g a n a n a l o g computer but t h e r e s u l t s o b t a i n e d in t h i s way i n c l u d e t h e errors d u e t o imperfections of t h e computer compo- nents. T h e r e s u l t s c a l c u l a t e d from t h e e x p r e s s i o n s in Appendix

I1

r e p r e s e n t the performance of a n a n a l o g with p e r f e c t components. T h e s i g n i f i c a n c e of t h e d i f f e r e n c e s between t h e matrix c o e f f i c i e n t s for an a n a l o g circuit a n d t h e t h e o r e t i c a l coeffi- c i e n t s for a homogeneous s l a b a r e d i s c u s s e d later.

A p a s s i v e network of r e s i s t a n c e s a n d c a p a c i - t a n c e s can a l s o b e u s e d t o s i m u l a t e t h e h e a t flow in a s l a b . In t h i s c a s e t h e temperatures a r e repre- s e n t e d by v o l t a g e s and t h e h e a t f l o w s by c u r r e n t s . F i g u r e 3 i s a t y p i c a l p a s s i v e a n a l o g c i r c u i t . T h e A T a y l o r ' s s e r i e s e x p a n s i o n about x = O g i v e s T h u s t a k i n g 1, a s proportional t o

%

i n v o l v e s neglect- a . A x d28 ing

7

(=),

a n d a l l t h e h i d e r i v a t i v e s . T h i s higher e r r o r i n t h e s u r f a c e h e a t flux i s a n important d i s a d v a n t a g e of the p a s s i v e networks compared with t h e o p e r a t i o n a l amplifier networks.

T h e

AN

a n d

BN

t r a n s m i s s i o n matrix c o e f f i c i e n t s have b e e n e v a l u a t e d for r e s i s t a n c e - c a p a c i t a n c e net- works with a = 0.5 for

N

= 3 ( 1 ) 14. (When a = 0.5 an N lump circuit c o n s i s t s of N-1

"T"

networks in s e r i e s . ) T h e r e s u l t s a r e g i v e n in T a b l e

111.

The

(8)

method u s e d w a s similar to t h e one outlined in T h e error in t h e output h e a t flow i s o b t a i n e d by Appendix I1 for t h e amplifier networks except that interchanging UN a n d

VN

in (20). Thus, t h e maximum the expression for the temperature gradient a t t h e possible error in t h e boundary h e a t flows i n d i c a t e d by s u r f a c e w a s t h e analog c a n be c a l c u l a t e d e a s i l y when UN a n d

VN

'N

-

'N-I a r e known.

T h e r e s u l t s of t h e matrix coefficient calculations for t h e operational amplifier and t h e resistance- where

Ax

=

L

( N + 2 a - 2 )

3. DISCUSSION OF RESULTS

capacitance c i r c u i t s are plotted in F i g s . 4 a , 4b, and A.. 7 1

N 1

5

in the form

-

-

and

.

T h e theoretical BN

'

AN

BN

v a l u e s for a homogeneous s l a b taken from reference

7

are a l s o plotted s o the v a l u e s of UN and

VN

c a n be T h e h e a t flows indicated by a n analog circuit measured directly from the graphs. Values of UN a n d are given by

VN are given in T a b l e IV a s functions of $ a n d N for

-

1

40

-

80

t h e various c i r c u i t s . T h e s e data were measured off large s c a l e graphs similar t o F i g s . 4 and

5.

[.I=+[;

:I.[.]

(I4) tional accurate, T h e amplifier r e s u l t s of t h e t y p e c i r c u i t s in T a b l e analog s t u d i e d , IV with s h o w a for that = 0.5 the the i s computation opera- the most of surface h e a t flows.

(The s u b s c r i p t s indicate t h a t the quantity i s a s - T h e followinE example i l l u s t r a t e s how the charts

-

s o c i a t e d with a lumped analog circuit.) If it i s a s - and t a b l e s c a n b e u s e d to c a l c u l a t e the number of sumed that do = din arid

ON

= OOut, equation (14) can lumps needed for a particular problem.

b e subtracted from

(2)

t o give

Example

1.

