• Aucun résultat trouvé

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

N/A
N/A
Protected

Academic year: 2021

Partager "A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark"

Copied!
19
0
0

Texte intégral

(1)

6.Partie expérimentale

(2)

[1] P. K. Dick, Minority report. Orion Publishing Group, London, 1956.

[2] H.Klank, Organic electronics : materials, manufacturing and applica- tions. Wiley-VCH, 2006.

[3] A. Goho, “Transparent transistor : See-through component for flexible displays,” Science News, vol. 166(22), p. 339, 2004.

[4] “Organic transistors Single crystals bring a new order, materials today (vol.10, n˚3),” 2007.

[5] H. Ito, W. Oka, H. Goto, and H. Umeda, “Plastic substrates for flexible displays,” Japanese Journal of Applied Physics, vol. 45(5B), pp. 4325–

4329, 2006.

[6] E. Menard, M. Meitl, Y. Sun, D.-L. Shir, Y.-S. Nam, S. Jeon, and J. Rogers, “Micro- and nanopatterning technics for electronic and op- toelectronic systems,” Chemical Review, vol. 107(4), pp. 1117–1160, 2007.

[7] H. Elias, Macromolecules (vol.1) Chemical Structures and Syntheses.

Willey-VCH, 2005.

(3)

[8] S. Liu, G. Sui, R. Cormier, R. Leblanc, and B. Gregg, “Self-organizing liquid crystal perylene diimide thin films : spectroscopy, crystalli- nity and molecular orientation,” Journal of Physical Chemistry B, vol. 106(6), pp. 1307–1315, 2002.

[9] H. Shirakawa, E. Louis, C. C. A.G. MacDiarmid, and A. Heeger, “Syn- thesis of electrically conducting organic polymers : halogen derivatives of polyacetylene, (CH)

x

,” Journal of the Chemical Society, Chemical Communications, pp. 578–580, 1977.

[10] F. Ebisawa, T. kurokawa, and S. Nara, “Electrical properties of poly- acetylene/polysiloxane interface,” Journal of Applied Physics, vol. 54, p. 3255, 1983.

[11] C. Dimitrakopoulos and D. Mascaro, “Organic thin-film transistors : A review of recent advances,” IBM Journal of Research and Development, vol. 45(1), pp. 10–24, 2000.

[12] O. Jurchescu, J. Baas, and T. Palstra, “The effect of impurities on the mobility of single crystal pentacene,” Applied Physics Letters, vol. 84(16), pp. 3061–3063, 2004.

[13] C. Tanase, E. Meijer, P. Blom, and D. de Leeuw, “Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes,” Physical Review Letters, vol. 91(21), p. 216601, 2003.

[14] J. Bardeen, W. Brattain, and Shockley, Semiconductor Amplifier. US 2502488, 1948.

[15] M. Riordan, L. Hoddeson, and C. Herrings, “The invention of the tran-

sistor,” Revews of Modern Physics, vol. 71(2), p. S336, 1999.

(4)

[16] G. Horowitz, “Organic field effect transistors,” Advanced Materials, vol. 10(5), p. 365, 1998.

[17] C. Reese, M. Roberts, M.-M. Ling, and Z. Bao, “Organic thin film transistors,” Materials Today, pp. 20–27, 2004.

[18] L. Kazmerski, Polycristalline and amorphous thin films and devices.

Academic, New York, 1980.

[19] C.-A. Di, G. Yu, Y. Liu, and D. Zhu, “High-performance organic field effect transistors : molecular design, device fabrication and physical properties,” Journal of Physical Chemistry B, vol. 111, pp. 14083–

14096, 2007.

[20] Z. Bao and J.Locklin, Organic field-effect transistors. CRC Press, 2007.

[21] R. Naber, M. Mulder, B. de Boer, P. Blom, and D. de Leeuw, “High charge density and mobility in poly(3-hexylthiophene) using a polari- zable gate dielectric,” Organic Electronics, vol. 7, pp. 132–136, 2006.

