• Aucun résultat trouvé

Turbulence modelling in cavitating flows

N/A
N/A
Protected

Academic year: 2021

Partager "Turbulence modelling in cavitating flows"

Copied!
53
0
0

Texte intégral

(1)

HAL Id: cel-01420694

https://hal.archives-ouvertes.fr/cel-01420694

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Turbulence modelling in cavitating flows

Eric Goncalvès da Silva

To cite this version:

Eric Goncalvès da Silva. Turbulence modelling in cavitating flows. Doctoral. Udine, France. 2014. �cel-01420694�

(2)

Turbulence modelling in cavitating flows

Eric Goncalves

LEGI, University of Grenoble-Alpes, France

7-11 July 2014

(3)

Outline of the speech

Outline

1 General considerations 2 One-fluid RANS equations 3 Limitation of eddy viscosity 4 Compressibility terms 5 Wall models

6 Improved models - hybrid RANS/LES 7 One-fluid filtered equations and LES 8 Conclusions

(4)

General considerations

(5)

A large quantity of opened questions

Questions

Kolmogorov spectrum, slope 6= -5/3

Kolmogorov scale / size of two-phase structures. Induced turbulence or pseudo-turbulence.

Compressibility effects on turbulence. Anisotropy of the Reynolds tensor.

Increase or decrease of the turbulence intensity. Cavitation-turbulence interaction at small scales.

Remarks

no DNS data or turbulent quantities measurements. non universality of two-phase flows.

(6)

Example of flows

Cavitation pockets

Cavitation in vortex

(7)

Multiple scales

Turbulence scales

DNS : all scales are resolved

LES : large scale are resolved and small scales are modelled RANS : mean flow is resolved and turbulence is modelled Hybrid RANS/LES : model adapts to the mesh resolution

Phase scales

DNS : resolution of each fluid + interface

pseudo-DNS : resolution of each fluid + tracking of the interface (VoF, level set...)

filtered (LES) and averaged (RANS) models : two-fluid model,

reduced models, one-fluid model

(8)

Averaged approach - homogeneous mixture models

Averaged one-fluid equations (RANS)

Temporal averaged or ensemble averaged equations

The same operator for two-phase structure and turbulent structure Boussinesq analogy used similarly to single-phase flows

Transport-equation models : k − ε, k − ω,...

Filtered one-fluid equations (LES)

First works in incompressible flow without phase transition Lots of sub-grid terms - problem of modelling

Link with the DNS

(9)

Averaged equations

(10)

Average operator

Temporal phase average

Averaging over a time T : φk = 1

T Z

T

φk(x, τ ) d τ

Averaging over the time Tk of presence of the phase k :

φk = 1 Tk Z Tk φk(x, τ ) d τ Void fraction : α(x, t) = Tk T = φk φk

(11)

Decomposition of variable

Mass-weighted average (Favre average)

For a variable ρφ, a mass-weighted average : f φk = ρkφk ρk = ρkφk ρk and φ =˜ P αkρkφfk P αkρk = P ρkφfk P ρk Mass-weighted decomposition

An average part and a fluctuation (two-phase and turbulent contribution) : ρk = ρk + ρ′k, uk =uek + u′′k, φk = fφk + φ′′k

ρ′

k = 0 , ρku′′k = 0 , ρkφ′′k = 0

(12)

Averaged equations (1)

Conservative equations for the phase k

Mass conservation : ∂αkρk ∂t + div (αkρkeuk) = Γk Momentum conservation : ∂αkρkuk ∂t + div (αkρkeuk⊗euk + Pk) = div αk(τk + τ t k)  + Mk Total energy conservation :

∂αkρk  e Ek+ kk  ∂t + div  αkρk(eEk+ kk)euk  = div (αkPkeuk) + div αk(τk+ τkt)euk  − div αk(qk+ qtk)  + Qk

New unknowns : Reynolds stress tensor τt

k and turbulent heat flux qkt

(13)

Averaged equations (2) Fluctuating fields

The velocity fluctuating field is not divergence free (even with incompressible phases) : ∂uk,l′ ∂xl = −∂uk,l ∂xl = 1 αk uk′.nkδI

It leads to supplementary unknowns, called "compressible terms".