Problem: How many lumps a r e required in a n opera- tional amplifier a n a l o g circuit ( a = 0.5) to c a l c u l a t e ( 1 5) the heat flow into a 6-in. c o n c r e t e s l a b with a n error

of not more than 2 Btu/ft2 hr when the s u r f a c e tem- 'out perature h a s a n amplitude of 5

F

a t a frequency of

4 cycles/day, and t h e other s u r f a c e i s perfectly in- sulated.

T h e lefthand column matrix e l e m e n t s a r e t h e errors in

a

= 0.04 f t 2 / h r the h e a t flux a s c a l c u l a t e d b y the analog circuit.

k = 1.0 Btu/ft hr

F

A

A N L e t - -

-

= U N e j 61 B N

1

1

- - -

= VNei

6

B N ,j (wt+6,) 'out =

I

'out

I

(17)

R

= L / k = 0.5 f t 2 hr F / B t u when gout = 0

1

'out =

- din

A

T h e error in the analog h e a t flow will have i t s maxi- T h u s l'outl

-

f

0.3

mum p o s s i b l e value of I'in

I

'N

I

'in

I +

VN l'out

I

T h e maximum error in t h e s u r f a c e h e a t flux i s -

-

I

gin

- go

lmax

R

(20)

loin

I

P o u t

I

(9)

FIG.40 POLAR COORDINATE P L O T OF l / A N AND I / B ~ FOR AN OPERATIONAL AMPLIFIER CIRCUIT WITH o = 0.5 AND a = 1.0.

T h u s if t h e error i s t o be l e s s t h a n

2

B t u / f t 2 hr where t h e matrix e l e m e n t s with s u b s c r i p t x a r e for

=

x

6

a n d t h e q u a n t i t i e s without s u b s c r i p t s a r e

T h e following v a l u e s of

UN

a n d a r e taken for

4 =

LJS

.

F o r a n a n a l o g circuit with a = 1.0 from T a b l e IV for

4 =

2.0. V a l u e s for

4 =

1.8

c a n be

obtained by interpolation but the n e a r e s t plotted

v a l u e of 4 u s u a l l y w i l l s u f f i c e t o find the required

N

BN

T h u s a 4-lump c i r c u i t m e e t s t h e requirement. If the important r e s u l t s of a n a n a l o g computation a r e t h e temperatures a t different p o i n t s through a s l a b rather than s u r f a c e h e a t flux t h e error in t h e tempera- t u r e s may be e s t i m a t e d a s follows:

T h e temperature a t p l a n e x in F i g .

1

i s :

where

Ai

a n d

Bi

a r e matrix e l e m e n t s for a n i lump a n a l o g c i r c u i t with

4i

= I

4.

F o r v a l u e s of a, other

N

than unity, t h e

Ai

a n d

Bi

v a l u e s cannot b e t a k e n from t h e t a b l e s but c a n be c a l c u l a t e d by t h e method given in Appendix

11.

T h u s t h e error i n the a n a l o g tempera- ture for the p l a n e xi i s

(10)

Since t h e s e c o e f f i c i e n t s a r e functions of

x / L

a s well a s

N

and

4,

it s e e m s impractical t o prepare . -

t a b l e s of t h e type given for the h e a t flux errors. T h e v a l u e s of the s e p a r a t e f a c t o r s can be obtained from T a b l e

I.

T h e s e c o n d example i l l u s t r a t e s t h e pro- cedure.

Example

2.

Problem: F i n d the maximum p o s s i b l e error in the temperature a t

x

= 0.75

L

for a 6-in. concrete s l a b which i s represented by a four lump operational amplifier analog circuit, a = 1.0. P r o p e r t i e s and boundary conditions s a m e a s for example

1.

Solution:

4

= 1.8 but u s e 2.0 t o avoid need for interpolation of t h e t a b l e s .

1

Data: A . 7 5 L = .4694

L!??

T h e s e g i v e p . 7 5 L -

03

1

= 0.01

F

MAX and / = 0 . 7 8 F Figure

5

s h o w s that, in g e n e r a l , a r e s i s t a n c e - c a p a c i t a n c e a n a l o g circuit r e q u i r e s more lumps t h a n an operational amplifier a n a l o g circuit to a c h i e v e t h e s a m e a c c u r a c y for heat flow c a l c u l a t i o n s . An

FIG.4b P O L A R C O O R D I N A T E P L O T O F I / A ~ A N D I / B ~ F O R A R E S I S T A N C E - C A P A C I T A N C E L A D D E R N E T W O R K WITH o = 0.5.