[22] T. Durkop, S. Getty, E. Cobas, and S. Fuhrer, “Extraordinary mobility in semiconducting carbon nanotubes,” Nano Letters, vol. 4(1), pp. 35–

39, 2004.

[23] A. van de Craats and J. Warman, “The core-size effect on the mobility of charge in discotic liquid crystalline materials,” Advanced Materials, vol. 13(2), pp. 130–133, 2001.

[24] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dhem, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, “Low-voltage organic transistors with amorphous molecular gate,” Nature, vol. 431, pp. 963–

966, 2004.

(5)

[25] C. Dimitrakopoulos and P. Malenfant, “Organic thin film transistors for large area electronics,” Advanced Materials, vol. 14(2), pp. 99–117, 2002.

[26] Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner, and B. Chiang, “High- performance organic thin-film transistors with solution-printed gold contacts,” Advanced Materials, vol. 17(2), pp. 184–187, 2005.

[27] T. Sakanoue, E. Fujiwara, R. Yamada, and H. Tada, “Preparation of organic light-emitting field-effect transistors with asymmetric elec- trodes,” Chemistry Letters, vol. 34(4), pp. 494–497, 2005.

[28] T. Yasuda, K. Fujita, and T. Tsutsui, “Emergence of a n-type caracte- ristic of conjugated polymers field effect transistors with calcium source drain electrodes,” Japanese Journal of Applied Physic, vol. 43(11a), pp. 7731–7732, 2004.

[29] A. Facchetti, M.-H. Yoon, and T. Marks, “Gate dielectrics for orga- nic field-effect transistors : new opportunities for organic electronics,”

Advanced Materials, vol. 17, pp. 1705–1725, 2005.

[30] J. Zaumseil, C. Donley, J.-S. Kim, R. Friend, and H. Sirringhaus, “In- side front cover : Efficient top-gate ambipolar, light emitting, field ef- fect transistors based on a green light emitting polyfluorene,” Advanced Materials, vol. 18(20), pp. 2708–2712, 2006.

[31] D. de Leeuw, M. Simenon, A. Brown, and R. Einerhand, “Stability of

n-doped conducting polymers and consequences for polymeric microe-

lectronic devices,” Synthetic Metals, vol. 87(1), pp. 53–59, 1997.

(6)

[32] L.-L. Chua, J. Zaumseil, J.-F. Chang, E.-W. Ou, P.-H. Ho, H. Sir- ringhaus, and R. Friend, “General observation of n-type field-effect behaviour in organic semiconductors,” Nature, vol. 434, pp. 194–199, 2005.

[33] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the perfor- mance of pentacene transistors,” Applied Physics Letters, vol. 84(19), pp. 4400–4402, 2004.

[34] L.-L. Chua, P.-H. Ho, H. Sirringhaus, and R. Friend, “Observation of field-effect transistors behavior at self-organized interface,” Advanced Materials, vol. 16 (18), pp. 1609–1615, 2004.

[35] A. van de Craats, Charge transport in self-assembled discotic liquid crysatlline materials. PhD thesis, Technische Universiteit Delft, June 2000.

[36] D. Bradley and R. Friend, “Light-induced luninescence quenching in precursor-route poly(p-phenylene vinylene),” Journal of Physics : Condensed Matter, vol. 1(23), pp. 3671–3679, 1989.

[37] V. Bulovic, M. Baldo, and S. Forrest, Organic electronic materials : conjugated polymers and low molecular weigth organic solids. Springer, 2001.

[38] E. Silinsh and V. Capek, Organic molecular crystals. Interaction, loca- lization and transport phenomena. AIP Press, 1994.

[39] J. Fraxedas, Molecular organic materials. From molecules to crystalline

solids. Cambridge University Press, 2006.

(7)

[40] N. Boden, R. J. Bushby, and J. Clements, “Electron transport along molecular stacks in discotic liquid crystals,” Materials in Electronics, vol. 5(2), pp. 83–88, 2004.

