• Aucun résultat trouvé

February23 ,2021 FERMAT’SLITTLETHEOREM ConceptsinAbstractMathematics

N/A
N/A
Protected

Academic year: 2022

Partager "February23 ,2021 FERMAT’SLITTLETHEOREM ConceptsinAbstractMathematics"

Copied!
9
0
0

Texte intégral

(1)

MAT246H1-S – LEC0201/9201

Concepts in Abstract Mathematics

FERMAT’S LITTLE THEOREM

February 23rd, 2021

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Feb 23, 2021 1 / 4

(2)

Binomial coefficients

Given0 ≤ 𝑘 ≤ 𝑛two natural numbers, we denote by(𝑛𝑘)(read as ”𝑛choose𝑘”) the number of ways to choose an (unordered) subset of𝑘elements from a fixed set of𝑛elements.

Remember that it satisfies(proved in class, see the video):

• (𝑛𝑘) = 𝑘!(𝑛−𝑘)!𝑛!

• For0 ≤ 𝑘 < 𝑛, we have(𝑘+1𝑛+1) = (𝑛𝑘) + (𝑘+1𝑛 ) (Pascal’s triangle)

• ∀𝑥, 𝑦 ∈ ℝ, ∀𝑛 ∈ ℕ, (𝑥 + 𝑦)𝑛=

𝑛

𝑘=0(𝑛

𝑘)𝑥𝑘𝑦𝑛−𝑘 (Binomial theorem)

Lemma

Let𝑝be a prime number. Then∀𝑘 ∈ {1, … , 𝑝 − 1}, (𝑝𝑘) ≡ 0 (mod𝑝). Proof.

Let𝑘 ∈ {1, … , 𝑝 − 1}. Then𝑘(𝑝𝑘) = 𝑝(𝑝−1𝑘−1). Hence,𝑝|𝑘(𝑝𝑘).

Sincegcd(𝑝, 𝑘) = 1, by Gauss’ lemma, we get that𝑝|(𝑘𝑝). ■

(3)

Binomial coefficients

Given0 ≤ 𝑘 ≤ 𝑛two natural numbers, we denote by(𝑛𝑘)(read as ”𝑛choose𝑘”) the number of ways to choose an (unordered) subset of𝑘elements from a fixed set of𝑛elements.

Remember that it satisfies(proved in class, see the video):

• (𝑛𝑘) = 𝑘!(𝑛−𝑘)!𝑛!

• For0 ≤ 𝑘 < 𝑛, we have(𝑘+1𝑛+1) = (𝑛𝑘) + (𝑘+1𝑛 ) (Pascal’s triangle)

• ∀𝑥, 𝑦 ∈ ℝ, ∀𝑛 ∈ ℕ, (𝑥 + 𝑦)𝑛=

𝑛

𝑘=0(𝑛

𝑘)𝑥𝑘𝑦𝑛−𝑘 (Binomial theorem)

Lemma

Let𝑝be a prime number. Then∀𝑘 ∈ {1, … , 𝑝 − 1}, (𝑝𝑘) ≡ 0 (mod𝑝).

Proof.

Let𝑘 ∈ {1, … , 𝑝 − 1}. Then𝑘(𝑝𝑘) = 𝑝(𝑝−1𝑘−1). Hence,𝑝|𝑘(𝑝𝑘).

Sincegcd(𝑝, 𝑘) = 1, by Gauss’ lemma, we get that𝑝|(𝑘𝑝). ■

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Feb 23, 2021 2 / 4

(4)

Binomial coefficients

Given0 ≤ 𝑘 ≤ 𝑛two natural numbers, we denote by(𝑛𝑘)(read as ”𝑛choose𝑘”) the number of ways to choose an (unordered) subset of𝑘elements from a fixed set of𝑛elements.

Remember that it satisfies(proved in class, see the video):

• (𝑛𝑘) = 𝑘!(𝑛−𝑘)!𝑛!

• For0 ≤ 𝑘 < 𝑛, we have(𝑘+1𝑛+1) = (𝑛𝑘) + (𝑘+1𝑛 ) (Pascal’s triangle)

• ∀𝑥, 𝑦 ∈ ℝ, ∀𝑛 ∈ ℕ, (𝑥 + 𝑦)𝑛=

𝑛

𝑘=0(𝑛

𝑘)𝑥𝑘𝑦𝑛−𝑘 (Binomial theorem)

Lemma

Let𝑝be a prime number. Then∀𝑘 ∈ {1, … , 𝑝 − 1}, (𝑝𝑘) ≡ 0 (mod𝑝).

Proof.

(5)

Fermat’s little theorem, version 1

Fermat’s little theorem, version 1

Let𝑝be a prime number and𝑎 ∈ ℤ. Then𝑎𝑝 ≡ 𝑎 (mod𝑝).

Proof.We first prove the theorem for𝑎 ∈ ℕby induction. Base case at𝑎 = 0:0𝑝= 0 ≡ 0 (mod𝑝).

Induction step:assume that𝑎𝑝≡ 𝑎 (mod𝑝)for some𝑎 ∈ ℕ. Then (𝑎 + 1)𝑝=

𝑝

𝑛=0(𝑝

𝑛)𝑎𝑛 by the binomial formula

≡ 𝑎𝑝+ 1 (mod𝑝) since𝑝|(𝑝

𝑛)for1 ≤ 𝑛 ≤ 𝑝 − 1

≡ 𝑎 + 1 (mod𝑝) by the induction hypothesis Which ends the induction step.

We still need to prove the theorem for𝑎 < 0.