(11)

FlG.5 P O L A R COORDINATE P L O T OF AN/BN FOR A RESISTANCE-CAPACITANCE L A D D E R NETWORK WITH a = 0.5 AND AN O P E R A T I O N A L A M P L I F I E R CURCUIT WITH a = 0.5 A N D a = 1.0.

N

lump c i r c u i t o f e i t h e r t y p e , h o w e v e r , w i l l g i v e D. C . B a x t e r of t h e D i v i s i o n of h l e c h a n i c a l E n g i - e x a c t l y t h e s a m e t e m p e r a t u r e s a t t h e i n t e r n a l p o i n t s . n e e r i n g of N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a . I t s h o u l d b e p o s s i b l e , t h e r e f o r e , to u s e a hybrid T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n of a n a l o g which w i l l h a v e t h e s a m e a c c u r a c y a s t h e B u i l d i n g R e s e a r c h of N a t i o n a l R e s e a r c h C o u n c i l of o p e r a t i o n a l a m p l i f i e r t y p e . I t w o u l d u s e a m p l i f i e r C a n a d a a n d i s p u b l i s h e d with t h e a p p r o v a l of t h e a d d e r s t o c a l c u l a t e t h e h e a t f l u x e s a n d a l e s s e x - D i r e c t o r of t h e D i v i s i o n . p e n s i v e r e s i s t a n c e - c a p a c i t a n c e 'network t o corn- p u t e t h e t e m p e r a t u r e s .

REFERENCES

ACKNOWLEDGMENTS

1.

M i t a l a s , G.P., S t e p h e n s o n , D.G., a n d T h e a u t h o r s g a t e f u l l y a c k n o w l e d g e t h e a s s i s - B a x t e r , D.C., "Use of a n a n a l o g c o m p u t e r f o r room t a n c e t h e y h a v e r e c e i v e d from

J.

H.

Milsum a n d a i r c o n d i t i o n i n g c a l c u l a t i o n s

."

P r o c e e d i n g s of t h e

(12)

Second Conference of the Computing a n d D a t a P r o c e s s i n g Society of C a n a d a , held in Toronto, .June 1 9 6 0 , pp. 175-192 (NRC6099).

2. P a s c h k i s , V. and Heisler,

M.P.,

"The ac- curacy of measurements in lumped R-C c a b l e cir- c u i t s a s used in the study of t r a n s i e n t h e a t flow," Trans. Amer. Inst. Elect. E n g i n e e r s , Vol. 63, 1944, p. 165.

3. Klein, E.O.P., Touloukian,

Y.S.,

a n d E a t o n ,

J.R.,

"Limits of accuracy of e l e c t r i c a l a n a l o g c i r c u i t s u s e d in the solution of t r a n s i e n t h e a t conduction problems," presented a t the Annual Rleeting of the Amer. Soc. of Mech. E n g i n e e r s , 1952 (ASME P a p e r No. 52-A-65).

4.

Lawson, D.I. and illcGuire, J.H., "The solu- tion of transient h e a t flow problems by analogous e l e c t r i c a l networks," P r o c e e d i n g s , I n s t i t u t w n of Mechanical Engineers,

(A),

Vol. 167, 1953, p. 275.

5. Friedmann, N.E., "The truncation error in

a semi-discrete analog of t h e h e a t equation," J o u r n a l of Math. a n d P h y s , Vol. 35, No. 3, 1956, p. 299.

6. Carslaw, H.S. a n d J.C. Jaeger, Conduction of h e a t i n solids, Oxford University P r e s s , Second Edition, 1959.

7 .

Shirtliffe, C . J. a n d Stephenson, D.G., T a b l e s of c o s h ( l + i ) X, sinh ( l + i ) X

(1+ i) X a n d ( 1

+

i)

X

s i n h ( 1 + i )

X.

National R e s e a r c h Council, Division of ~ u i l d i n ~ ' ~ e s e a r c h , Ottawa, January 1961, 7 1 pp. (NRC6159).