[41] Y. Shirota, “Organic material for electronic and optoelectronic de- vices,” Journal of Materials Chemistry, vol. 10, pp. 1–25, 2000.

[42] N. Yoshimoto and J.-I. Hanna, “preparation of a novel organic semi- conductor composite consisting of a liquid crystalline semiconductor and crosslinked polymer and characterization of its charge carrier trans- port properties,” Journal of Material Chemistry, vol. 13, pp. 1004–

1010, 2003.

[43] S. Park, Y. Kim, J. Han, D. Moon, W. Kim, and M. Kwak, “Electrical characteristics of poly(3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates,” Synthetic Metals, vol. 139(2), pp. 377–384, 2003.

[44] J. Huhuey, E. Keiter, and R. Keiter, Chimie inorganique. De Boeck Universite, 1996.

[45] V. Coropceau, J. Cornil, D. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, “Charge transport in organic semiconductors,” Chemical Reviews, vol. 107, pp. 926–952, 2007.

[46] L. Poulsen, M. Jazdzky, J.-E. C. an J.C. Sancho-Garcia, A. Muras,

G. Bongiovanni, D. Beljonne, J. Cornil, M. Hanack, H.-J. Egelhaaf,

and J. Gierschner, “Three-dimensional energy transport luminescent

host-guest crystals : a quatitative experimental and theoretical study,”

(8)

Journal of The American Chemical Society, vol. 129, pp. 8585–8593, 2007.

[47] J. Brédas, D. Beljone, V. Coropceanu, and J. Cornil, “Charge transfer and energy transfer process in π-conjugated oligomers and polymers : a molecular pictures,” Chemical Review, vol. 104, pp. 4971–5003, 2004.

[48] V. Lemaur, Theoretical characterization and optimization of the elec- tronic and optical properties of liquid-crystalline phases involved into opto-electronic devices. PhD thesis, Université de Mons Hainaut, Oc- tobre 2005.

[49] G. Hutchinson, M. Ratner, and T. Marks, “Hopping transport in conductive heterocyclic oligomers,” Journal of the American Chemi- cal Society, vol. 127, pp. 2339–2350, 2005.

[50] A. van de Craats, P. Schouten, and J. Warman, “Charge transport in discotic liquid crystalline materials studied by pulse-radiolysis time- resolved microwave conductivity (PR-TRMC),” Journal of the Japa- nese Crystal Society, vol. 2, pp. 12–27, 1998.

[51] R. de Boer, M. Jochemsen, T. Klapwijk, F. Morpurgo, J. Niemax, A. Tripathi, and J. Pflaum, “Space charge limited transport and time of flight measurements in tetracene single crystals : a comparative study,”

Journal of Applied Physics, vol. 95(3), pp. 1196–1202, 2004.

[52] A. Mozer, N. Sariciftci, A. Pivrikas, R. Osterbacka, G. Juska, L. Bras-

sat, and H. Bässler, “Charge carrier mobility in regioregular poly(3-

hexylthiophene) probed by transient conductivity techniques : a com-

parative study,” Physical Review B, vol. 71, p. 035214, 2005.

(9)

[53] S. Hass, A. Stassen, G. Schuck, K. Pernstich, D. Gundlach, B. Batlogg, U. Berens, and H.-J. Kimer, “High charge carrier mobility and low trap density in a rubrene derivatives,” Condensed Matter, pp. 1–6, 2007.

[54] M. Schwoerer and H. Wolf, Organic Molecular Solids. Physics Textbook Wiley-VCH, 2007.

[55] S. Tavazzi, M. Campione, M. Laicini, L. Raimondo, A. Borghesi, and P. Spearman, “Measured Davydov splitting in oligothiophene crystals,”

The Journal of Chemical Physics, vol. 124, pp. 194710–1–194710–7, 2006.

[56] G. Horowitz and M. E. Hajlaoui, “Mobility in polycrystalline oligo- thiophene field effect transistors dependent on grain size,” Advanced Materials, vol. 12(14), p. 1046, 2000.

[57] A. L. Briseno, S. Mannsfel, M. Ling, R. J. Tseng, S. Liu, C. Reese, M. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Large-area patterning of organic single-crystal arrays,” Nature, vol. 444, pp. 913–917, 2006.

[58] A. van Breemen, P. H. C. Chlon, J. Sweelssen, H. Schoo, S. Setayesh, W. Hardeman, C. Martin, D. de Leeuw, J. Valeton, C. Batsiaansen, D. Broer, A. Popa-Merticaru, and S. Meskers, “Large area liquid crys- tal monodomain field effect transistors,” Journal of the American Che- mical Society, vol. 128, pp. 2336–2345, 2006.

[59] V. D. Cupere, J. Tant, P. Viville, R. Lazzaroni, W. Osikowic, W. Sala-

neck, and Y. Geerts, “Effect of interfaces on the alignment of a discotic

liquid crystalline phthalocyanine,” Langmuir, vol. 22, pp. 7798–7806,

2006.

(10)

[60] C. Mattheus, A. Dros, J. Baas, G. Oostergetel, A. Meetsma, J. de Boer, and T. Palstra, “Identification of polymorphs of pentacene,” Synthetic Metals, vol. 138(3), pp. 475–481, 2003.

[61] D. Delabouglise, M. Hmyene, G. Horowitz, A. Yassar, and F. Garnier,

“Electrochemical coupling of dialkylated sexithiophene,” Advanced Ma- terials, vol. 4, p. 107, 1992.

[62] G. Horowitz, R. Hajlaoui, R. Bourguiga, and M. Hajlaoui, “Theory of the organic field-effect transistor,” Synthetic Metals, vol. 101, pp. 401–

404, 1999.

[63] J. Sherwood, “Lattice deffects in organic crystals,” Molecular crystals and liquid crystals, vol. 9, pp. 37–57, 1969.

[64] E. Granstrom and C. Frisbie, “Field effect conductance measurements on thin crystals of sexithiophene,” Journal of Physical Chemistry B, vol. 103, pp. 8842–8849, 1999.

[65] S. Izvekov and V. Sugakov, “Exciton and electron traps on structural defects in molecular crystals with dipolar molecules,” Physica Status Solidi (b), vol. 191, pp. 449–453, 1995.

[66] Y. Deng and H. Sirringhaus, “Optical absorptions of polyfluorene tran- sistors,” Physical Review B, vol. 72, p. 045207, 2005.

[67] A. Vollmer, O. Jurchescu, I. Arfaoui, I. Salzmann, T. Palstra, P. Rudolf,

J. Niemax, J. Pflaum, J. Rabe, and N. Koch, “The effect of oxygen

exposure on pentacene electronic structure,” The European Physical

Journal E, vol. 17, pp. 339–343, 2005.

(11)

[68] O. Roussel, Synthèse et purification de matériaux à caractère cristal liquide à base de triphénylène pour leur utilisation dans des diodes élec- troluminescentes. PhD thesis, Université Libre de Bruxelles, Septembre 2006.

[69] L.-L. Chua, P.-H. Ho, H. Sirringhaus, and R. Friend, “High-stability ul- trathin spin-on benzocyclobutene gate dielectric for polymer field-effect transistors,” Applied Physics Letters, vol. 84, pp. 3400–3402, 2004.

[70] P.-G. de Gennes and J. Badoz, Les objets fragiles. Librairie Plon, 1994.

[71] P. Atkins, Eléments de chimie physique. DeBoeck Université, 1998.

[72] D. Demus, J. Goodby, G. Gray, H.-W. Spiess, and V. Vill, Handbook of liquid crystals. Willey-VCH, 1998.

[73] P. Collings, Liquid crystals. Princeton University Press, 2002.

[74] C. Tschierske, “Non-conventional liquid crystals : the importance of microsegregation for self-organisation,” Journal of Material Chemistry, vol. 8(7), pp. 1485–1508, 1998.

[75] L. Athouël, G. Froyer, M. Riou, and M. Schott, “Structural studies of parasexiphenyl thin films : importance of the deposition parameters,”

Thin Solid Films, vol. 274(1-2), pp. 35–45, 1996.

[76] P. Oswald and P. Pieranski, Les cristaux liquides : concepts et proriétés physiques illustrés par des expériences Tome 1. Gordon and Breach Science Publisher, 2000.

[77] P. Oswald and P. Pieranski, Les cristaux liquides : concepts et proriétés

physiques illustrés par des expériences Tome 2. Gordon and Breach

Science Publisher, 2002.

(12)

[78] I. Dierking, Textures of Liquid Crystals. Wiley-VCH, 2003.

[79] K. Borisch, D. Siegmar, P. Göring, H. Kresse, and C. Tschierske, “Tai- loring thermotropic cubic mesophases : amphiphilic polyhydroxyderi- vatives,” Journal of Materials Chemistry, vol. 8(3), pp. 529–543, 1998.

[80] V. B. G. Ungar, V. Percee, and G. Johansson, “Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid crystalline phase and the determination of their shape x-ray analysis,” Journal of the American Chemical Society, vol. 119, pp. 1539–1555, 1997.

[81] C. Chiccoli, I. Feruli, S. Shiyanovski, O. Lavrentovich, P. Pasini, and C. Zanoni, “Topological defects in Schlieren textures of biaxial and uniaxial nematics,” Physical Review E Rapid Communication, vol. 3(1), p. 66, 2002.

[82] G. Höhne, W. Hemminger, and H.-J. Flammersheim, Differential scan- ning calorimetry (Second edition). Springer, 2003.

[83] P. Collings and M. Hird, Introduction to liquid crystals : chemistry and physics. Taylor and Francis, 1998.

[84] D. Fox, M. Labes, and A. Weissenberger, Physics and chemistry of the organic solid state. Interscience Publishers, 1963.

[85] R. Jenkins and R. Snyder, Introduction to X-ray powder diffractometry.

John Wiley and Sons, 1996.

[86] A. Guinier, X-Ray diffraction in crystals, imperfect crystals and amor-

phous bodies. Dover Publication, 1963.

(13)

[87] O. Lengyel, W. Hardeman, H. Wondergem, and D. de Leeuw, “Solution- processed thin films of thiophene mesogens with single-crystalline ali- gnment,” Advanced Materials, vol. 18, pp. 896–899, 2006.

[88] D.M.Collard and C. Lillya, “Structure-property relationships for the thermal phase behavior of discotic liquid crystals : effect of branching and unsaturation in the side chains of disklike molecules,” Journal of the Amercain Chemical Society, vol. 23, pp. 8577–8583, 1991.

[89] J. Sease and L. Zechmeister, “Chromatographic and spectral charac- teristics of some polythienyls,” Journal of the American Chemical So- ciety, vol. 69, pp. 270–273, 1947.

[90] L. Z. J. Sease, “A blue-fluorescing compound, terthienyl, isolated from marigolds,” Journal of the American Chemical Society, vol. 69, pp. 273–

275, 1947.

[91] D. Fichou, Handbook of oligo-polythiophenes. Wiley-VCH, 1999.

[92] B. Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, “Po- lymorphism and charge transport in vacuum-evaporated sexithiophene films,” Chemistry of Materials, vol. 6(10), pp. 1809–1815, 1994.

[93] G. Horowitz, D. Fichou, X. Peng, Z. Xu, and F. Garnier, “A field effect- transistor based on conjugated alpha-sexithienyl,” Solid State Commu- nication, vol. 72, p. 381, 1989.

[94] J. Ackermann, C. Videlot, P. Dumas, A. E. Kassmi, R. Guglielmetti,

and V. Safarov, “Control of growth and charge transport properties

(14)

of quaterthiophene thin films via hexyl chain substitutions,” Organic Electronics, vol. 5, pp. 213–222, 2004.

[95] H. Akimichi, K. Waragai, S. Hotta, H. Kano, and H. Sakati, “Field- effect transistors using alkyl substituted oligothiophenes,” Applied Phy- sic letters, vol. 58, p. 1500, 1991.

[96] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer, and W. Weber, “Relationship between structure and electrical performance of oligothiophene organic thin film transistors,”

Advanced Materials, vol. 15(11), pp. 917–922, 2003.

[97] M. Funahashi and J. i. Hanna, “High carrieb mobility up to 0.1 cm

2

v

−1

s

−1

at ambient temperature in thiophene-based smectic liquid crystals,” Advanced Materials, vol. 17(5), pp. 594–598, 2005.

[98] O. Jurchescu, M. Popinciuc, B. van Wees, and T. Palstra, “Interface- controlled, high-mobility organic transistors,” Advanced Materials, pp. 688–692, 2007.

[99] S. Verlaak, W. Arkipov, and P. Heremans, “Modeling of transport in polycristalline organic semiconductor films,” Applied Physics Letters, vol. 82, p. 3119, 2003.

[100] A. V. Vooren, V. Lemaur, A. Ye, D. Beljonne, and J. Cornil, “Impact of bridging units on the dynamics of photoinduced charge generation and charge recombination in donor-acceptor dyads,” Chemphyschem, vol. 8, pp. 1240–1249, 2007.

[101] J. Cornil, “communication personnelle.”

(15)

[102] P. Bäuerle, F. Würthner, G. Götz, and F. Effenberger, “Selective synthesis of α-substituted oligothiophenes,” Synthesis, pp. 1099–1103, 1993.

[103] P. Nguyen, U. Rammelt, W. Pliet, S. Richter, M. Plötner, W.-J. Fi- scher, N. Kiriy, K. Kamloth, and H.-J. Adler, “Experiments with orga- nic field effect transistors based on polythiophene and thiophene oligo- mers,” Electrochimica Acta, vol. 50(7-8), pp. 1757–1763, 2005.

[104] A. Facchetti and T. Marks, “α,ω and β,β’-diperfluorohexyl subsituted thiophene oligomers. Effect of perfluoroallyl versus alkylsubstitution on the thiophene oligomers core properties,” Polymer Preprints, vol. 43 (1), pp. 734–735, 2002.

[105] M. Melucci, G. Barbarella, M. Zambianchi, M.Benzi, F. Biscarini, M. Cavallini, A. Bongini, S. Fabbroni, M. Mazzeo, M. Anni, and G. Gigli, “Poly(α-vinyl-ω-oligothiophene) side-chain polymers. synthe- sis, fluorescence, and morphology,” Macromolecules, vol. 37, pp. 5692–

5702, 2004.

[106] G. Barbarella, L. Favaretto, G. Sotgiu, M. Zamianchi, L. Antolini, O. Pudova, and A. Bongini, “Oligothiophenes S,S-dioxides. Synthe- sis and electronic properties in relation to the parent oligothiophenes,”

Journal of Organic Chemistry, vol. 63, pp. 5497–5506, 1998.

[107] L. Brandsma, A. Mal’kina, L. Lochmann, and P. von Schleyer, “Dra-

matic acceleration of alkylation reactions with organolithium com-

pounds by potassium tert-butoxide,” Travaux Chimiques des Pays Bas,

vol. 113, pp. 529–530, 1994.

(16)

[108] M. Smith and J. March, March’s Advanced Organic Chemistry. Wiley Interscience, 2001.

[109] D. Collum, “Is N,N,N’,N’-tetramethylethylenediamine a good ligand for lithium,” Accounts of Chemical Research, vol. 25(10), pp. 448–454, 1992.

[110] J. Huheey, E. Keiter, and R. Keiter, Inorganic chemistry : principles of structure and reactivity (4th edition). Hardcover, 1993.

[111] F. Garnier, “Thin film transistors based on molecular semiconductors,”

Pure and Applied Chemistry, vol. 68(7), pp. 1455–1462, 1996.

[112] S. Ponomarenko, S. Kirchmeyer, A. Elschner, N. Alpatova, M. Ha- lik, H. Klauk, U. Zschieschang, and G. Schmid, “Decyl-end-capped thiophene-phenylene oligomers as organic semiconducting materials with improved oxidation stability,” Chemistry of Materials, vol. 18, pp. 579–586, 2006.

[113] T. Boyd, Y. Geerts, J.-K. Lee, D. Fogg, G. Lavoie, R. Schrock, and M. Rubner, “Electroluminescence from new polynorbornenes that contain blue-light-emitting and charge-transport side chains,” Macro- molecules, vol. 30, pp. 3553–3559, 1997.

[114] I. Christoforou, P. Koutentis, and C. Rees, “Regiospecific Suzuki cou- pling of 3,5-dichloroisothiazole-4-carbonitrile,” Organic and Biomole- cular Chemistry, vol. 1, pp. 2900–2907, 2003.

[115] R. Azumi, G. Götz, and P. Bäuerle, “Thermal behavior of α-alkylated

oligothiophenes,” Synthetic Metals, vol. 101, pp. 544–545, 1999.

(17)

[116] A. Berlin, G. Fontana, and G. Pagani, “Anodic coupling of oligo- thiophenes bridged by ethylene groups,” Synthetic Metals, vol. 55-57, pp. 4796–4801, 1993.

[117] B.Yom-Tov and S. Gonowitz, “Heterocyclic fused tropylium ions,” Che- mica scripta, vol. 3, pp. 37–47, 1973.

[118] G. Pabst, O. Pfüller, and J. Sauer, “The new and simple ’Lego’ sys- tem : synthesis and reactions of ruthenium(II) complexes,” Tetrahe- dron, vol. 55, pp. 8045–8064, 1999.

[119] G. Zotti, S. Zecchin, B. Vercelli, A. Berlin, S. Grimoldi, L. Groenen- daal, R. Bertoncello, and M. Natali, “Surface-initiated polimerization of thiophene and pyrrole monomers on poly(terthiophene) films and oligothiophene monolayers,” Chemistry of materials, vol. 17, pp. 3681–

3694, 2005.

[120] D. Demus, J. Goodby, G. Gray, H.-W. Spiess, and V. Vill, Handbook of liquid crystals : Fundamentals (vol.1). Wiley-VCH, 1998.

[121] J.Israelachvili, Intermolecular and surface forces (2d edition). Elsevier Science and Technology Books, 1992.

[122] R. Weast, Handbook of Chemistry and physics. CRC Press, 1874.

[123] M. Rubio, M. Merchan, and E. Orti, “A theoretical study on the low- lying excited states of 2,2’ :5’,2”-terthiophène and 2,2’ :5’,2” :5”,2”- quaterthiophène,” ChemPhysChem, vol. 6, pp. 1357–1368, 2005.

[124] E. Lien and W. Kumler, “Dipole moment and structure of thiophene

derivatives and benzene analogs,” Journal of Pharmaceutical Sciences,

vol. 59(11), pp. 1685–1688, 2006.

(18)

[125] M. Temprado, M. Roux, P. Jiménez, R. Guzman-Mejia, and E. Jua- risti, “Thermophysical properties of sulfur heterocycles : thianes and thiophene derivatives,” Thermochemica Acta, vol. 441 (1), pp. 20–26, 2006.

[126] D. Byron, A. Matharu, R. Wilson, and G. Wright, “The synthesis and liquid crystal properties of certain 5,5”-disubstituted 2,2’ :5’,2”- terthiophenes,” Molecular Crystals and Liquid Crystals, vol. 265, pp. 61–76, 1995.