Equation for the momentum fluctuation :

ρk ∂u′′k,i ∂t + ρkeuk,l ∂uk,i′′ ∂xl + ρku ′′ k,l ∂euk,i ∂xl + ρku ′′ k,l ∂u′′k,i ∂t = ∂Tk,il ∂xl + ρkeuk,i∂e uk,l ∂xl + ρk ρkαk " −∂αkTk,il ∂xl − M k+ ∂ ∂xl  αkρku^ ′′ k,iu ′′ k,l # + ρk ρkαk  e uk,i  ∂αkρk ∂t + euk,l ∂αkρk ∂xl 

(14)

Turbulent kinetic energy equation for the phase k

it is possible to write the equation for the phasic Reynolds stress and the phasic TKE kk

∂αkρkkk ∂t + div (αkρkkkeuk) = αkρk (Pk− εk+ Πk+ Mk+ Dk) + ΓkK Γ with : ρkαkPk = −αkρku^′′k,iu ′′ k,l ∂euk,i ∂xl Production term ρkαkǫk = αkτk,il′ ∂u′′ k,i ∂xl Dissipation rate ρkαkΠk = αkp′k ∂u′′ k,i ∂xi Pressure-dilatation term ρkαkMk = αku′′k,i " −∂pk ∂xi +∂σk,il ∂xl #

Mass flux term

ρkαkDk = − ∂ ∂xl  αkPk′u ′′ k,iδil− αkτk,il′ u ′′ k,i  −∂αkρk u′′ k,iu ′′ k,i 2 u ′′ k,l ∂xl Diffusion term

ΓkKΓ Mass transfer term

(15)

Homogeneous mixture equations or one-fluid model (1) Mixture mean quantities

mixture density and presure : ρm =Pαkρk, Pm =PαkPk

mixture internal energy : ρmem=Pαkρkeek

mass center velocity : ρmum,i =Pαkρkeuk,i

mixture viscosity : µm =Pαkµk

mixture viscous stress tensor : τm,ij =Pαkτk,ij

mixture heat flux : qm =Pαkqk Mixture turbulent quantities

mixture turbulent kinetic energy : km =Pαkkk =Pαkgu

′′

2 k,i/2

mixture Reynolds stress tensor : τm,ijt = −Pαkρku

′′

k,iu

′′

k,j

mixture eddy viscosity : µtm=Pαkµtk

mixture turbulent heat flux : qt

m =

P αkqkt

mixture dissipation rate : εm, mixture specific dissipation ωm...

(16)

Homogeneous mixture equations (2) Conservative equations Mass equation : ∂ρm ∂t + div (ρmum) = 0 Momentum equation : ∂ρmum ∂t + div (ρmum⊗ um+ Pm) = div (τm+ τ t m) Energy equation : ∂ρm(Em+ km)

∂t + div (ρm(Em+ km)um) = div (−Pmum) − div (qm− q

t m)

+ div(τm+ τmt)um

(17)

Homogeneous mixture equations (3) Mixture turbulent kinetic energy equation

∂ρmkm

∂t + div (ρmkmum) = ρmPm+ ρmΠm− ρmǫm+ ρmMm+ ρmDm+ ΓmK

Γ m

It is assumed that each phase shares the same fluctuating velocity u′′i , the same fluctuating pressure P′ and the same fluctuating viscous stress τij′ :

ρmPm= τm,ilt ∂um,i ∂xl ; ρmΠm= P′ ∂u′′ i ∂xi ρmǫm= τil′ ∂u′′ i ∂xl ; ΓmKmΓ = 0 ρmMm = u′′i  −∂pm ∂xi  + u′′ i " ∂σm,il ∂xl − X k σk,il ∂αk ∂xl # ρmDm = − ∂ ∂xl h p′u′′ i δil− σ′ilu ′′ i i −∂ρm ^ ui′′u′′i 2 u ′′ l ∂xl

(18)

Turbulence modelling (1) Main features

A fluctuation is associated to a mixture quantity !