APPENDIX

I:

FINITE DIFFERENCE EXPRESSIONS

FOR SPACE DERIVATIVES

L e t s u b s c r i p t 0 indicate x = 0, s u b s c r i p t

1

indi- c a t e x = a Ax, a n d s u b s c r i p t 2 indicate x=(l+a)Ax. Roman numeral superscript i n d i c a t e s t h e order of derivative with r e s p e c t t o x.

A T a y l o r ' s s e r i e s expansion about the point x = a Ax g i v e s I (Ax)" I1 (AX)' 111 + and

8 , = 8 ,

+ A x e ,

+

-

2!

8,

+----

3 !

8,

(&)4 e l IV + 4!

. . .

(1.2)

Multiplying 1.2 by a and adding t o

1.1

g i v e s a ( l c a )

B,

+

a e 2 = ( l + a ) 0 ,

+

-

(AX)'

8,"

+

2

F o r t h e o t h e r internal p o i n t s ( 1

<

i

<

N

-

1 ) t h e s e c o n d derivative expression i s similar t o (1.4) ex- c e p t t h a t a =

1,

i.e.

Differentiating (1.1) g i v e s

Equations (1.1) and (1.2) give

I

1

l-a a A x e l =

-

-

a(l+a) a' +

7

'1 + l + a

--'

2

-

a I11 a(1-a)

AX)"^,

- -

2 4 (Ax),

8,

IV (1.7) Multiplying (1.6) by A x a n d substituting (1.7) a n d (1.4) for Ax

8,

and (Ax)"

8,

I' respectively g i v e s

when a = 1.0

11

8 , - 2 8 , + 8 ,

8,

= + 0 8 , I11

--

(Ax)' IV ( I . ~ ) (Ax)

"

1 2

(13)

w h e n a =

0.5

Ax

=

L / N

(11.5)

H e n c e

%

-

12

el

+

4

%

-

A x

0

111

--

( A d 2 IV

( I .

-30N

+

3(Ax)'

6

16

2

(11.6)

d

a

a n d

dt

-

(Oi)

= -

( A x ) 2

( O i - ! -

28i

+

eitl)

(11.8)

f o r 1

L

i

L

N - 1

APPENDIX 11: CALCULATION OF TRANSFER

FUNCTIONS FOR AN OPERATIONAL AMPLIFIER

Expression for

A N .

TYPE ANALOG CIRCUIT

T h e s i n u s o i d a l t e m p e r a t u r e a n d h e a t f l o w a t t h e t w o s u r f a c e s of a s l a b a r e g i v e n by e q u a t i o n

(1).

A

s i m i l a r e x p r e s s i o n r e l a t e s t h e v o l t a g e s i n a n a n a l o g c i r c u i t w h i c h s i m u l a t e s t h e h e a t f l o w a n d ternpera- t u r e in a s l a b . T h e s u b s c r i p t on t h e V's i n d i c a t e s t h e t h e r m a l q u a n t i t y w h i c h t h e v o l t a g e r e p r e s e n t s . F o r s i m p l i c i t y in n o t a t i o n

8,

i s s u b s e q u e n t l y u s e d i n p l a c e of

V0

0 a n d s i m i l a r l y for t h e o t h e r q u a n t i t i e s w i t h t h e under- s t a n d i n g t h a t i t r e f e r s t o t h e v o l t a g e w h e n u s e d i n c o n n e c t i o n with a n a n a l o g c i r c u i t .

N

i s t h e t o t a l n u m b e r of l u m p s t h a t a r e u s e d i n t h e c i r c u i t s o

AN

a n d

BN

a r e t h e t r a n s m i s s i o n m a t r i x c o e f f i c i e n t s for a n

N

lump a n a l o g c i r c u i t .

A

s u b s c r i p t i on t h e tern- p e r a t u r e s a n d h e a t f l o w s i n d i c a t e s t h a t t h e q u a n t i t y p e r t a i n s t o t h e o u t p u t of t h e i t h lump. T h u s t h e s u b s c r i p t s

0

a n d

N

r e p r e s e n t t h e t w o s u r f a c e s . C a s e

I . A//

L u m p s t h e Same. T h i s i s t h e c a s e w h e r e a =

1.0.