In this case−𝑎 ∈ ℕ, hence, from the first part of the proof,(−𝑎)𝑝≡ −𝑎 (mod𝑝). Multiplying both sides by(−1)𝑝we get that𝑎𝑝≡ (−1)𝑝+1𝑎 (mod𝑝).

If𝑝 = 2then either𝑎 ≡ 0 (mod2)or𝑎 ≡ 1 (mod2), and the statement holds for both cases.

Otherwise,𝑝is odd, and hence(−1)𝑝+1= 1. Thus𝑎𝑝≡ 𝑎 (mod𝑝). ■

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Feb 23, 2021 3 / 4

(6)

Fermat’s little theorem, version 1

Fermat’s little theorem, version 1

Let𝑝be a prime number and𝑎 ∈ ℤ. Then𝑎𝑝 ≡ 𝑎 (mod𝑝).

Proof.We first prove the theorem for𝑎 ∈ ℕby induction.

Base case at𝑎 = 0:0𝑝= 0 ≡ 0 (mod𝑝).

Induction step:assume that𝑎𝑝≡ 𝑎 (mod𝑝)for some𝑎 ∈ ℕ. Then (𝑎 + 1)𝑝=

𝑝

𝑛=0(𝑝

𝑛)𝑎𝑛 by the binomial formula

≡ 𝑎𝑝+ 1 (mod𝑝) since𝑝|(𝑝

𝑛)for1 ≤ 𝑛 ≤ 𝑝 − 1

≡ 𝑎 + 1 (mod𝑝) by the induction hypothesis Which ends the induction step.

We still need to prove the theorem for𝑎 < 0.

In this case−𝑎 ∈ ℕ, hence, from the first part of the proof,(−𝑎)𝑝≡ −𝑎 (mod𝑝).

(7)

Fermat’s little theorem, version 2

Fermat’s little theorem, version 2

Let𝑝be a prime number and𝑎 ∈ ℤ. Ifgcd(𝑎, 𝑝) = 1then𝑎𝑝−1≡ 1 (mod𝑝).

Proof.

By the first version of Fermat’s little theorem,𝑎𝑝 ≡ 𝑎 (mod𝑝). Hence𝑝|𝑎𝑝− 𝑎 = 𝑎(𝑎𝑝−1− 1).

Sincegcd(𝑎, 𝑝) = 1, by Gauss’ lemma,𝑝|𝑎𝑝−1− 1.

Thus𝑎𝑝−1≡ 1 (mod𝑝). ■

Remark

Note that both versions of Fermat’s little theorem are equivalent.

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Feb 23, 2021 4 / 4

(8)

Fermat’s little theorem, version 2

Fermat’s little theorem, version 2

Let𝑝be a prime number and𝑎 ∈ ℤ. Ifgcd(𝑎, 𝑝) = 1then𝑎𝑝−1≡ 1 (mod𝑝).

Proof.

By the first version of Fermat’s little theorem,𝑎𝑝 ≡ 𝑎 (mod𝑝).

Hence𝑝|𝑎𝑝− 𝑎 = 𝑎(𝑎𝑝−1− 1).

Sincegcd(𝑎, 𝑝) = 1, by Gauss’ lemma,𝑝|𝑎𝑝−1− 1.

Thus𝑎𝑝−1≡ 1 (mod𝑝). ■

Remark

Note that both versions of Fermat’s little theorem are equivalent.

(9)

Fermat’s little theorem, version 2

Fermat’s little theorem, version 2

Let𝑝be a prime number and𝑎 ∈ ℤ. Ifgcd(𝑎, 𝑝) = 1then𝑎𝑝−1≡ 1 (mod𝑝).

Proof.

By the first version of Fermat’s little theorem,𝑎𝑝 ≡ 𝑎 (mod𝑝).

Hence𝑝|𝑎𝑝− 𝑎 = 𝑎(𝑎𝑝−1− 1).

Sincegcd(𝑎, 𝑝) = 1, by Gauss’ lemma,𝑝|𝑎𝑝−1− 1.

Thus𝑎𝑝−1≡ 1 (mod𝑝). ■

Remark

Note that both versions of Fermat’s little theorem are equivalent.

Jean-Baptiste Campesato MAT246H1-S – LEC0201/9201 – Feb 23, 2021 4 / 4

Références

Documents relatifs

L’accès aux archives de la revue « Annales de la faculté des sciences de Toulouse » ( http://picard.ups-tlse.fr/~annales/ ) implique l’accord avec les conditions

Monsieur K.A. RIBET pour sa contribution à la théorie des nombres et au problème de Fennat. Rabinowitz) paraissent dans ce numéro des Annales de la Faculté des Sciences

Parallèlement, il est permis, semble-t-il, de penser que tes nombres de llerscnne auraient exclusivement pour exposant nl (forcement premier) un nombre de Fermat ou

— Lorsque Inéquation générale de Fermât admet une solution con- nue, par un changement d'inconnue on pourra toujours rendre celle-ci infinie et par suite se ramener au cas

D'autre part, sa solution numérique n'a certainement pas été obtenue par cette voie; car, si l'on poursuit la recherche des solutions suivantes, on arrive presque immédiatement à

But U is connected, and a map of local systems over a connected space which is surjective at one point is surjective at

Principe de Fermat : entre deux points donnés, un rai sismique (ou un rayon lumineux), courbe définie par la perpendiculaire aux fronts d’onde, suit le trajet qui rend stationnaire

Dans la démonstration qu'il a donnée, le premier, de cet admirable théorème de Fermât (*), Euler a signalé (') Voir les Nouveaux Commentaires de Pétersbourg, t.. renfermerait