The fluctuating velocity field is not divergence free → supplementary terms, difficult to model.

The pressure-dilatation term ρmΠm is null in mean but not

instantaneously.

The mixture dissipation ε is not only solenoidal.

Inhomogeneous and dilatational (or compressible) contributions. ρǫ ≈ 2µ ω′ ikω ′ ik | {z } ρεs + 2 µ ∂ ∂xk " ∂u′ ku ′ l ∂xl −2 u′ ks ′ ll # | {z } ρεinh +4 3 µ s ′ kks ′ ll | {z } ρεd

The diffusion term is modelled with a gradient formulation.

The mixture dissipation equation ε is completely modelled following the single-phase formulation.

(19)

Turbulence modelling (2) Boussinesq assumption

Boussinesq analogy and mixture eddy viscosity assumption µtm :

τm,ijt = µtm  ∂um,i ∂xj +∂um,j ∂xi −2 3div umδij  − 2 3ρmkmδij

Evaluation of the mixture eddy viscosity with transport-equation models.

Turbulent Fourier law

Fourier law analogy and mixture thermal conductivity λtm :

qmt = −λtmgrad Tm

Assumption of constant turbulent Prandtl number Prt :

λtm = Xαkλtk = X αk µt kCpk Prt approximed by λ t m≃ µtmCpm Prt

(20)

Turbulence modelling (3)

Usual model, k − ε model for a mixture

transport-equation models equivalent to single-phase turbulent models. all supplementary terms are neglected.

only the solenoidal dissipation is taken into account.

∂ρ k ∂t +div  ρ u k −  µ + µt σk  grad k  = ρPk− ρε ∂ρε ∂t +div  ρ u ε −  µ +µt σε  grad ε  = cε1ε kρPk− ρcε2f2 ε2 k µt≈ ρ k2 εs Remarks

a large quantity of assumptions.

introduction of wall treatment (damping functions or wall functions) a large quantity of problems !

(21)

Limitation of the eddy viscosity

(22)

Turbulent eddy corrections The Reboud correction

µt = f(ρ)Cµ k2 ǫ f(ρ) = ρv+  ρv− ρ ρv− ρl n (ρl− ρv) nis usually set to 10

SST correction - Bradshaw’s assumption for 2D boundary layer µt= ρk/ω max1,ΩF2 a1ω  ; a1= 0.3 ; Ω = q 2ΩijΩij withΩij = 1 2  ∂˜ui ∂xl − ∂˜ul ∂xi 

Realisability constrains of Durbin

µt= min  Cµ0; c s√3  ρk2 ǫ ; 0 ≤ c ≤ 1 ; C 0 µ= 0.09 ; s = k ǫS with S= 2SijSij− 2 3S 2 kk

(23)

The Venturi 4◦ Experimental conditions Operating point : Uinlet= 10.8 m/s σinlet= Pinlet−Pvap 0.5 ρU2 inlet ≈ 0.55 Observations :

A quasi stable cavitation of 0.70 to 0.85 m length

An unsteady closure region with vapour cloud shedding and a liquid re-entrant jet

Measurements

Time-averaged longitudinal velocity and void ratio

Time-averaged wall pressure evolution and RMS fluctuations

(24)

Reboud limiter

Results using the Spalart-Allmaras model, density gradient

SA SA + Reboud limiter

Limitation of the eddy viscosity µt

mut / mu Y (m ) 0 25 50 75 0 0.005 0.01 0.015 SA Reboud SA mut / mu Y (m ) 0 25 50 75 100 0 0.005 0.01 0.015 KE KE Reboud KE Realizable station 3

(25)

Eddy viscosity limiter, profiles at stations 3 and 4 alpha Y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.002 0.004 0.006 0.008 0.01 EXPERIMENT SA Reboud KL Reboud KE Reboud KE Realizable KWSST alpha Y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.002 0.004 0.006 0.008 0.01 EXPERIMENT SA Reboud KL Reboud KE Reboud KE Realizable KWSST u (m/s) Y (m ) 0 5 10 0 0.002 0.004 0.006 0.008 0.01 EXPERIMENT SA Reboud KL Reboud KE Reboud KE Realizable KWSST u (m/s) Y (m ) 0 5 10 0 0.002 0.004 0.006 0.008 0.01 EXPERIMENT SA Reboud KL Reboud KE Reboud KE Realizable KWSST

Time-averaged void fraction (left) and velocity (right) profiles

(26)

The k − ℓ model + SST correction alpha y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.002 0.004 0.006 0.008 0.01 EXP KL-SST : c = 0.3 KL-SST : c = 0.2 KL-SST : c = 0.1 KL-Realizable : c = 0.2 u (m/s) y (m ) -4 -2 0 2 4 6 8 10 12 14 0 0.002 0.004 0.006 0.008 0.01 EXP KL-SST : c = 0.3 KL-SST : c = 0.2 KL-SST : c = 0.1 KL-Realizable : c = 0.2

Time-averaged void fraction (left) and velocity (right) profiles

Contour of the density gradient : a1 = 0.2 (left) and a1 = 0.1 (right)

(27)

Compressibility corrections

(28)

Closure relations for turbulence compressible terms Pressure-dilatation, Sarkar formulation

ρ Π = P′∂u ′′

i

∂xi

= −α2ρPMt+ α3ρεsMt2

α2, α3 are constants to calibrate. Mt = √

k

2c is the turbulent Mach number. Dilatational dissipation, Sarkar formulation

εd = 4 3 µ s ′ kks ′ ll = α1εsMt2 with α1to calibrate Mass flux, Jones formulation

ρM = ρ ′ u′′ i ρ  ∂P ∂xi −∂σil ∂xl  = − µt ρ2σ p ∂ρ ∂xi ∂P ∂xi

σp is a turbulent Schmidt number, which has to be calibrated.

(29)

k −ε compressible model x (m) y (m ) 0 0.05 0.1 0.15 0 0.02 0.04 0.06 0.08 x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.01 0.02 0.03 0.04 0.05

k −ε + Π, α2=0.15, α3 = 0.001 (left) and α3= 0.025 (right)

x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.01 0.02 0.03 0.04 0.05 x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.01 0.02 0.03 0.04 0.05

k −ǫ + mass flux term, σp= 1 (left) and σp = 0.0001 (right)

(30)

k −ε compressible model (2) x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.01 0.02 0.03 0.04 0.05 x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.01 0.02 0.03 0.04 0.05

k −ǫ + Π + M + ǫd, Sarkar values, at 2 instants

x-xi(m) (P -P v )/ P v 0.1 0.15 0.2 0.25 0.3 0 5 10 15 EXPE KEcompressible KE pd KE epsd KE Reboud x-xi(m) P rm s / P a v 0.15 0.2 0.25 0.3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 EXPE KE compressible KE pd KE epsd KE Reboud

Time-averaged wall pressure (left) and RMS fluctuations (right)

(31)

Wall functions

(32)

Turbulent boundary layer

Opened questions

Existence of an universal velocity profile. Instantaneous logarithmic area.

Cavitating law of the wall (κ function of α). Turbulence damping functions.

Modifications of turbulent properties downstream a pocket. Compressibility effects.

Numerical study

Computations using various meshes : y+ from 1 to 50.

Comparison of wall functions : two-layer model versus TBLE model.

(33)

Two-layer wall model

Formulation - similar to single-phase flows

u+ = y+ if y+< 11.13

u+ = 1

κln y

++ 5.25 if y+> 11.13

where κ = 0.41 is the von Karman constant

For unsteady flows, validity of the velocity profile at each instant. Turbulent quantities : the production of k or directly k is fixed following the formulation by Viegas and Rubesin :

Pk = 1 y Z y 0 τxyt ∂u ∂y dy

The second variable is computed through a length scale.

(34)

Thin boundary layer equations TBLE Formulation

Simplified momentum equation : ∂ui ∂t + ∂uiuj ∂xj + 1 ρ dP dxi = ∂ ∂y  (µ + µt) ∂ui ∂y 

Use of an embedded grid between the first grid point and the wall.

Discretization and integration of TBL equations in the embedded mesh. Iterative solving (Newton algorithm) for the variable τw. The number of

nodes in the embedded grid is N =30.

(35)

Venturi simulations u (m/s) y (m ) 0 5 10 0 0.001 0.002 0.003 0.004 0.005 0.006 EXPE 251x77 251x62 251x61 251x59 Station 3 SA u (m/s) y (m ) 0 5 10 0 0.001 0.002 0.003 0.004 0.005 0.006 EXPE 251x77 251x62 251x61 251x59 Station 3 KE u (m/s) y (m ) 0 5 10 0 0.001 0.002 0.003 0.004 0.005 0.006 EXPE 251x77 251x62 251x61 251x59 Station 3 KL u (m/s) y (m ) 0 5 10 0 0.001 0.002 0.003 0.004 0.005 0.006 EXPE 251x77 251x62 251x61 251x59 Station 3 KWSST Mesh influence near wall, station 3

alpha y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.002 0.004 0.006 0.008 EXPE standard wall law TBLE station 3 u (m/s) y (m ) 0 5 10 0 0.001 0.002 0.003 0.004 0.005 0.006 EXPE

standard wall law TBLE

station 3

Two-layer model versus TBLE model

(36)

Periodic self-oscillating Venturi simulations

Frequency and CPU cost

The experimental frequency is around 45 Hz. The inlet cavitation parameter σinlet ∼2.15.

mesh σinlet frequency (Hz) cost for 100 ite. (s) ratio

174 × 77 2.13 30 525.6 1 2.18 no frequency 174 × 62 2.13 35 429.6 0.817 2.17 40 174 × 60 2.13 35 419.4 0.80 2.19 43.5 174 × 59 2.14 44 408 0.776 174 × 57 2.145 46 393 0.747 174 × 56 2.14 46 387 0.736

(37)

Improved model and hybrid

RANS/LES

(38)

Scale Adaptive Simulation (1)

Framework

Starting point : the k − kℓ model of Rotta (1972) where kℓ =163

R∞

−∞Rii(~x, ry) dry

Correlation tensor Rij(~x, ry) = Ui(~x) Uj(~x + ry)

velocity correlation between a fixed point and a moving point in direction y Transport equation for Ψ = kℓ involving the integral quantity I :

I= − 3 16 Z ∞ −∞ ∂U (~x + ry) ∂y R12dry

Expansion in Taylor series gives : I ≈∂U (~x) ∂y Z∞ −∞ R12dry+∂ 2U(~x) ∂y2 Z ∞ −∞ R12rydry+1 2 ∂3U(~x) ∂y3 Z ∞ −∞ R12ry2dry+ ...

The second order derivative is neglected (assumption of homogeneous flow). The third order derivative is difficult to model and Rotta neglected also this term.

(39)

Scale Adaptive Simulation (2)

Menter modelling

Menter proposed a model using the second derivative of the velocity (indicator of the heterogeneity of the flow) and the von Karman scale Lvk

∂2U ∂y2 Z ∞ −∞ R12rydry≈ Pk kℓ k  ℓ Lvk 2 and Lvk= κ U′ U′′ New term in the transport equation for Ψ (S-A term), driven by a constant ξ. ξ = 1.47 following the calibration of Menter.

Scale-adaptive model

The characteristic length scale is self-adaptive, function of the von Karman scale for a standard model, the length scale is proportional to δ

It allows to adjust the solve of turbulent structures → behaviour close to a LES BUT : problem in the near-wall area, the log zone is not respected

→ the S-A term is not activated in the near-wall area calibration of ξ in cavitating flows.

(40)

Venturi 4o simulations

Comparison between Reboud and S-A k − ℓ models

x-xi (P -P v )/ P v 0.1 0.15 0.2 0.25 0.3 -2 0 2 4 6 8 10 12 14 16 EXP KL KL-Reboud KL-SAS x-xi P rm s / P a v 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 EXPKL KL-Reboud KL-SAS

• time-averaged profiles quasi similar

• better pressure fluctuations with S-A model

Density gradient, Schlieren visualization

k −ℓ SAS x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 k −ℓ Reboud x (m) y (m ) 0 0.025 0.05 0.075 0.1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

(41)

Hybrid RANS/LES turbulence models : DES Detached Eddy Simulation of Spalart

∂ρ˜ν ∂t + div  ~ Vρ˜ν −σ1(µ + ρ˜ν) ~gradν˜  = cb1(1 − ft2) ˜Sρ˜ν + cb2 σ grad~ ρ˜ν. ~gradν˜ −  cω1fω− cb1 κ2ft2  ρν˜ 2 ˜ d2

with ˜d= min (d , CDES∆) and ∆ = max(∆x, ∆y , ∆z).

CDES is a constant evaluated for the decay of isotropic turbulence =0.65

In equilibrium area : ˜ν = C2 DES∆2S

Drawbacks

Grid induced separation.

Transition between RANS-mode and LES-mode : "grey" zone.

Calibration of the constant Cdes.

(42)

2D simulations of the Venturi 4o

Influence of CDES. RANS regions (black) and LES (white)

x (m) y ( m ) 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 Cdes= 0.65 x (m) y ( m ) 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 Cdes= 0.9

Wall pressure and RMS fluctuations

x-xi (P -P v )/ P v 0.1 0.15 0.2 0.25 0.3 -2 0 2 4 6 8 10 12 14 16 EXP SA-DES-c065-sigma065 SA-DES-c08-sigma06 SA-DES-c09-sigma0588 SA-DES-c09-sigma0579 x-xi P rm s / P a v 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 EXP SA-DES-c065-sigma065 SA-DES-c08-sigma06 SA-DES-c09-sigma0588 SA-DES-c09-sigma0579

(43)

3D simulations of the Venturi 4o

Comparison between k − ℓ S-A and DES simulations

x (m) z (m ) 0 0.01 0.02 0.03 0.04 0.05 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 Grad-rho:300006000090000120000 150000 180000 210000 240000 270000 300000 x (m) z (m ) 0 0.01 0.02 0.03 0.04 0.05 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 Grad-rho:300006000090000120000 150000 180000 210000 240000 270000 300000 x (m) z (m ) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 Grad-rho:300006000090000120000 150000 180000 210000 240000 270000 300000 x (m) z (m ) 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 Grad-rho:300006000090000120000 150000 180000 210000 240000 270000 300000

gradient density visualization at two different instants : k − ℓ S-A (left) and DES (right)

(44)

3D simulations of the Venturi 4o (2)

Comparison between k − ℓ Scale-Adaptive and DES simulations

X Y Z X Y Z X Y Z X Y Z

Iso-surface of the void fraction for the value of 60% at two different instants : k − ℓ S-A (left) versus DES (right)

(45)

3D simulations on the Venturi 4o (3)

Comparison between 2D and 3D simulations

Good agreement between models and experiment (mid-span profiles) 3D computations provides void fraction lower than 2D computations

alpha y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 EXPE SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D alpha y (m ) 0 0.2 0.4 0.6 0.8 1 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 EXPE SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D u (m/s) y (m ) -4 -2 0 2 4 6 8 10 12 14 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 EXPE SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D u (m/s) y (m ) -6 -4 -2 0 2 4 6 8 10 12 14 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011 0.012 EXPE SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D

(46)

3D simulations on the Venturi 4o (4)

Comparison between 2D and 3D simulations

The level of RMS pressure fluctuations is largely overestimated by the 3D computations x-xi(m) (P -P v )/ P v 0.1 0.15 0.2 0.25 0.3 -2 0 2 4 6 8 10 12 14 16 EXP SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D x-xinlet(m) P rm s / Pme a n 0.15 0.2 0.25 0.3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 EXP SA-SAS 3D SA-SAS 2D KL-SAS 3D KL-SAS 2D

Time-averaged wall pressure and RMS fluctuations

(47)

3D simulations on the Venturi 4o (5)

Dynamic behaviour - oblique mode using S-A simulations

x (m) z (m ) 0 0.01 0.02 0.03 0.04 0.05 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06Grad-rho: 30000 60000 90000120000 150000 180000 210000 240000 270000 300000

Density gradient visualization → a transversal instability at a low frequency : 6 Hz.

(48)

One-fluid filtered equations and

LES

(49)

One-fluid filtered equations

Scales

Micro-scales, scales which are small enough to describe individual bubble shapes.

Meso-scales, which are comparable to bubble sizes. Macro-scales, which entail enough bubbles for statistical representation.

When LES is applied at a micro-scale, combination with interface tracking methods (see Lakehal).

When LES is applied at a macro-scale, the interface resolution is not considered.

The scale separation is mathematically obtained by applying a convolution product using a large-scale-pass filter (function G ).

(50)

One-fluid filtered equations

Filter

For a quantity φ, the filtered variable is defined as : φ = G ◦ φ The Favre filtered variable : ˜φ = ρφ/ρ

The filtered phase indicator function Xk = G ◦ Xk = αk can be

interpreted as a filtered volume fraction of phase k.

Phase indicator function

The phase indicator function is defined as : Xk(M(x, t)) =



1 if phase k is present in point M(x, t) at t 0 otherwise

(51)

One-fluid filtered equations Equations

Assumptions : the filtering operator commutes with time and spatial derivatives. The mass transfer is assuming to be proportional to the velocity divergence through a constant C .

∂ρ ∂t + ∂ (ρ˜ui) ∂xj = 0 ∂ρ˜ui ∂t + ∂ ρ˜uiu˜j + Pδij  ∂xj = div2µ˜S+ 2τµS−2τρS−τρuu  ∂ρ ˜E ∂t + ∂ρ ˜Hu˜i + Q v i  ∂xj

= div2τµSu−2µ ˜VτρS−2µ˜Sτρu

 + div4µτρuτρS+ ρ ˜Hτρu−τρHu

 ∂α

∂t + ˜V.∇α − C ∂˜ui

∂xj

= −τuα− Cdiv (τρu)

(52)

One-fluid filtered equations Subgrid terms τuα = V .∇Xv− ˜V.∇α ; τρu = ˜V − V τµS = µS − µS ; τρS = ˜S − S τρHu = ρHV − ρ ˜H ˜V ; τµSu = µSV − µSV τρuu = ρ  ^ V ⊗ V − ˜V ⊗ ˜V

The subgrid term τuα is specific to two-phase flows.

The influence and the hierarchy of all these terms have never been investigated in cavitating flows.

The magnitude of the different subgrid terms was a priori evaluated in the case of phase separation flows and turbulence bubble interaction (Labourasse,Vincent) → the influence of τuα is highly dependent on

the flow configurations and/or on the chosen two-phase description.

(53)

Conclusion

Modelling difficulties

Lots of assumption in models. Lack of experimental data or DNS.

Compressibility turbulent closure due to the no divergence free fluctuating velocity field

Advanced turbulence models and hybrid turbulence model to improve the level of resolved scales

A challenge : LES in cavitating flows.

Références

Documents relatifs

In particular, a steady solution was obtained, even if in [19] experimen- tal measurements showed an unsteady behavior of the cavitating flow. This was due to the choice of

Refined Large-Eddy Simulation results, using the WALE model Nicoud &amp; Ducros (1999), hold for reference data, whereas the efficiency of a RANS model, the Elliptic Blending

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The forcing is applied in a reduced area downstream the LES inlet and overlapping the upstream RANS region, in order to generate turbulent fluctuations in the LES domain, and

Rotta &amp; IP model is used as the soure term of the ellipti relaxation equation, the M3. model, with the oeÆient hosen to obtain a redution of the redistribution

In dense particle laden flows we have used a similar approach, coupling a Lagrangian stochastic model for particles, to Eulerian RANS equations for the fluid.. However, albeit

We find that the axisymmetry of our large-scale flow is also present in the small-scale fluctuations as measured by the Lagrangian second-order structure function and velocity

Note that for all three initial masses, our results from different stellar evolution codes show variations well within the im- pact due to nuclear reaction rate uncertainties