[127] N. Boucher, “communication personnelle.”

[128] B. Gombojav, N. Namsrai, T. Yoshinari, S.-I. Nagasaka, H. Itoh, and K. Koyama, “Fluorescence spectra of bithiophene and terthiophene single crystals and of their isolated molecules in cyclodextrin,” Journal of Solid State, vol. 177, p. 2827, 2004.

[129] C. Tanford, Hydrophobic effect : formation of micelles and biological membranes. Wiley-VCH, 1980.

[130] E. Pouzet, “communication personnelle.”

[131] R. Penterman, S. Klink, H. de koning, G. Nisato, and D. Broer, “Single- substrate liquid-crytals displays by photo-enforced stratification,” Na- ture, vol. 417, pp. 55–58, 2002.

[132] M. Cerminara, F. Meinardi, A. Sassella, and R. Tubino, “Coherent exci- tonic emission in molecular semiconductors,” Journal of Luminescence, vol. 112 (1-4), pp. 402–406, 2005.

[133] J. Leroy, N. Boucher, S. Sergeyev, and Y. Geerts, “Symmetrical and

nonsymmetrical liquid crystalline oligothiophenes : convenient synthe-

(19)

sis and transition-temperature engineering,” European Journal of Or- ganic Chemistry, pp. 1256–1261, 2007.

[134] F. Garnier, R. Hajlaoui, A. E. Kassmi, G. Horowitz, L. Laigre, W. Por- zio, M. Armanini, and F. Provasoli, “Dihexylquaterthiophene, a two- dimensional liquid crystal-like organic semiconductor with high trans- port properties,” Chemistry of Materials, vol. 10, pp. 3334–3339, 1998.

[135] H. Katz, A. Lovinger, and J. Laquindanum, “α, ω- dihexylquaterthiophene : a second thin film single-crystal organic semiconductor,” Chemistry of Materials, vol. 10, pp. 457–459, 1998.

[136] S. D. Jonge, “Communication personelle.”

[137] “Séminaire de j. cornil : Charge transport in organic semiconductors : a multi-scale description.”

[138] K. Amundson, H. Katz, and A. Lovinger, “Phase behaviior of α,ω- dihexyl-α-quaterthiophene and ordering on textured substrate,” Thin solid Films, vol. 426, pp. 140–149, 2002.

[139] A. M. Eachern, C. Soucy, L. Leitch, J. Arnason, and P. Morand, “Syn-

thesis and characterization of alkyl-halo and hetero-substituted deri-

vatives of the potent photoxin α-terthienyl,” Tetrahedron, vol. 44(9),

pp. 2403–2412, 1988.

Références

Documents relatifs

Resume - De nouveaux resultats experimentaux ont ete obtenus recemment sur la structu- re atomique des joints de grains et des interfaces. Les differentes techniques donnant des

De plus, pour ces composés 5b-d, on observe la présence d’une phase cristal liquide smectique pour laquelle les molécules ne possèdent plus d’ordre de position au sein des

Le produit brut est purifié par chromatographie sur silice flash (hexane/toluène 9 : 1) suivi d’une recristallisation à partir d’un mélange méthanol/toluène pour obtenir un

In conclusion, we have shown that p21 regulates focal adhesion, stress fiber and microtubule dynamics in untransformed human epithelial cells.. These functions correspond to

We argue that activity-based data sculptures with low-tech materials are uniquely suited to introduce novice learners into the field of working with data.. The examples above serve

Then based on the indicators’ values, the Critical Path Method (CPM) and adaptive Earned Value Management (EVM) methods are used to evaluate the progress of both the project and

The question arose as to how to describe the experimental observations, in particular whether the energy transfer between the two localized states should be considered to be

In flashy catchments where acute diffuse P transfer is predisposed to storm flow pathways, and where groundwater is largely isolated from the source of P (i.e. surface soils