E q u a t i o n s

( 5 )

a n d

( 6 )

b e c o m e a n d

40N-1

-

30N

-

- ( E ) ~ =

2 A x

When

qN

=

0

8,

=

AN

ON

a n d

4 0 N - ! = 30N

+

a

L e t

-

= 1

( A d 2

T i = P { ~ ~ I =

1

e-st

t)i

dt

T r a n s f o r m i n g e q u a t i o n s

(11.8)

f o r i = N-1 a n d

(11.9)

g i v e s

("+a

T N - !

=

TN

+ T N - 2

(11.10)

L e t

s + 2

= y

TN

-

1

2

T h e n

-

=

-

TN

' - Y

T h e f o l l o w i n g g e n e r a l r e c u r r e n c e r e l a t i o n s h i p h o l d s for a l l o t h e r p o i n t s T ~ t l - i

T~

t z - i = y

(T) -(T)

(11.14)

T N

f o r 2 r i

N

F o r e a c h v a l u e of

N

t h e r a t i o

(14)

T o g e t t h e s t e a d y periodic r e s p o n s e of a s y s t e m to a s i n u s o i d a l driving function only r e q u i r e s sub- s t i t u t i n g j w for s everywhere in t h e e x p r e s s i o n for t h e L a p l a c e transform of the r e s p o n s e ,

where w = 2 1 7 / P . S i n c e a / ( A x ) ' h a s b e e n a s s u m e d F o r e a c h

N

t h e ratio

77,

/

S { R ~ ,

)

= f { B N ) e q u a l t o unity F o r example: for

N

= 3 F o r example: for

N

= 3 T h e i n v e r s i o n of t h i s i s j u s t t h e s a m e a s for t h e AN terms i.e. where

Z

= 2 [ 1 + i ( $ ) 3 3 2 ' - 4 2 - 2 T h u s A, = 4 - 2 Where

2

= 2 + j w = = 2

[

1 + j

@)!

-

(11.19)

Case

2.

H a l f Lumps at the Surfaces. T h i s i s t h e s i t u a t i o n where a = 0 . 5 . T h e finite difference ex- p r e s s i o n s become

E x p r e s s i o n for B N .

When

ON

= 0 do = BN ( R q N )

a n d

3 (Ax)'

T h e differential e q u a t i o n s for t h e o t h e r tempera- t u r e s a r e given by 11.8 for I & i

I

N

-

2 .

Again l e t d A x ) ' = 1 and t a k e L a p l a c e t r a n s - forms of 11.20 and 11.21. T h i s g i v e s : a n d 8 do

-

12

0,

+

4 0,

(2)

= 3 ( A x ) Hence

T h e development of the e x p r e s s i o n s for AN

a n d BN for t h i s c a s e i s similar t o c a s e 1 e x c e p t that t h e f i n a l s t e p i s

and

T h e transform of equation (11.8) g i v e s t h e general recurrence r e l a t i o n s h i p for

3 1 i I N

(15)

A U T H O R S R E P R I N T *

* P r e s e n t e d a t the 1 9 6 1 I n t e r n a t i o n a l H e a t T r a n s f e r Conference h e l d A u g u s t 28-September 1, 1961, University of Colorado, Boulder, Colorado. U.S.A. P a p e r s p r e s e n t e d for d i s c u s s i o n a t t h i s m e e t i n g h a v e b e e n p u b I i s h e d in I n t e r n a t i o n a l Developmencs in l l e a t Transfer by T h e American S o c i e t y of Mechanical. E n g i n e e r s . 29 West 39th Street. New York 18. N.Y.

(16)

LUMPING

ERRORS OF ANALOG

CIilC!JITS

FOR E A T FWil T!TRO!lGH

A

. .

HOPDGENEOUS SLAB

by

D.

:

G

Stepkenson and

G. P.

M i t a l a s

N a t i o n a l Research Couccil, Canada

D i v i s i o n of B u i l d i r e Research

(17)
(18)

IlOTE:

The

entries

Ln

tnblsa are the

-

(19)
(20)

lICECa

a l e cn-trios

Fn

t h e

t a b l e s

am

the

I3

111_

(21)
(22)
(23)

Figure

FIG. 3  RESISTANCE-CAPACITANCE  CIRCUIT  TO SIMULATE  HEAT  FLOW  IN A HOMOGENEOUS SLAB

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers